Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integrals

Author(s): Naila Mehreen1, Matloob Anwar1
1School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.
Copyright © Naila Mehreen, Matloob Anwar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this paper is to establish the Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integral. We provide Hermite-Hadamard-Fej\’er inequalities for harmonically convex functions via Katugampola fractional integral in one dimension.

Keywords: Hermite-Hadamard-Fejér inequalities; Riemann-Liouville fractional integral; Katugampola fractional integral; Harmonically convex functions; Co-ordinated harmonically convex functions.

1. Introduction

A function \(f:\mathcal{K}\rightarrow \mathbb{R}\), where \(\mathcal{K}\) is an interval of real numbers, is called convex if the following inequality holds:

\begin{equation} \label{e1e} f(ru_1+(1-r)u_2)\leq rf(u_1)+(1-r)f(u_2), \end{equation}
(1)
for all \(u_1,u_2\in \mathcal{K}\) and \(r\in[0,1]\). Function \(f\) is called concave if \(-f\) is convex.

The Hermite-Hadamard inequality [1] for convex functions \(f:\mathcal{K}\rightarrow \mathbb{R}\) on an interval of real line is:

\begin{equation} \label{p1} f\left( \frac{u_1+u_2}{2}\right) \leq \frac{1}{u_2-u_1}\int^{u_2}_{u_1}f(x)dx\leq\frac{f(u_1)+f(u_2)}{2}, \end{equation}
(2)
where \(u_1,u_2\in \mathcal{K}\) with \(u_1< u_2\). Then Fejér [2] introduced the weighted generalization of (2) as follows
\begin{equation} \label{p2} f\left( \frac{u_1+u_2}{2}\right) \int_{u_1}^{u_2}g(x)dx\leq \frac{1}{u_2-u_1}\int^{u_2}_{u_1}f(x)g(x)dx\leq\frac{f(u_1)+f(u_2)}{2}\int_{u_1}^{u_2}g(x)dx, \end{equation}
(3)
where \(g:[u_1,u_2]\rightarrow \mathbb{R}\) is nonnegative, integrable and symmetric to \((u_1+u_2)/2\). For more results and details see [3,4,5,6,7,8,9,10,11,12,13,14].

Definition 1 ([15]). Let \(\mathcal{K}\subset\mathbb{R}\setminus\{0\}\) be a real interval. A function \(f:\mathcal{K}\rightarrow \mathbb{R}\) is said to be harmonically convex, if

\begin{equation} \label{1ee} f\left(\frac{u_1u_2}{ru_1+(1-r)u_2}\right)\leq rf(u_2)+(1-r)f(u_1), \end{equation}
(4)
for all \(u_1,u_2\in \mathcal{K}\) and \(r\in[0,1]\). If the inequality in (4) is reversed, then \(f\) is said to be harmonically concave.

Dragomir [16] gave the Hadamard’s inequality for convex functions on the co-ordinate which is defined as:

Definition 2 ([16]). A function \(f:\Delta=[u_1,u_2]\times [v_1,v_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) is called convex on the co-ordinate with \(u_1< u_2\) and \(v_1< v_2\) if the partial functions

\(f_{y}:[u_1,u_2] \rightarrow \mathbb{R}\), \(f_{y}(a)=f(a,y)\) and \(f_{x}:[v_1,v_2] \rightarrow \mathbb{R}\), \(f_{x}(c)=f(x,c)\) are convex for all \(x\in[u_1,u_2]\) and \(y\in [v_1,v_2]\).

Definition 3 ([17]). A function \(f:\Delta=[u_1,u_2]\times [v_1,v_2]\subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}\) is called co-ordinate convex on \(\Delta\) with \(u_1< u_2\) and \(v_1< v_2\), if \begin{align*} &f(rx+(1-r)z,\tau y+(1-\tau)w)\leq r\tau f(x,y)+r(1-\tau)f(x,w)+(1-r)\tau f(z,y)+(1-r)(1-\tau)f(z,w), \end{align*} for all \(r,\tau\in [0,1]\) and \((x,y),(z,w)\in\Delta\). For more results and details see [16,17,18,19].

Definition 4 ([20]). A function \(f:\Delta=[u_1,u_2]\times [v_1,v_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) is called co-ordinated harmonically convex on \(\Delta\) with \(u_1< u_2\) and \(v_1< v_2\), if \begin{align*} &f\left(\frac{xz}{rx+(1-r)z},\frac{yw}{\tau y+(1-\tau)w}\right)\leq r\tau f(x,y)+r(1-\tau)f(x,w)+(1-r)\tau f(z,y)+(1-r)(1-\tau)f(z,w), \end{align*} for all \(r,\tau\in [0,1]\) and \((x,y),(z,w)\in\Delta\).

Clearly, a function \(f:\Delta=[u_1,u_2]\times [v_1,v_2]\subseteq (0,\infty)\times (0,\infty) \rightarrow \mathbb{R}\) is called harmonically convex on the co-ordinate with \(u_1< u_2\) and \(v_1< v_2\) if the partial functions \(f_{y}:[u_1,u_2] \rightarrow \mathbb{R}\), \(f_{y}(a)=f(a,y)\) and \(f_{x}:[v_1,v_2] \rightarrow \mathbb{R}\), \(f_{x}(b)=f(x,b)\) are harmonically convex for all \(x\in[u_1,u_2]\) and \(y\in [v_1,v_2]\), see [21] for more details.

Definition 5 ([22]). Let \([u_1,u_2]\subset\mathbb{R}\) be a finite interval. The left- and right-side Katugampola fractional integrals of order \(\alpha(>0)\) of \(f\in X^{p}_{c}(u_1,u_2)\) are defined by,

\begin{equation*} ^{\rho}I^{\alpha}_{u_1+}f(x)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\int_{u_1}^{x}(x^{\rho}-t^{\rho})^{\alpha-1}t^{\rho-1}f(t)dt, \end{equation*} and \begin{equation*} ^{\rho}I^{\alpha}_{u_2-}f(x)=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)}\int_{x}^{u_2}(t^{\rho}-x^{\rho})^{\alpha-1}t^{\rho-1}f(t)dt, \end{equation*} with \(u_1< x0\), where \(X^{p}_{c}(u_1,u_2)\) \((c \in \mathbb{R}, 1\leq p\leq \infty)\) is the space of those complex valued Lebesgue measurable functions \(f\) on \([u_1,u_2]\) for which \(\|f\|_{X^{p}_{c}}< \infty\), where the norm is defined by \begin{equation*} \|f\|_{X^{p}_{c}}=\left( \int_{u_1}^{u_2}|t^{c}f(t)|^{p}\frac{dt}{t}\right)^{1/p}< \infty, \end{equation*} for \(1\leq p< \infty\), \(c\in \mathbb{R}\) and for the case \(p=\infty\), \begin{equation*} \|f\|_{X^{\infty}_{c}}= ess\ sup_{u_1\leq t\leq u_2}[t^{c}|f(t)|]. \end{equation*}

Definition 6 ([23]). Let \(f\in L_{1}([u_1,u_2]\times [v_1,v_2])\). The Katugampola fractional integrals \(^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_1+,v_1+}\), \(^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_1+,v_2-}\), \(^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_2-,v_1+}\) and \(^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_2-,v_2-}\) of order \(\alpha,\beta>0\) with \(a,c\geq 0\) are defined by

\begin{equation*} ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_1+,v_1+}f(x,y)=\frac{\rho^{1-\alpha}_{1}\rho^{1-\beta}_{2}}{\Gamma(\alpha)\Gamma(\beta)}\int_{u_1}^{x}\int_{v_1}^{y}(x^{\rho_{1}}-t^{\rho_{1}})^{\alpha-1}(y^{\rho_{2}}-s^{\rho_{2}})^{\beta-1}t^{\rho_{1}-1}s^{\rho_{2}-1}f(t,s)dsdt, \end{equation*} with \(x>u_1, \ y>v_1\), \begin{equation*} ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_1+,v_2-}f(x,y)=\frac{\rho^{1-\alpha}_{1}\rho^{1-\beta}_{2}}{\Gamma(\alpha)\Gamma(\beta)}\int_{u_1}^{x}\int_{y}^{v_2}(x^{\rho_{1}}-t^{\rho_{1}})^{\alpha-1}(s^{\rho_{2}}-y^{\rho_{2}})^{\beta-1}t^{\rho_{1}-1}s^{\rho_{2}-1}f(t,s)dsdt, \end{equation*} with \(x>u_1, \ y< v_2\), \begin{equation*} ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_2-,v_1+}f(x,y)=\frac{\rho^{1-\alpha}_{1}\rho^{1-\beta}_{2}}{\Gamma(\alpha)\Gamma(\beta)}\int_{x}^{u_2}\int_{v_1}^{y}(t^{\rho_{1}}-x^{\rho_{1}})^{\alpha-1}(y^{\rho_{2}}-s^{\rho_{2}})^{\beta-1}t^{\rho_{1}-1}s^{\rho_{2}-1}f(t,s)dsdt, \end{equation*} with \(xv_1\), and \begin{equation*} ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{u_2-,v_2-}f(x,y)=\frac{\rho^{1-\alpha}_{1}\rho^{1-\beta}_{2}}{\Gamma(\alpha)\Gamma(\beta)}\int_{x}^{u_2}\int_{y}^{v_2}(t^{\rho_{1}}-x^{\rho_{1}})^{\alpha-1}(s^{\rho_{2}}-y^{\rho_{2}})^{\beta-1}t^{\rho_{1}-1}s^{\rho_{2}-1}f(t,s)dsdt, \end{equation*} with \(x< u_2, \ y< v_2\), respectively, where the Gamma function \(\Gamma\) is defined as \(\Gamma(\alpha)=\int_{0}^{\infty}e^{-t}t^{\alpha-1}dt\).

In the next section, we give result for harmonically convex functions in one dimension.

2. Hermite-Hadamard-Fejér type inequalities

In this section, we give Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via Katugampola fractional integral in one dimension which will play a key role for the results in the next section. Latif et al., [24] defined following useful definition:

Definition 7 ([24]). A function \(h:[u_1,u_2]\subseteq\mathbb{R}\backslash \{0\}\rightarrow \mathbb{R} \) is said to be harmonically symmetric with respect to \(2u_1u_2/(u_1+u_2)\) if

\begin{equation*} h(x)=h\left(\frac{1}{\frac{1}{u_1}+\frac{1}{u_2}-\frac{1}{x}}\right) \end{equation*} holds for all \(x\in[u_1,u_2]\).

Lemma 1. Let \(\rho>0\). If \(h:[u_1^{\rho},u_2^{\rho}]\subseteq(0,\infty)\rightarrow \mathbb{R}\) is integrable and harmonically symmetric with respect to \(2u_1^{\rho}u_2^{\rho}/(u_1^{\rho}+u_2^{\rho})\), then

\begin{equation} \label{e32} ^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})=^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho}) =\frac{1}{2}\left[^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})+\ ^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho})\right], \end{equation}
(5)
with \(\alpha>0\) and \(g(x^{\rho})=1/x^{\rho}\).

Proof. Since \(h\) is harmonically symmetric with respect to \(2u_1^{\rho}u_2^{\rho}/(u_1^{\rho}+u_2^{\rho})\), then by definition we have \(h(\frac{1}{x^{\rho}})=h\left(\frac{1}{\frac{1}{u_1^{\rho}}+\frac{1}{u_2^{\rho}}-x^{\rho}}\right)\), for all \(x^{\rho}\in\left[\frac{1}{u_2^{\rho}},\frac{1}{u_1^{\rho}}\right] \). In the following integral, by setting \(t^{\rho}=\frac{1}{u_1^{\rho}}+\frac{1}{u_2^{\rho}}-x^{\rho}\), we get \begin{align*} ^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})&=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int^{\frac{1}{u_1}}_{\frac{1}{u_2}}\left(\frac{1}{u_1^{\rho}}-t^{\rho}\right)^{\alpha-1}t^{\rho-1}h\left( \frac{1}{t^{\rho}}\right) dt \\ &=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int^{\frac{1}{u_1}}_{\frac{1}{u_2}}\left(x^{\rho}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1}x^{\rho-1}h\left( \frac{1}{\frac{1}{u_1^{\rho}}+\frac{1}{u_2^{\rho}}-x^{\rho}}\right) dx \\ &=\frac{\rho^{1-\alpha}}{\Gamma(\alpha)} \int^{\frac{1}{u_1}}_{\frac{1}{u_2}}\left(x^{\rho}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1}x^{\rho-1}h\left( \frac{1}{x^{\rho}}\right) dx\\ &=\ ^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho}). \end{align*} This completes the proof.

Remark 1. In Lemma 1, if we take \(\rho\longmapsto 0\), we get Lemma 2 in [25].

Theorem 8. Let \(\rho>0\). Let \(f:[u_1^{\rho},u_2^{\rho}]\subseteq (0,\infty)\rightarrow\mathbb{R}\) be a harmonically convex with \(u_1< u_2\) and \(f\in L_1[u_1,u_2]\). If \(h:[u_1^{\rho},u_2^{\rho}]\subseteq(0,\infty)\rightarrow \mathbb{R}\) is nonnegative and harmonically symmetric with respect to \(2u_1^{\rho}u_2^{\rho}/(u_1^{\rho}+u_2^{\rho})\), then the following inequalities hold:

\begin{align} f\left(\frac{2u_1^{\rho}u_2^{\rho}}{u_1^{\rho}+u_2^{\rho}}\right)\left[^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})\right] &\leq\left[^{\rho}I^{\alpha}_{1/u_1-}(fh\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(fh\circ g)(1/u_1^{\rho})\right]\notag \end{align} \begin{align} \label{e33} &\leq\frac{f(u_1^{\rho})+f(u_2^{\rho})}{2}\left[^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})\right], \end{align}
(6)
with \(\alpha>0\) and \(g(x^{\rho})=1/x^{\rho}\).

Proof. Since \(f\) is harmonically convex on \([u_1^{\rho},u_2^{\rho}]\), we have for all \(r\in[0,1]\)

\begin{align} \label{e34} f\left(\frac{2u_1^{\rho}u_2^{\rho}}{u_1^{\rho}+u_2^{\rho}}\right)&= f\left(\frac{2u_1^{\rho}u_2^{\rho}}{\left(r^{\rho}u_1^{\rho}+(1-r^{\rho})u_2^{\rho}\right)+\left(r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}\right)}\right)\notag \\ &\leq \frac{f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_1^{\rho}+(1-r^{\rho})u_2^{\rho}}\right) +f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)}{2}. \end{align}
(7)
Multiplying (7) by \(r^{\alpha\rho-1}h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)\) on both sides and integrate with respect to \([0,1]\), we get \begin{align*} \begin{split} 2f\left(\frac{2u_1^{\rho}u_2^{\rho}}{u_1^{\rho}+u_2^{\rho}}\right)&\int_{0}^{1} r^{\alpha\rho-1}h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr \\ &\leq \int_{0}^{1}r^{\alpha\rho-1}f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_1^{\rho}+(1-r^{\rho})u_2^{\rho}}\right) h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr\\ &\;\;\;\;+\int_{0}^{1}r^{\alpha\rho-1}f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right) h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr. \end{split} \end{align*} Since \(h\) is harmonically symmetric with respect to \(2u_1^{\rho}u_2^{\rho}/(u_1^{\rho}+u_2^{\rho})\). By setting \(x^{\rho}=\frac{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}{u_1^{\rho}u_2^{\rho}}\), we get \begin{align*} \begin{split} 2\left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}&f\left(\frac{2u_1^{\rho}u_2^{\rho}}{u_1^{\rho}+u_2^{\rho}}\right) \int_{1/u_2}^{1/u_1}\left(x^{p}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1}h\left( \frac{1}{x^{\rho}}\right) dx \\ \leq&\left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}\left[\int_{1/u_2}^{1/u_1}\left(x^{p}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1} f\left(\frac{1}{\frac{1}{u_1^{\rho}}+\frac{1}{u_2^{\rho}}-x^{\rho}}\right)h\left( \frac{1}{x^{\rho}}\right) dx\right.\\&\left.+\int_{1/u_2}^{1/u_1}\left(x^{p}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1} f\left( \frac{1}{x^{\rho}}\right) h\left( \frac{1}{x^{\rho}}\right) dx \right] \\ =&\left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}\left[\int_{1/u_2}^{1/u_1}\left(\frac{1}{u_1^{\rho}}-x^{p}\right)^{\alpha-1} f\left( \frac{1}{x^{\rho}}\right) h\left(\frac{1}{\frac{1}{u_1^{\rho}}+\frac{1}{u_2^{\rho}}-x^{\rho}}\right)dx\right. \\ &\left.+\int_{1/u_2}^{1/u_1}\left(x^{p}-\frac{1}{u_2^{\rho}}\right)^{\alpha-1} f\left( \frac{1}{x^{\rho}}\right) h\left( \frac{1}{x^{\rho}}\right) dx \right]. \end{split} \end{align*} Then by Lemma 1, we have
\begin{align} \label{e35} \left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}&\rho^{\alpha-1}\Gamma(\alpha)f\left(\frac{2u_1^{\rho}u_2^{\rho}}{u_1^{\rho}+u_2^{\rho}}\right) \left[^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})\right]\notag \\ &\leq \left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}\rho^{\alpha-1}\Gamma(\alpha) \left[^{\rho}I^{\alpha}_{1/u_1-}(fh\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(fh\circ g)(1/u_1^{\rho})\right]. \end{align}
(8)
This completes the first inequality. For second inequality, we first note that if \(f\) is harmonically convex function, then we have
\begin{equation} \label{e36} f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_1^{\rho}+(1-r^{\rho})u_2^{\rho}}\right) +f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)\leq f(u_1^{\rho})+f(u_2^{\rho}). \end{equation}
(9)
Multiplying (8) by \(r^{\alpha\rho-1}h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)\) on both sides and integrate with respect to \(r\in[0,1]\), we get \begin{align*} \begin{split} &\int_{0}^{1}r^{\alpha\rho-1}f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_1^{\rho}+(1-r^{\rho})u_2^{\rho}}\right) h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr \\ &\;\;\;+\int_{0}^{1}r^{\alpha\rho-1}f\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right) h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr \\ &\leq (f(u_1^{\rho})+f(u_2^{\rho}))\int_{0}^{1}r^{\alpha\rho-1}h\left(\frac{u_1^{\rho}u_2^{\rho}}{r^{\rho}u_2^{\rho}+(1-r^{\rho})u_1^{\rho}}\right)dr, \end{split} \end{align*} i.e., \begin{align*} \begin{split} \left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}&\rho^{\alpha-1}\Gamma(\alpha) \left[^{\rho}I^{\alpha}_{1/u_1-}(fh\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(fh\circ g)(1/u_1^{\rho})\right] \\ &\leq\left(\frac{u_1^{\rho}u_2^{\rho}}{u_2^{\rho}-u_1^{\rho}}\right)^{\alpha}\rho^{\alpha-1}\Gamma(\alpha)\frac{f(u_1^{\rho})+f(u_2^{\rho})}{2} \left[^{\rho}I^{\alpha}_{1/u_1-}(h\circ g)(1/u_2^{\rho})+^{\rho}I^{\alpha}_{1/u_2+}(h\circ g)(1/u_1^{\rho})\right]. \end{split} \end{align*} This completes the proof.

Remark 2.

  • 1) &nbsp In Theorem 8, if we take \(\rho\rightarrow 1\), we get Theorem 5 in [25].
  • 2) &nbsp In Theorem 8, if we take \(\rho\rightarrow 1\) and \(\alpha=1\), we get Theorem 8 in [26].

3. Hermite-Hadamard-Fejér type inequalities on co-ordinates

In this section, we established some new results by using Katugampola fractional integrals on co-ordinates. First we give the following result:

Theorem 9. Let \(\alpha,\beta>0\) and \(\rho_{1},\rho_{2}>0\). Let \(f:\Delta=[u_1^{\rho_{1}},u_2^{\rho_{1}}]\times [v_1^{\rho_{2}},v_2^{\rho_{2}}]\subseteq (0,\infty)\times(0,\infty) \rightarrow \mathbb{R}\) be a co-ordinated harmonically convex on \(\Delta\), with \(0< u_1< u_2\), \(0< v_1< v_2\). If \(h:\Delta\rightarrow \mathbb{R}\) is nonnegative and harmonically symmetric with respect to \(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}\), \(\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\) on \(\Delta\). Then

\begin{align} \label{t1e1} f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)&\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right.\notag \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]\notag \\ \leq& \frac{1}{4} \left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}(fh\circ g) \left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}(fh\circ g)\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right.\notag \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}(fh\circ g)\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}(fh\circ g)\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]\notag \\ \leq&\frac{f(u_1^{\rho_{1}},v_1^{\rho_{2}})+f(u_1^{\rho_{1}},v_2^{\rho_{2}})+f(u_2^{\rho_{1}},v_1^{\rho_{2}})+f(u_2^{\rho_{1}},v_2^{\rho_{2}})}{4}\notag \\ &\times\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right.\notag \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right], \end{align}
(10)
holds, where \(g(x^{\rho_{1}},y^{\rho_{2}})=\left(\frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right) \).

Proof. Since \(f\) is co-ordinated harmonically convex on \(\Delta\), we have

\begin{align} \label{t1e3} f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \leq& \frac{1}{4}\left[f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right)\right.\notag \\ &+f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)\notag \\ &+ f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right)\notag \\ & \left.+f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right) \right]. \end{align}
(11)
Multiplying (11) by \(r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)\) on both sides and then integrating with respect to \((r,\tau)\) over \([0,1]\times [0,1]\), we get \begin{align*} f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)& \int_{0}^{1}\int_{0}^{1}r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1} h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)drd\tau \\ \leq& \frac{1}{4}\bigg[\int_{0}^{1}\int_{0}^{1} f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right) \\ &\times h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}drd\tau \\ & +\int_{0}^{1}\int_{0}^{1}f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right) \\ &\times h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}drd\tau \\ &+ \int_{0}^{1}\int_{0}^{1} f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right) \\ &\times h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}drd\tau \\ & +\int_{0}^{1}\int_{0}^{1}f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right) \\ &\times h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}drd\tau \bigg]. \end{align*} By change of variables \(x^{\rho_{1}}=\frac{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}}{u_1^{\rho_{1}}u_2^{\rho_{1}}}\) and \(y^{\rho_{2}}=\frac{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}{v_1^{\rho_{2}}v_2^{\rho_{2}}}\) and using the symmetric property of \(h\), we find \begin{align*} &\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_2^{\rho_{1}}-u_1^{\rho_{1}}}\right)^{\alpha}\left( \frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_2^{\rho_{2}}-v_1^{\rho_{2}}}\right)^{\beta}f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \\ &\;\;\;\;\times \int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy \\ & \leq \frac{1}{4}\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_2^{\rho_{1}}-u_1^{\rho_{1}}}\right)^{\alpha}\left( \frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_2^{\rho_{2}}-v_1^{\rho_{2}}}\right)^{\beta}\left[\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1}\right. \end{align*} \begin{align*} &\;\;\;\times x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{\frac{1}{u_1^{\rho_{1}}}+\frac{1}{u_2^{\rho_{1}}}-x^{\rho_{1}}},\frac{1}{\frac{1}{v_1^{\rho_{2}}}+\frac{2}{v_2^{\rho_{2}}}-y^{\rho_{2}}}\right) h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy\\ &\;\;\;+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{\frac{1}{u_1^{\rho_{1}}}+\frac{1}{u_2^{\rho_{1}}}-x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right) h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy \\ &\;\;\;+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{\frac{1}{v_1^{\rho_{2}}}+\frac{2}{v_1^{\rho_{2}}}-y^{\rho_{2}}}\right) h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy \\ &\;\;\;\left.+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right) h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy \right] \\ &= \frac{1}{4}\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_2^{\rho_{1}}-u_1^{\rho_{1}}}\right)^{\alpha}\left( \frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_2^{\rho_{2}}-v_1^{\rho_{2}}}\right)^{\beta}\left[\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(\frac{1}{u_1^{\rho_{1}}}-x^{\rho_{1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_{2}}}-y^{\rho_{2}} \right)^{\beta-1}\right. \\ &\;\;\;\times x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{\frac{1}{u_1^{\rho_{1}}}+\frac{1}{u_2^{\rho_{1}}}-x^{\rho_{1}}},\frac{1}{\frac{1}{v_1^{\rho_{2}}}+\frac{2}{v_2^{\rho_{2}}}-y^{\rho_{2}}}\right)dxdy \\ &\;\;\;+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(\frac{1}{u_1^{\rho_{1}}}-x^{\rho_{1}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{\frac{1}{u_1^{\rho_{1}}}+\frac{1}{u_2^{\rho_{1}}}-x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy \\ &\;\;\;+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_{2}}}-y^{\rho_{2}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{\frac{1}{v_1^{\rho_{2}}}+\frac{2}{v_2^{\rho_{2}}}-y^{\rho_{2}}}\right)dxdy \\ &\;\;\;\left.+\int_{1/v_2}^{1/v_1}\int_{1/u_2}^{1/u_1} \left(x^{\rho_{1}}-\frac{1}{u_2^{\rho_{1}}} \right)^{\alpha-1}\left(y^{\rho_{2}}-\frac{1}{v_2^{\rho_{2}}} \right)^{\beta-1} x^{\rho_{1}-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right) h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dxdy\right]. \end{align*} Thus, we get \begin{align*} \begin{split} \frac{\Gamma(\alpha)\Gamma(\beta)}{\rho_{1}^{1-\alpha}\rho_2^{1-\beta}}&\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_2^{\rho_{1}}-u_1^{\rho_{1}}}\right)^{\alpha}\left( \frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_2^{\rho_{2}}-v_1^{\rho_{2}}}\right)^{\beta}f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \\ &\times\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq& \frac{\Gamma(\alpha)\Gamma(\beta)}{4\rho_{1}^{1-\alpha}\rho_2^{1-\beta}}\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_2^{\rho_{1}}-u_1^{\rho_{1}}}\right)^{\alpha}\left( \frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_2^{\rho_{2}}-v_1^{\rho_{2}}}\right)^{\beta} \\ &\times \left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}(fh\circ g) \left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}(fh\circ g)\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}(fh\circ g)\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}(fh\circ g)\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]. \end{split} \end{align*} This completes the first inequality of (10). For the second inequality of (10) we use the co-ordinated harmonically convexity of \(f\) as:
\begin{align*} &f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right)+f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_1^{\rho_{1}}+(1-r^{\rho_{1}})u_2^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)\end{align*} \begin{align} \label{t1e5} &+ f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_1^{\rho_{2}}+(1-\tau^{\rho_{2}})v_2^{\rho_{2}}}\right)+f\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)\notag \\ &\leq f(u_1^{\rho_{1}},v_1^{\rho_{2}})+f(u_2^{\rho_{1}},v_1^{\rho_{2}})+f(u_1^{\rho_{1}},v_2^{\rho_{2}})+f(u_2^{\rho_{1}},v_2^{\rho_{2}}). \end{align}
(12)
Thus multiplying (12) by \(r^{\rho_{1}\alpha-1}\tau^{\rho_{2}\beta-1}h\left( \frac{u_1^{\rho_{1}}u_2^{\rho_{1}}}{r^{\rho_{1}}u_2^{\rho_{1}}+(1-r^{\rho_{1}})u_1^{\rho_{1}}},\frac{v_1^{\rho_{2}}v_2^{\rho_{2}}}{\tau^{\rho_{2}} v_2^{\rho_{2}}+(1-\tau^{\rho_{2}})v_1^{\rho_{2}}}\right)\) and integrating with respect to \((r,\tau)\) over \([0,1]\times [0,1]\), we get the second inequality of (10). Hence the proof is completed.

Theorem 10. Let \(\alpha,\beta>0\) and \(\rho_{1},\rho_{2}>0\). Let \(f:\Delta=[u_1^{\rho_{1}},u_2^{\rho_{1}}]\times [v_1^{\rho_{2}},v_2^{\rho_{2}}]\subseteq (0,\infty)\times(0,\infty) \rightarrow \mathbb{R}\) be a co-ordinated harmonically convex on \(\Delta\), with \(0< u_1< u_2\), \(0< v_1< v_2\) and \(f\in L_1[\Delta]\). If \(h:\Delta\rightarrow \mathbb{R}\) is nonnegative and harmonically symmetric with respect to \(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}\),\(\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\) on \(\Delta\). Then the following inequalities hold:

\begin{align*} f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)&\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq& \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\bigg[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \bigg] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_1-}\bigg[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \bigg] \\ &+ \ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\bigg[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \bigg] \\ \leq& 2\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}fh\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}fh\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &+\left.\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}fh\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}fh\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq& \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},v_1^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\bigg[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},v_2^{\rho_{2}}\right) \ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \bigg] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},v_1^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \end{align*} \begin{align} \label{tt1e1} &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},v_2^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]\notag \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(u_1^{\rho_{1}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]\notag \\ &+ \ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(u_2^{\rho_{1}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]\notag \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(u_1^{\rho_{1}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]\notag \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(u_2^{\rho_{1}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]\notag \\ \end{align}
\begin{align} \leq& \frac{f(u_1^{\rho_1},v_1^{\rho_2})+f(u_1^{\rho_1},v_2^{\rho_2})+f(u_2^{\rho_1},v_1^{\rho_2})+f(u_2^{\rho_1},v_2^{\rho_2})}{4}\notag \\ &\times \left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right.\notag \\ &\left.+^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right], \end{align}
(13)
where \(g(x^{\rho_{1}},y^{\rho_{2}})=\left(\frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right) \), \(g_{1}(x^{\rho_{1}},y^{\rho_{2}})=\left(\frac{1}{x^{\rho_{1}}},y^{\rho_{2}} \right)\) and \(g_{2}(x^{\rho_{1}},y^{\rho_{2}})=\left(x^{\rho_{1}},\frac{1}{y^{\rho_{2}}} \right) \), respectively.

Proof. Since \(f\) is co-ordinated harmonically convex on \(\Delta\), then the function \(f_{1/x^{\rho_{1}}}:[v_1^{\rho_{2}},v_2^{\rho_{2}}]\rightarrow \mathbb{R}\), defined by \(f_{1/x^{\rho_{1}}}(y^{\rho_{2}})=f(\frac{1}{x^{\rho_{1}}},y^{\rho_{2}})\) is harmonically convex on \([v_1^{\rho_{2}},v_2^{\rho_{2}}]\) for all \(x^{\rho_{1}}\in \left[ \frac{1}{u_2^{\rho_{1}}},\frac{1}{u_1^{\rho_{1}}}\right] \). Then from (6), we have

\begin{align} \label{tte2} \frac{\rho_2^{1-\beta}}{\Gamma(\beta)}f&\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right) \left[\int_{1/v_2}^{1/v_1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right.\notag \\ &\;\;\;\;\left.+\int_{1/v_2}^{1/v_1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right]\notag \\ &\leq \frac{\rho_2^{1-\beta}}{\Gamma(\beta)}\left[\int_{1/v_2}^{1/v_1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} y^{\rho_{2}-1}fh\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right.\notag\\ &\;\;\;\;\left.+\int_{1/v_2}^{1/v_1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} y^{\rho_{2}-1}fh\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right]\notag \\ &\leq\frac{f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right) +f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right) }{2}\left[\int_{1/v_2}^{1/v_1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right.\notag \\ &\;\;\;\;\left.+\int_{1/v_2}^{1/v_1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dy\right]. \end{align}
(14)
Multiplying both sides of (14) by \(\frac{x^{\rho_1-1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}}{\rho_1^{\alpha-1}\Gamma(\alpha)}\) and \(\frac{x^{\rho_1-1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}}{\rho_1^{\alpha-1}\Gamma(\alpha)}\), and integrating with respect to \(x\) over \(\left[ \frac{1}{u_2},\frac{1}{u_1}\right] \), respectively, we get
\begin{align} \label{tte3} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)\right.\notag \\ &\times h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1}\notag \\ &\left.\times f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1} y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1} y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)} \left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\notag \\ &\times \left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1} f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right], \end{align}
(15)
and \begin{align*} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)\right. \\ &\times h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} \\ &\times \left.f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right] \\ \leq &\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1} y^{\rho_{2}-1}\right. \\ &\times f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} \\ &\left.\times x^{\rho_1-1} y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right] \end{align*}
\begin{align} \label{tte4} \leq &\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)} \left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\notag \\ &\times \left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\notag \\ &+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\notag \\ &\left.\times f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]. \end{align}
(16)
Using similar arguments for the mapping \(f_{\frac{1}{y^{\rho_2}}}:[u_1^{\rho_1},u_2^{\rho_1}]\rightarrow \mathbb{R}\), \(f_{\frac{1}{y^{\rho_{2}}}}(x^{\rho_{1}})=f(x^{\rho_{1}},\frac{1}{y^{\rho_{2}}})\), we have
\begin{align} \label{tte5} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)\right.\notag \\ &\times h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1}\notag \\ &\left.\times f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1} y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1} y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq &\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)} \left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left(u_1^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}\notag \\ &\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( u_1^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\notag \\ &\times \left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}f\left( u_2^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\notag \\ &+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\notag \\ &\left.\times f\left(u_2^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right], \end{align}
(17)
and
\begin{align} \label{tte6} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)\right.\notag \\ &\times h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1}\notag \\ &\left.\times f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq &\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1} y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2}\right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1} y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)} \left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left(u_1^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( u_1^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\notag \\ &\times \left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}f\left( b^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1} f\left(u_2^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]. \end{align}
(18)
By adding the inequalities (15)\(\sim\)(18), we get \begin{align*} ^{\rho_{1}}I^{\alpha}_{1/u_1-}&\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\&+\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+ \ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]\\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \end{align*} \begin{align*} &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq &2\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}fh\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}fh\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}fh\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}fh\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq &\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},v_1^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]+\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},v_2^{\rho_{2}}\right)\right. \\ &\left.\times ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},v_1^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},v_2^{\rho_{2}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]+\ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(u_1^{\rho_{1}}, \frac{1}{v_2^{\rho_{2}}}\right)\right. \\ &\left.\times ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right]+ \ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(u_2^{\rho_{1}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(u_1^{\rho_{1}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(u_2^{\rho_{1}}, \frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.\times ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]. \end{align*} This completes the second and third inequality of (13). Now, using the first inequality of (6), we find
\begin{align} \label{tt1e8} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}&f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}} {v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\right.\notag \\ &\times x^{\rho_{1}-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\times \left.x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq&\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}\right.\notag \\ &\times f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\times \left.x^{\rho_{1}-1}y^{\rho_{2}-1} f\left(\frac{1}{x^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]. \end{align}
(19)
\begin{align*} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}f&\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}} {v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\right. \\ &\times x^{\rho_{1}-1} y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} \\ &\times\left.x^{\rho_{1}-1}y^{\rho_{2}-1}h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\\ \leq&\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1}\right.\notag \end{align*} \begin{align} \label{tt1e9} &\times f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}\notag \\ &\times \left.x^{\rho_{1}-1}y^{\rho_{2}-1}f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{1}{y^{\rho_{2}}} \right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]. \end{align}
(20)
Adding (19) and (20) and using the fact that \(h\) is symmetric, we get \begin{align*} \begin{split} f\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)&\left[\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_1-}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_1-,1/v_2+}h\circ g\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right)\right. \\ &\left.+\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_1-}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) +\ ^{\rho_{1},\rho_{2}}I^{\alpha,\beta}_{1/u_2+,1/v_2+}h\circ g\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ \leq& \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_1-}\left[ f\circ g_{1}\left( \frac{1}{u_2^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right) \ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_1-}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{1}}I^{\alpha}_{1/u_2+}\left[ f\circ g_{1}\left( \frac{1}{u_1^{\rho_{1}}},\frac{2v_1^{\rho_{2}}v_2^{\rho_{2}}}{v_1^{\rho_{2}}+v_2^{\rho_{2}}}\right)\ ^{\rho_{2}}I^{\beta}_{1/v_2+}h\circ g_2\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+ \ ^{\rho_{2}}I^{\beta}_{1/v_1-}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_2^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_2^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_1-}h\circ g_1\left( \frac{1}{u_2^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right] \\ &+\ ^{\rho_{2}}I^{\beta}_{1/v_2+}\left[ f\circ g_{2}\left(\frac{2u_1^{\rho_{1}}u_2^{\rho_{1}}}{u_1^{\rho_{1}}+u_2^{\rho_{1}}}, \frac{1}{v_1^{\rho_{2}}}\right) \ ^{\rho_{1}}I^{\alpha}_{1/u_2+}h\circ g_1\left( \frac{1}{u_1^{\rho_{1}}},\frac{1}{v_1^{\rho_{2}}}\right) \right]. \end{split} \end{align*} This completes the first inequality of (13). Now, to achieve the last inequality of (13), applying the second inequality of (6) as:
\begin{align} \label{tt1e10} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_2^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\frac{f(u_1^{\rho_1},v_2^{\rho_2})+f(u_2^{\rho_1},v_2^{\rho_2})}{2}\notag \\ &\times\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right.\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right], \end{align}
(21)
\begin{align} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1}y^{\rho_{2}-1}f\left( \frac{1}{x^{\rho_{1}}},v_1^{\rho_2}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq &\frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\frac{f(u_1^{\rho_1},v_1^{\rho_2})+f(u_2^{\rho_1},v_1^{\rho_2})}{2}\notag \\ &\times\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right.\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right], \end{align}
(22)
\begin{align} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( u_2^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1}y^{\rho_{2}-1}f\left(u_2^{\rho_1}, \frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\frac{f(u_2^{\rho_1},v_1^{\rho_2})+f(u_2^{\rho_1},v_2^{\rho_2})}{2}\notag \\ &\times\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right.\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(x^{\rho_1}-\frac{1}{u_2^{\rho_1}} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right], \end{align}
(23)
and
\begin{align} \label{tt1e11} \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{2\Gamma(\alpha)\Gamma(\beta)}&\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1}x^{\rho_1-1}y^{\rho_{2}-1}\right.\notag \\ &\times f\left( u_1^{\rho_1},\frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx +\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}\notag \\ &\left.\times x^{\rho_1-1}y^{\rho_{2}-1}f\left(u_1^{\rho_1}, \frac{1}{y^{\rho_{2}}}\right)h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]\notag \\ \leq& \frac{\rho_1^{1-\alpha}\rho_2^{1-\beta}}{\Gamma(\alpha)\Gamma(\beta)}\frac{f(u_1^{\rho_1},v_1^{\rho_2})+f(u_1^{\rho_1},v_2^{\rho_2})}{2}\notag \\ &\times\left[\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(y^{\rho_2}-\frac{1}{v_2^{\rho_2}} \right)^{\beta-1} x^{\rho_{1}-1} y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right.\notag \\ &\left.+\int_{1/u_2}^{1/u_1}\int_{1/v_2}^{1/v_1}\left(\frac{1}{u_1^{\rho_1}}-x^{\rho_1} \right)^{\alpha-1}\left(\frac{1}{v_1^{\rho_2}}-y^{\rho_2} \right)^{\beta-1}x^{\rho_{1}-1}y^{\rho_{2}-1} h\left( \frac{1}{x^{\rho_{1}}},\frac{1}{y^{\rho_{2}}}\right)dydx\right]. \end{align}
(24)
By adding the inequalities (21)\(\sim\)(24), we get the last inequality of (13).

Remark 3.

  • 1) &nbsp From Theorems 9 and 10, we can get new Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Riemann-Liouville fractional integral by taking \(\rho_1=\rho_2=1\).
  • 2) &nbsp From Theorems 9 and 10, we can get new Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via classical integral by taking \(\rho_1=\rho_2=1\) and \(\alpha=\beta=1\).

4. Conclusion

In this paper, firstly we established the Hermite-Hadamard-Fejér type inequalities for harmonically convex function in one dimension which is further used to establish the Hermite-Hadamard-Fejér type inequalities for harmonically convex function via Katugampola fractional integral. The results provided in our paper are the generalizations of some earlier results.

Acknowledgments

This research is supported by National University of Science and Technology(NUST), Islamabad, Pakistan.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References:

  1. Hadamard, J. (1893). Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. Journal de Mathématiques Pures et Appliquées, 58, 171-216. [Google Scholor]
  2. Fejér, L. (1906). Uber die fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss, 24, 369-390. (Hungarian). [Google Scholor]
  3. Dragomir, S. S. (2011). Hermite-Hadamard’s type inequalities for operator convex functions. Applied Mathematics and Computation, 218(3), 766-772. [Google Scholor]
  4. Chen, F. (2015). Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Applied Mathematics and Computation, 268, 121-128. [Google Scholor]
  5. Iscan, ˙I. (2014). Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe Journal of Mathematics and Statistics, 43(6), 935-942.[Google Scholor]
  6. Mehreen, N., & Anwar, M. (2018). Integral inequalities for some convex functions via generalized fractional integrals. Journal of Inequalities and Applications, 2018, Article No 208. DOI: https://doi.org/10.1186/s13660-018-1807-7. [Google Scholor]
  7. Mehreen, N., & Anwar, M. (2019). Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially \(s-\)convex functions in the second sense with applications. Journal of Inequalities and Applications, 2019, Article No 92. DOI: https://doi.org/10.1186/s13660-019-2047-1. [Google Scholor]
  8. Mehreen, N., & Anwar, M. (2020). Hermite-Hadamard type inequalities via exponentially \((p, h)-\)convex functions. IEEE Access, 8, 37589-37595. [Google Scholor]
  9. Mehreen, N., & Anwar, M. (2020). On some Hermite-Hadamard type inequalities for \( tgs \)-convex functions via generalized fractional integrals. Advances in Difference Equations, 2020, Article No 6. DOI: https://doi.org/10.1186/s13662-019-2457-x. [Google Scholor]
  10. Mehreen, N., & Anwar, M. (2019). Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for \(p-\)convex functions via new fractional conformable integral operators. Journal of Mathematics and Computer Science, 19(4), 230-240. [Google Scholor]
  11. Mehreen, N., & Anwar, M. (2020). Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for \(p-\)convex functions via conformable fractional integrals. Journal of Inequalities and Applications, 2020, Article No 107. DOI: https://doi.org/10.1186/s13660-020-02363-3. [Google Scholor]
  12. Mehreen, N., & Anwar, M. (2019). Some inequalities via \(\Psi-\)Riemann-Liouville fractional integrals. AIMS Mathematics, 4(5), 1403-1415. [Google Scholor]
  13. Set, E., Iscan, I., Sarikaya, M. Z., & Özdemir, M. E. (2015). On new inequalities of Hermite-Hadamard-Fejér type for convex functions via fractional integrals. Applied Mathematics and Computation, 259, 875-881. [Google Scholor]
  14. Sarikaya, M. Z., Set, E., Yaldiz, H., & Basak, N. (2013). Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Mathematical and Computer Modelling, 57(9-10), 2403-2407. [Google Scholor]
  15. Iscan, I. (2014). Hermite-Hadamard type inequalities for harmonically convex functions. Hacettepe Journal of Mathematics and Statistics, 43(6), 935-942. [Google Scholor]
  16. Dragomir, S. S. (2001). On the Hadamard’s inequlality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese Journal of Mathematics,5(4), 775-788. [Google Scholor]
  17. Sarikaya, M. Z. (2014). On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms and Special Functions, 25(2), 134-147. [Google Scholor]
  18. Alomari, M., & Darus, M. (2008). Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities. International Journal of Contemporary Mathematical Sciences, 3(32), 1557-1567. [Google Scholor]
  19. Alomari, M., & Darus, M. (2009). On the Hadamard’s inequality for log-convex functions on the coordinates. Journal of Inequalities and Applications, 2009, Article No 283147. DOI: https://doi.org/10.1155/2009/283147. [Google Scholor]
  20. Mihai, M. V., Noor, M. A., Noor, K. I., & Awan, M. U. (2015). Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Applied Mathematics and Computation, 252, 257-262. [Google Scholor]
  21. Noor, M. A., Noor, K. I., Iftikhar, S., & Ionescu, C. (2017). Hermite-Hadamard inequalities for co-ordinated harmonic convex functions. Politehn. Univ. Bucharest Sci. Scientific Bulletin – Series A – Applied Mathematics and Physics, 79, 25-34. [Google Scholor]
  22. Katugampola, U. N. (2011). New approach to a generalized fractional integral. Applied Mathematics and Computation, 218(3), 860-865. [Google Scholor]
  23. Yaldiz, H. (2019). On Hermite-Hadamard type inequalities via katugampola fractional integrals. TWMS Journal of Applied and Engineering Mathematics, 9(4), 773-785. [Google Scholor]
  24. Latif, M. A., Dragomir, S. S., & Momoniat, E. (2016). Some Fejér type inequalities for harmonically-convex functions with applications to special means. International Journal of Analysis and Applications, 13(1), 1-14. [Google Scholor]
  25. Iscan, I., Kunt, M., & Yazici, N. (2016). Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends in Mathematical Sciences, 4(3), 239-253. [Google Scholor]
  26. Chen, F., & Wu, S. (2014). Fejér and Hermite-Hadamard type inequalities for harmonically convex functions. Journal of Applied Mathematics, 2014, 1-6. [Google Scholor]