Establishment of Kifilideen coefficient tables for positive and negative powers of \(n\) and \(-n\) of Kifilideen trinomial theorem and other development based on matrix and standardized methods

Author(s): Kifilideen L. Osanyinpeju1
1 Agricultural and Bio-Resources Engineering Department, College of Engineering, Federal University of Agriculture Abeokuta, Ogun State.
Copyright © Kifilideen L. Osanyinpeju. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The generation of coefficients of terms of positive and negative powers of \(n\) and \(-n\) of Kifilideen trinomial theorem as the terms are progress is stressful and time-consuming which the same problem is identified with coefficients of terms of binomial theorem of positive and negative powers of \(n\) and \(-n\). This slows the process of producing the series of any particular trinomial expansion. This study established Kifilideen coefficient tables for positive and negative powers of \(n\) and \(-n\) of the Kifilideen trinomial theorem and other developments based on matrix and standardized methods. A Kifilideen theorem of matrix transformation of the positive power of \(n\) of trinomial expression in which three variables \(x,y\), and \(z\) are found in parts of the trinomial expression was originated. The development would ease evaluating the trinomial expression’s positive power of \(n\). The Kifilideen coefficient tables are handy and effective in generating the coefficients of terms and series of the Kifilideen expansion of trinomial expression of positive and negative powers of \(n\) and \(-n.\)

Keywords: Coefficients tables; Combination; Kifilideen matrix; Positive and negative powers; Kifilideen expansion.

1. Introduction

Goss [1] and Aljohani [2] indicate that the Binomial theorem for negative and fraction powers of \(-n\) and \(\frac{a}{b}\) were developed by Sir Isaac Newton (I642 – 1727) in 1665. Bombelli (1572) gave the coefficients of the binomial expansion of \({\left(a+b\right)}^n\ \)for \(n\ =\ 1,\ 2,\ 3,\ 4,\dots ,\ 7\) and Oughtred (1631) provided them for \(n\ =\ 1\ ,\ 2,\ 3,\ 4,\ 5,\dots ,\ 10\) [3-5]. Blaise Pascal (1623 – 1662), a French mathematician, developed the Pascal triangle, also known as the Yanghui triangle, in 1664 to generate the coefficient of terms of the positive power of binomial theorem [6-10]. Although, from the triangle, there is no indication of how the coefficients are progressing from one term to the other. However, from the binomial theorem expansion, it could be deduced which term owns the coefficient in the Pascal triangle. No publication is available for coefficients of negative power of \(-n\) either in triangle form or any other form. This delays the process of generating the series of the binomial theorem involving the negative power of \(-n\).

A theorem of Kifilideen matrix transformation of the positive power of \(n\) of trinomial expression in which three variables \(x,y\), and \(z\) are found in parts of the trinomial expression was originated. The development would ease evaluating the trinomial expression’s positive power of \(n\).

Kifilideen (2020) developed the Kifilideen trinomial theorem of the positive power of \(n\) for the expansion of the form \({\left[x+y+z\right]}^n\) using the matrix approach, which helps in arranging the terms of the expansion in an orderly and standardized manner and ways [11]. It was observed that the process of generating the coefficient of each term of the expansion of positive and negative powers of \(n\) and \(-n\) of the trinomial theorem is stressful and time-consuming which the same problem is identified with coefficients of terms of a binomial theorem of powers of \(n\) and \(-n\) [12,13]. This slows the process of producing the series of any particular trinomial expansion.

The establishment of tables of coefficients of positive and negative powers of binomial and trinomial theorems would help and be handy in generating the coefficient of each term of a series and result in easy expansion. In the Tables, each term and its corresponding coefficient will be indicated and linked together. Also, it would show how the coefficients are progressing from one term to the other. This will remove the stress that is been encountered in the expansion process if the Tables are fully utilized. It can serve as a guide and would also help in easy visualization of patterns and analysis in which the coefficients are progressing for each power of \(n\) of the binomial and trinomial theorems. Kifilideen matrix approach had been used to evaluate and compute the power of base of eleven, other bi-digits, and tri-digit numbers [14-18]. This study established Kifilideen coefficient tables for positive and negative powers of \(n\) and \(-n\) for the Kifilideen trinomial theorem.

2. Materials and Methods

2.1. Pascal coefficient table for terms of series of expansion of positive power of \(n\) of Newton’s binomial theorem

Table 1 indicates Pascal coefficient table for terms of series of expansion of positive power of \(n\) of Newton’s binomial theorem. The series of the terms of Newton’s binomial theorem for a particular positive power of \(n\) is finite.

Table 1 Pascal coefficient table for terms of series of expansion of positive power of \(n\) of Newton’s binomial theorem
Positive power of n
Terms n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18 n = 19
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171
4 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969
5 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 3060 3876
6 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 11628
7 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564 27132
8 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388
9 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582
10 1 10 55 220 715 2002 5005 11440 24310 48620 92378
11 1 11 66 286 1001 3003 8008 19448 43758 92378
12 1 12 78 364 1365 4368 12376 31824 75582
13 1 13 91 455 1820 6188 18564 50388
14 1 14 105 560 2380 8568 27132
15 1 15 120 680 3060 11628
16 1 16 136 816 3876
17 1 17 153 969
18 1 18 171
19 1 19
20 1

2.2. Kifilideen coefficient table for negative power of \(-n\) of Newton’s binomial theorem

Table 2 shows Kifilideen coefficient table for negative power of \(-n\) of Newton’s binomial theorem. The series of Newton’s expansion of negative power of \(-n\) of binomial theorem gives infinite series which can be shown in the Table below. The series of the terms of Newton’s binomial theorem for a particular negative power of \(n\) is infinite.

Table 2 The Kifilideen coefficient table for negative power of \(-n\) of Newton’s binomial theorem
Negative power of \(–\boldsymbol{\ }\boldsymbol{n}\)
Terms n = \(-\) 1 n = \(-\ \)2 n = \(-\)3 n = \(-\ \)4 n = \(-\ \)5 n = \(-\ \)6 n = \(-\ \)7 n = \(-\ \)8 n = \(-\ \)9 n = \(-\ \)10 n = \(-\ \)11 n = \(-\ \)12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
3 1 3 6 10 15 21 28 36 45 55 66 78
4 -1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364
5 1 5 15 35 70 126 210 330 495 715 1001 1365
6 -1 -6 -21 -56 -126 -252 -462 -792 -1287 -2002 -3003 -4368
7 1 7 28 84 210 462 924 1716 3003 5005 8008 12376
8 -1 -8 -36 -120 -330 -792 -1716 -3432 -6435 -11440 -19448 -31824
9 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582
10 -1 -10 -55 -220 -715 -2002 -5005 -11440 -24310 -48620 -92378 -167960
11 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716
12 -1 -12 -78 -364 -1365 -4368 -12376 -31824 -75582 -167960 -352716 -705432
13 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078
14 -1 -14 -105 -560 -2380 -8568 -27132 -77520 -203490 -497420 -1144066 -2496144
15 1 15 120 680 3060 11628 38760 116280 319770 817190 1961256 4457400
16 -1 -16 -136 -816 -3876 -15504 -54264 -170544 -490314 -1307504 -3268760 -7726160
17 1 17 153 969 4845 20349 74613 245157 735471 2042975 5311735 13037895
18 -1 -18 -171 -1140 -5985 -26334 -100947 -346104 -1081575 -3124550 -8436285 -21474180
19 1 19 190 1330 7315 33649 134596 480700 1562275 4686825 13123110 34597290
20 -1 -20 -210 -1540 -8855 -42504 -177100 -657800 -2220075 -6906900 -20030010 -54627300
21 1 21 231 1771 10626 53130 230230 888030 3108105 10015005 30045015 84672315
22 -1 -22 -253 -2024 -12650 -65780 -296010 -1184040 -4292145 -14307150 -44352165 -129024480
23 1 23 276 2300 14950 80730 376740 1560780 5852925 20160075 64512240 193536720
24 -1 -24 -300 -2600 -17550 -98280 -475020 -2035800 -7888725 -28048800 -92561040 -286097760
25 1 25 325 2925 20475 118755 593775 2629575 10518300 38567100 131128140 417225900
26 -1 -26 -351 -3276 -23751 -142506 -736281 -3365856 -13884156 -52451256 -183579396 -600805296
27 1 27 378 3654 27405 169911 906192 4272048 18156204 70607460 254186856 854992152
28 -1 -28 -406 -4060 -31465 -201376 -1107568 -5379616 -23535820 -94143280 -348330136 -1203322288
29 1 29 435 4495 35960 237336 1344904 6724520 30260340 124403620 472733756 1676056044
30 -1 -30 -465 -4960 -40920 -278256 -1623160 -8347680 -38608020 -163011640 -635745396 -2311801440
31 1 31 496 5456 46376 324632 1947792 10295472 48903492 211915132 847660528 3159461968
32 -1 -32 -528 -5984 -52360 -376992 -2324784 -12620256 -61523748 -273438880 -1121099408 -4280561376
33 1 33 561 6545 58905 435897 2760681 15380937 76904685 350343565 1471442973 5752004349
34 -1 -34 -595 -7140 -66045 -501942 -3262623 -18643560 -95548245 -445891810 -1917334783 -7669339132
35 1 35 630 7770 73815 575757 3838380 22481940 118030185 563921995 2481256778 10150595910
36 -1 -36 -666 -8436 -82251 -658008 -4496388 -26978328 -145008513 -708930508 -3190187286 -13340783196
37 1 37 703 9139 91390 749398 5245786 32224114 177232627 886163135 4076350421 17417133617
38 -1 -38 -741 -9880 -101270 -850668 -6096454 -38320568 -215553195 -1101716330 -5178066751 -22595200368
39 1 39 780 10660 111930 962598 7059052 45379620 260932815 1362649145 6540715896 29135916264
40 -1 -40 -820 -11480 -123410 -1086008 -8145060 -53524680 -314457495 -1677106640 -8217822536 -37353738800
41 1 41 861 12341 135751 1221759 9366819 62891499 377348994 2054455634 10272278170 47626016970
42 -1 -42 -903 -13244 -148995 -1370754 -10737573 -73629072 -450978066 -2505433700 -12777711870 -60403728840
43 1 43 946 14190 163185 1533939 12271512 85900584 536878650 3042312350 15820024220 76223753060
44 -1 -44 -990 -15180 -178365 -1712304 -13983816 -99884400 -636763050 -3679075400 -19499099620 -95722852680
45 1 45 1035 16215 194580 1906884 15890700 115775100 752538150 4431613550 23930713170 1.19654E+11
46 -1 -46 -1081 -17296 -211876 -2118760 -18009460 -133784560 -886322710 -5317936260 -29248649430 -1.48902E+11
47 1 47 1128 18424 230300 2349060 20358520 154143080 1040465790 6358402050 35607051480 1.84509E+11
48 -1 -48 -1176 -19600 -249900 -2598960 -22957480 -177100560 -1217566350 -7575968400 -43183019880 -2.27692E+11
49 1 49 1225 20825 270725 2869685 25827165 202927725 1420494075 8996462475 52179482355 2.79872E+11
50 -1 -50 -1275 -22100 -292825 -3162510 -28989675 -231917400 -1652411475 -10648873950 -62828356305 -3.427E+11

2.3. Kifilideen power combination table of the terms of the series of Kifilideen expansion of positive power of n of trinomial expression \((x+y+z)\) in a standardized order

Table 3 presents the Kifilideen power combination table of the terms of the series of Kifilideen expansion of positive power of \(n\) of trinomial expression \((x+y+z)\) in a standardized order. Each degree of the positive power of \(n\) of the Kifilideen expansion of the Kifilideen trinomial theorem has a finite power combination in the series.

Table 3 Kifilideen power combination table for positive power of \(n\) of Kifilideen trinomial theorem based on matrix approach
Positive power of\(\ n\)
Terms \(n\ =\ 1\) \(n\ =\ 2\) \(n\ =\ 3\) \(n\ =\ 4\) \(n\ =\ 5\) \(n\ =\ 6\) \(n\ =\ 7\) \(n\ =\ 8\) \(n\ =\ 9\) \(n\ =\ 10\) \(n\ =\ 11\) \(n\ =\ 12\)
1 \(100\) \(200\) \(300\) 400 500 600 700 800 900 1000 \(1100\) \(1200\)
2 \(010\) \(110\) \(210\) 310 410 510 610 710 810 910 1010 1110
3 \(001\) \(020\) \(120\) 220 320 420 520 620 720 820 920 1020
4 \(101\) \(030\) 130 230 330 430 530 630 730 830 930
5 \(011\) \(201\) 040 140 240 340 440 540 640 740 840
6 \(002\) \(111\) 301 050 150 250 350 450 550 650 750
7 \(021\) 211 401 060 160 260 360 460 560 660
8 \(102\) 121 311 501 070 170 270 370 470 570
9 \(012\) 031 221 411 601 080 180 245 380 480
10 \(003\) 202 131 321 511 701 090 190 290 390
11 112 041 231 421 611 801 0100 1100 2100
12 022 302 141 331 521 711 901 0110 1110
13 103 212 051 241 431 621 811 1001 0120
14 013 122 402 151 341 531 721 911 1101
15 004 032 312 061 251 441 631 821 1011
16 203 222 502 161 351 541 731 921
17 113 132 412 071 261 451 641 831
18 023 042 322 602 171 361 551 741
19 104 303 232 512 081 271 461 651
20 014 213 142 422 702 181 371 561
21 005 123 052 332 612 091 281 471
22 033 403 242 522 802 191 381
23 204 313 152 432 712 0101 291
24 114 223 062 342 622 902 1101
25 024 133 503 252 532 812 0111
26 105 043 413 162 442 722 1002
27 015 304 323 072 352 632 912
28 006 214 233 603 262 542 822
29 124 143 513 172 452 732
30 034 053 423 082 362 642
31 205 404 333 703 272 552
32 115 314 243 613 182 462
33 025 224 153 523 092 372
34 106 134 063 433 803 282
35 016 044 504 343 713 192
36 007 305 414 253 623 0102
37 215 324 163 533 903
38 125 234 073 443 813
39 035 144 604 353 723
40 206 054 514 263 633
41 116 405 424 173 543
42 026 315 334 083 453
43 107 225 244 704 363
44 017 135 154 614 273
45 008 045 064 524 183
46 306 505 434 093
47 216 415 344 804
48 126 325 254 714
49 036 235 164 624
50 207 145 074 534
51 117 055 605 444
52 027 406 515 354
53 108 316 425 264
54 018 226 335 174
55 009 136 245 084
56 046 155 705
57 307 065 615
58 217 506 525
59 127 416 435
60 037 326 345
61 208 236 255
62 118 146 165
63 028 056 075
64 109 407 606
65 019 317 516
66 0010 227 426
67 137 336
68 047 246
69 308 156
70 218 066
71 128 507
72 038 417
73 209 327
74 119 237
75 029 147
76 1010 057
77 0110 408
78 0011 318
79 228
80 138
81 048
82 309
83 219
84 129
85 039
86 2010
87 1110
88 0210
89 1011
90 0211
91 0012

2.4. Kifilideen coefficient table for positive power of n of Kifilideen trinomial theorem

Table 4 presents the Kifilideen coefficient table for positive power of \(n\) of Kifilideen trinomial theorem based on matrix approach. The series of Kifilideen expansion of positive power of \(n\) of trinomial theorem gives finite series which can be shown in the Table below. From the Table 4; the change in colour from blue to red then to blue and so on till the last term for any particular positive power of \(n\) indicates the migration from one group to another. Also, from the Table 4, the maximum number of terms generated by any positive power of\(\ n\) can be known. The formula to determine the maximum number of terms generated by any positive power of \(n\) of a trinomial theorem is presented in the Kifilideen (2020) on the publication of development of Kifilideen trinomial theorem using matrix approach [11].

Table 4 Kifilideen coefficient table for positive power of \(n\) of Kifilideen trinomial theorem based on matrix and standardized approach
Positive power of \(n\)
Terms n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10 11 12
3 1 1 3 6 10 15 21 28 36 45 55 66
4 2 1 4 10 20 35 56 84 120 165 220
5 2 3 1 5 15 35 70 126 210 330 495
6 1 6 4 1 6 21 56 126 252 462 792
7 3 12 5 1 7 28 84 210 462 924
8 3 12 20 6 1 8 36 120 330 792
9 3 4 30 30 7 1 9 45 165 495
10 1 6 20 60 42 8 1 10 55 220
11 12 5 60 105 56 9 1 11 66
12 6 10 30 140 168 72 10 1 12
13 4 30 6 105 280 252 90 11 1
14 4 30 15 42 280 504 360 110 12
15 1 10 60 7 168 630 840 495 132
16 10 90 21 56 504 1260 1320 660
17 20 60 105 8 252 1260 2310 1980
18 10 15 210 28 72 840 2772 3960
19 5 20 210 168 9 360 2310 5544
20 5 60 105 720 36 90 1320 5544
21 1 60 21 560 252 10 495 3960
22 20 35 420 756 45 110 1980
23 15 140 168 1260 360 11 660
24 30 210 28 1260 1260 55 132
25 15 140 56 756 2520 495 12
26 6 35 280 252 3150 1980 66
27 6 35 560 36 2520 4620 660
28 1 105 560 84 1260 6930 2970
29 105 280 504 360 6930 7920
30 35 56 1260 45 4620 13860
31 21 70 1680 120 1980 16632
32 42 280 1260 840 4950 13860
33 21 420 504 2520 55 7920
34 7 280 84 4200 165 2970
35 7 70 126 4200 1320 660
36 1 56 630 2520 4620 66
37 168 1260 840 9240 220
38 168 1260 120 11550 1980
39 56 630 210 9240 7920
40 28 126 1260 4620 18480
41 56 126 3150 1320 27720
42 28 504 4200 165 27720
43 8 756 3150 330 18480
44 8 504 1260 2310 7920
45 1 126 210 6930 1980
46 84 252 11550 220
47 242 1260 11550 495
48 252 2520 6930 3960
49 84 2520 2310 13860
50 36 1260 330 27720
51 72 252 462 34650
52 36 210 2772 27720
53 9 840 6930 13860
54 9 1260 9240 3960
55 1 840 6930 495
56 210 6930 792
57 120 2772 5544
58 360 462 16632
59 360 462 27720
60 120 2310 27720
61 45 4620 16632
62 90 4620 5544
63 45 2310 792
64 10 462 924
65 10 330 5544
66 1 1320 13860
67 1980 18480
68 1320 13860
69 330 5544
70 165 924
71 495 792
72 495 3960
73 165 7920
74 55 7920
75 110 3960
76 55 792
77 11 495
78 11 1980
79 1 2970
80 1980
81 495
82 220
83 660
84 660
85 220
86 66
87 132
88 66
89 12
90 12
91 1

2.5. Kifilideen coefficient table for negative power of -n of Kifilideen trinomial theorem based on matrix and standardized approach

Table 5 shows Kifilideen coefficient table for negative power of \(-n\) of Kifilideen trinomial theorem based on matrix and standardized approach. The series of Kifilideen expansion of negative power of \(-n\) of trinomial theorem gives infinite series which can be shown in the Table 5 below. From the Table 5; the change in colour from blue to red then to blue and so on to infinity for any particular negative power of \(-n\) indicates the migration from one group to another. A clear study of Table 5 indicates that the coefficients of the negative power of \(- 1\) of Kifilideen trinomial theorem in periodicity and orderly manner can be generated from coefficients of Pascal triangle of binomial theorem of positive power of\(\ n\). The coefficients of the negative power of \(-1\) of Kifilideen trinomial theorem in orderly manner are \(1\); \(-\)1, \(-\)1; \(1\), \(2\), \(1\); \(-\)1, \(-\)3, \(-\)3, \(-\)1; \(1\), \(4\), \(6\), \(4\), \(1\); \(-\)1, \(-\) 5, \(-\)10, \(-\ 10\), \(-\)5, \(-\ \)1; \(1\), \(6\), \(15\), \(20\), \(15\), \(6\), \(1\);….

Also, the study of the Table 5 reveals that the coefficient of the negative power of \(-2\) of Kifilideen trinomial theorem in periodicity and orderly manner can be generated from the coefficients of Pascal triangle of binomial theorem of positive power of\(\ n\). The coefficients of the negative power of \(-2\) of Kifilideen trinomial theorem in orderly manner are\(\ 1\) (\(\times 1\)); \(-\)1, \(-\)1(\(\times 2\)); 1, 2, 1 (\(\times 3\)); \(-\)1, \(-\)3, \(-\)3, \(-\)1 (\(\times 4\)); \(1\), \(4\), \(6\), \(4\),\(\ 1\) (\(\times 5\)); \(-\)1, \(-\) 5, \(-\)10, \(-\) 10, \(-\)5, \(-\ \)1 (\(\times 6\)); \(1\), \(6\), \(15\), \(20\), 15, \(6\), \(1\) (\(\times 7\)); . So, the coefficients of the negative power of \(-2\) of Kifilideen trinomial theorem in orderly manner are \(1\); \(-2\), \(-2\); \(3\), \(6\), \(3\); \(-\)4, \(-\)12, \(-\)12, \(-\)4; \(5\), 20, 30, 20, 5; \(-\)6, \(-\) \(30\), \(-60\), \(-\) 60, \(-\)30, \(-\ \)6; 7, \(42\), 105, \(140\), \(105\), 42, \(7\); .

Table 5 Kifilideen coefficient table for negative power of \(-n\) of Kifilideen trinomial theorem based on matrix and standardized methods
Negative power of \(–\boldsymbol{\ }\boldsymbol{n}\)
Terms n = \(-\) 1 n = \(-\ \)2 n = \(-\)3 n = \(-\ \)4 n = \(-\ \)5 n = \(-\ \)6 n = \(-\ \)7 n = \(-\ \)8 n = \(-\ \)9 n = \(-\ \)10 n = \(-\ \)11 n = \(-\ \)12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
3 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
4 1 3 6 10 15 21 28 36 45 55 66 78
5 2 6 12 20 30 42 56 72 90 110 132 156
6 1 3 6 10 15 21 28 36 45 55 66 78
7 -1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364
8 -3 -12 -30 -60 -105 -168 -252 -360 -495 -660 -858 -1092
9 -3 -12 -30 -60 -105 -168 -252 -360 -495 -660 -858 -1092
10 -1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364
11 1 5 15 35 70 126 210 330 495 715 1001 1365
12 4 20 60 140 280 504 840 1320 1980 2860 4004 5460
13 6 30 90 210 420 756 1260 1980 2970 4290 6006 8190
14 4 20 60 140 280 504 840 1320 1980 2860 4004 5460
15 1 5 15 35 70 126 210 330 495 715 1001 1365
16 -1 -6 -21 -56 -126 -252 -462 -792 -1287 -2002 -3003 -4368
17 -5 -30 -105 -280 -630 -1260 -2310 -3960 -6435 -10010 -15015 -21840
18 -10 -60 -210 -560 -1260 -2520 -4620 -7920 -12870 -20020 -30030 -43680
19 -10 -60 -210 -560 -1260 -2520 -4620 -7920 -12870 -20020 -30030 -43680
20 -5 -30 -105 -280 -630 -1260 -2310 -3960 -6435 -10010 -15015 -21840
21 -1 -6 -21 -56 -126 -252 -462 -792 -1287 -2002 -3003 -4368
22 1 7 28 84 210 462 924 1716 3003 5005 8008 12376
23 6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256
24 15 105 420 1260 3150 6930 13860 25740 45045 75075 120120 185640
25 20 140 560 1680 4200 9240 18480 34320 60060 100100 160160 247520
26 15 105 420 1260 3150 6930 13860 25740 45045 75075 120120 185640
27 6 42 168 504 1260 2772 5544 10296 18018 30030 48048 74256
28 1 7 28 84 210 462 924 1716 3003 5005 8008 12376
29 -1 -8 -36 -120 -330 -792 -1716 -3432 -6435 -11440 -19448 -31824
30 -7 -56 -252 -840 -2310 -5544 -12012 -24024 -45045 -80080 -136136 -222768
31 -21 -168 -756 -2520 -6930 -16632 -36036 -72072 -135135 -240240 -408408 -668304
32 -35 -280 -1260 -4200 -11550 -27720 -60060 -120120 -225225 -400400 -680680 -1113840
33 -35 -280 -1260 -4200 -11550 -27720 -60060 -120120 -225225 -400400 -680680 -1113840
34 -21 -168 -756 -2520 -6930 -16632 -36036 -72072 -135135 -240240 -408408 -668304
35 -7 -56 -252 -840 -2310 -5544 -12012 -24024 -45045 -80080 -136136 -222768
36 -1 -8 -36 -120 -330 -792 -1716 -3432 -6435 -11440 -19448 -31824
37 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582
38 8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656
39 28 252 1260 4620 13860 36036 84084 180180 360360 680680 1225224 2116296
40 56 504 2520 9240 27720 72072 168168 360360 720720 1361360 2450448 4232592
41 70 630 3150 11550 34650 90090 210210 450450 900900 1701700 3063060 5290740
42 56 504 2520 9240 27720 72072 168168 360360 720720 1361360 2450448 4232592
43 28 252 1260 4620 13860 36036 84084 180180 360360 680680 1225224 2116296
44 8 72 360 1320 3960 10296 24024 51480 102960 194480 350064 604656
45 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582
46 -1 -10 -55 -220 -715 -2002 -5005 -11440 -24310 -48620 -92378 -167960
47 -9 -90 -495 -1980 -6435 -18018 -45045 -102960 -218790 -437580 -831402 -1511640
48 -36 -360 -1980 -7920 -25740 -72072 -180180 -411840 -875160 -1750320 -3325608 -6046560
49 -84 -840 -4620 -18480 -60060 -168168 -420420 -960960 -2042040 -4084080 -7759752 -14108640
50 -126 -1260 -6930 -27720 -90090 -252252 -630630 -1441440 -3063060 -6126120 -11639628 -21162960
51 -126 -1260 -6930 -27720 -90090 -252252 -630630 -1441440 -3063060 -6126120 -11639628 -21162960
52 -84 -840 -4620 -18480 -60060 -168168 -420420 -960960 -2042040 -4084080 -7759752 -14108640
53 -36 -360 -1980 -7920 -25740 -72072 -180180 -411840 -875160 -1750320 -3325608 -6046560
54 -9 -90 -495 -1980 -6435 -18018 -45045 -102960 -218790 -437580 -831402 -1511640
55 -1 -10 -55 -220 -715 -2002 -5005 -11440 -24310 -48620 -92378 -167960
56 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716
57 10 110 660 2860 10010 30030 80080 194480 437580 923780 1847560 3527160
58 45 495 2970 12870 45045 135135 360360 875160 1969110 4157010 8314020 15872220
59 120 1320 7920 34320 120120 360360 960960 2333760 5250960 11085360 22170720 42325920
60 210 2310 13860 60060 210210 630630 1681680 4084080 9189180 19399380 38798760 74070360
61 252 2772 16632 72072 252252 756756 2018016 4900896 11027016 23279256 46558512 88884432
62 210 2310 13860 60060 210210 630630 1681680 4084080 9189180 19399380 38798760 74070360
63 120 1320 7920 34320 120120 360360 960960 2333760 5250960 11085360 22170720 42325920
64 45 495 2970 12870 45045 135135 360360 875160 1969110 4157010 8314020 15872220
65 10 110 660 2860 10010 30030 80080 194480 437580 923780 1847560 3527160
66 1 11 66 286 1001 3003 8008 19448 43758 92378 184756 352716
67 -1 -12 -78 -364 -1365 -4368 -12376 -31824 -75582 -167960 -352716 -705432
68 -11 -132 -858 -4004 -15015 -48048 -136136 -350064 -831402 -1847560 -3879876 -7759752
69 -55 -660 -4290 -20020 -75075 -240240 -680680 -1750320 -4157010 -9237800 -19399380 -38798760
70 -165 -1980 -12870 -60060 -225225 -720720 -2042040 -5250960 -12471030 -27713400 -58198140 -116396280
71 -330 -3960 -25740 -120120 -450450 -1441440 -4084080 -10501920 -24942060 -55426800 -116396280 -232792560
72 -462 -5544 -36036 -168168 -630630 -2018016 -5717712 -14702688 -34918884 -77597520 -162954792 -325909584
73 -462 -462 -5544 -36036 -168168 -630630 -2018016 -5717712 -14702688 -34918884 -77597520 -162954792
74 -330 -3960 -25740 -120120 -450450 -1441440 -4084080 -10501920 -24942060 -55426800 -116396280 -232792560
75 -165 -1980 -12870 -60060 -225225 -720720 -2042040 -5250960 -12471030 -27713400 -58198140 -116396280
76 -55 -660 -4290 -20020 -75075 -240240 -680680 -1750320 -4157010 -9237800 -19399380 -38798760
77 -11 -132 -858 -4004 -15015 -48048 -136136 -350064 -831402 -1847560 -3879876 -7759752
78 -1 -12 -78 -364 -1365 -4368 -12376 -31824 -75582 -167960 -352716 -705432
79 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078
80 12 156 1092 5460 21840 74256 222768 604656 1511640 3527160 7759752 16224936
81 66 858 6006 30030 120120 408408 1225224 3325608 8314020 19399380 42678636 89237148
82 220 2860 20020 100100 400400 1361360 4084080 11085360 27713400 64664600 142262120 297457160
83 495 6435 45045 225225 900900 3063060 9189180 24942060 62355150 145495350 320089770 669278610
84 792 10296 72072 360360 1441440 4900896 14702688 39907296 99768240 232792560 512143632 1070845776
85 924 12012 84084 420420 1681680 5717712 17153136 46558512 116396280 271591320 597500904 1249320072
86 792 10296 72072 360360 1441440 4900896 14702688 39907296 99768240 232792560 512143632 1070845776
87 495 6435 45045 225225 900900 3063060 9189180 24942060 62355150 145495350 320089770 669278610
88 220 2860 20020 100100 400400 1361360 4084080 11085360 27713400 64664600 142262120 297457160
89 66 858 6006 30030 120120 408408 1225224 3325608 8314020 19399380 42678636 89237148
90 12 156 1092 5460 21840 74256 222768 604656 1511640 3527160 7759752 16224936
91 1 13 91 455 1820 6188 18564 50388 125970 293930 646646 1352078

2.6. Kifilideen theorem of matrix transformation of positive power of \(n\) of trinomial expression

If three variables \(x, y\)and \(z\) are found in each part of trinomial expression of positive power of \(n\) such as \[\ {\ \left[ux^ay^bz^c+vx^dy^ez^g+wx^hy^mz^p\right]}^n \tag{1}\]

and the power combination of any term in the Kifilideen expansion of that kind of positive power of the trinomial expression is set as \(kif\) while the value of this term is designated as \(qx^ry^sz^t\).

Then, the kifilideen matrix transformation of such positive power of \(n\) of the trinomial expression is of the form;

\[ \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]: \left[ \begin{array}{ccc} a & d & h \\ b & e & m \\ c & g & p \end{array} \right] \left[ \begin{array}{c} k \\ i \\ f \end{array} \right]=\left[ \begin{array}{c} r \\ s \\ t \end{array} \right], \tag{2}\]

Thus \(k+i+f=n\) and where \(u,v,\) \(w\ \)and \(q\ \)are constants, More so, \[\ {}^{-n}_{kif}{Cu^k}v^iw^f=q, \tag{3}\]

3. Results

3.1 Utilization of Kifilideen coefficient table for Kifilideen trinomial theorem based standardized and matrix approach

[i] Expand the following using Kifilideen coefficient table

[a] \({\left[x+y+z\right]}^7\) [b] \({\mathrm{\ }\left(\frac{x^2}{y}-yz^3+xz\right)}^4\) [c] \({\mathrm{\ }\left(x+y+z\right)}^{-\ 5}\) [d] \({\mathrm{\ }\left(1+x+y\right)}^{-\ 3}\)

Solution

[a] From Kifilideen coefficient Table 3 for positive power of \(7\), the coefficienst in ascending order are \(1\),\(7\),\(21\),\(35\), \(35,\ 21\),\(7\),\(1\),7,42,105,140,105,42,7,21,105,210,210,105,21,35,140,210,105,21,35,140,210,140,35,105,105,35,21,42,\(21\), \(7\),\(7\),\(1\). So the expansion of \({\left[x+y+z\right]}^7\ \)using Kifilideen trinomial theorem based on standardized and matrix approach, we have:

\[{\left[x+y+z\right]}^7 = 1 \times x^7\times y^0\times z^0+\mathrm{7\ }\times x^6\times y^1\times z^0 +\mathrm{21}\times x^5\times y^2\times z^0+\mathrm{35\ }\times x^4\times y^3\times z^0+\mathrm{35\ }\times x^3\times y^4\times z^0\]

\[+\mathrm{21\ }\times x^2\times y^5\times z^0+\mathrm{7\ }\times x^1\times y^6\times z^0+\mathrm{1\ }\times x^0\times y^7\times z^0 +\mathrm{7\ }\times x^6\times y^0\times z^1+\mathrm{42\ }\times x^5\times y^1\times z^1+\mathrm{105\ }\]

\[\times x^4\times y^2\times z^1+\mathrm{140\ }\times x^3\times y^3\times z^1+\mathrm{105\ }\times x^2\times y^4\times z^1\mathrm{+42\ }\times x^1\times y^5\times z^1+\mathrm{7\ }\times x^0\times y^6\times z^1\]

\[+21\times x^5{\times y}^0{\times z}^2+105\mathrm{\ }x^4{\times y}^1{\times z}^2+\mathrm{210\ }x^3{\times y}^2{\times z}^2+210\mathrm{\ }x^2{\times y}^3{\times z}^2+\mathrm{105\ }x^1{\times y}^4{\times z}^2+2\mathrm{1\ }x^0{\times y}^5{\times z}^2+\mathrm{35\ }\]

\[\times x^4{\times y}^0{\times z}^3+140\mathrm{\ }\times x^3{\times y}^1{\times z}^3+210\mathrm{\ }\times x^2{\times y}^2{\times z}^3+\mathrm{140\ }\times x^1{\times y}^3{\times z}^3\]

\[+\times x^0{\times y}^4{\times z}^3 +\mathrm{35\ }\times x^3{\times y}^0{\times z}^4+\mathrm{105\ }\times x^2{\times y}^1{\times z}^4 +\mathrm{105\ }\times x^1{\times y}^2{\times z}^4 +\mathrm{35\ }\times x^0{\times y}^3{\times z}^4+2\mathrm{1\ }\times x^2{\times y}^0{\times z}^5\]

\[\label{GrindEQ__4_}+\mathrm{42\ }\times x^1{\times y}^1{\times z}^5+2\mathrm{1\ }\times x^0{\times y}^2{\times z}^5+\mathrm{7\ }\times x^1{\times y}^0{\times z}^6+\mathrm{7\ }\times x^0{\times y}^1{\times z}^6+\mathrm{1\ }\times x^0{\times y}^0{\times z}^7, \tag{4}\]

\[{\left[x+y+z\right]}^7 = x^7+\mathrm{7\ }x^6y +2\mathrm{1\ }x^5y^2+\mathrm{35\ }x^4y^3+\mathrm{35\ }x^3y^4+\mathrm{21\ }x^2y^5+\mathrm{7\ }xy^6+y^7 +\mathrm{7\ }\times x^6z+\mathrm{42\ }x^5yz+\mathrm{105\ }x^4y^2z\]

\[+\mathrm{140\ }x^3y^3z+\mathrm{105\ }x^2y^4z\mathrm{+42\ }xy^5z+\mathrm{7\ }y^6z+21x^5z^2+105\mathrm{\ }x^4yz^2+\mathrm{210\ }x^3y^2z^2+210\mathrm{\ }x^2y^3z^2+\mathrm{105\ }xy^4z^2+2\mathrm{1\ }y^5z^2\] \[+\mathrm{35\ }x^4z^3+140\mathrm{\ }x^3yz^3+210\mathrm{\ }x^2y^2z^3+\mathrm{140\ }xy^3z^3+\mathrm{35\ }y^4z^3+\mathrm{35\ }x^3z^4+\mathrm{105\ }x^2y^1z^4 +\mathrm{105\ }xy^2z^4 +\mathrm{35\ }y^3z^4+2\mathrm{1\ }x^2z^5\] \[\ +\mathrm{42\ }xyz^5+2\mathrm{1}y^2z^5+\mathrm{7}xz^6+\mathrm{7\ }yz^6+z^7, \tag{5}\]

[b] From Kifilideen coefficient Table 3 for positive power of 4, the coefficients in ascending order are 1,4,6,4,1,4,12,12,4,6,12,6,4,4,1. So the expansion of \({\mathrm{\ }\left(\frac{x^2}{y}-yz^3+xz\right)}^4\ \)using Kifilideen trinomial theorem of positive power of \(n\) based on standardized and matrix approach, we have:

\[{\left(x^2y^{-1}-yz^3+xz\right)}^4=1{\times \left[x^2y^{-1}\right]}^4{\left[-yz^3\right]}^0{\left[xz\right]}^0{+4\left[x^2y^{-1}\right]}^3{\left[-yz^3\right]}^1{\left[xz\right]}^0{+6\left[x^2y^{-1}\right]}^2{\left[-yz^3\right]}^2{\left[xz\right]}^0+\] \[{+4\left[x^2y^{-1}\right]}^1{\left[-yz^3\right]}^3{\left[xz\right]}^0+{\left[x^2y^{-1}\right]}^0{\left[-yz^3\right]}^4{\left[xz\right]}^0+4{\left[x^2y^{-1}\right]}^3{\left[-yz^3\right]}^0{\left[xz\right]}^1{+12\left[x^2y^{-1}\right]}^2{\left[-yz^3\right]}^1{\left[xz\right]}^1\] \[\ {+12\left[x^2y^{-1}\right]}^1{\left[-yz^3\right]}^2{\left[xz\right]}^1+{4\left[x^2y^{-1}\right]}^0{\left[-yz^3\right]}^3{\left[xz\right]}^1{+6\left[x^2y^{-1}\right]}^3{\left[-yz^3\right]}^0{\left[xz\right]}^2{+12\left[x^2y^{-1}\right]}^2{\left[-yz^3\right]}^1{\left[xz\right]}^2\] \[\ {+6\left[x^2y^{-1}\right]}^1{\left[-yz^3\right]}^2{\left[xz\right]}^2{+4\left[x^2y^{-1}\right]}^1{\left[-yz^3\right]}^0{\left[xz\right]}^3{+4\left[x^2y^{-1}\right]}^0{\left[-yz^3\right]}^1{\left[xz\right]}^3+{\left[x^2y^{-1}\right]}^0{\left[-yz^3\right]}^0{\left[xz\right]}^4, \tag{6}\]

\[{\mathrm{\ }\left(x^2y^{-1}-yz^3+xz\right)}^4=x^8y^{-4}-4x^6y^{-2}z^3+{6x}^4z^6-{4x}^2y^2z^9+y^4z^{12}{+4x}^7y^{-3}z-12{x^5y}^{-1}z^4+{12x}^3yz^7\] \[\ -4xy^3z^{10}+{6x}^8y^{-3}z^2-{12x}^4y^{-1}z^5+{6x}^4yz^8+{4x}^5y^{-1}z^3-{4x}^3yz^6+x^4z^4, \tag{7}\] [c] From Kifilideen coefficient Table 4 for negative power of \(-5\), the coefficients in ascending order are \(1, -5, -5, 15, 30, 15, -35, -105, -105,-35, 70, 280, 420, 280, 70, -126, -630, -1260, -1260, -630, -126,\)
\(210, 1260, 3150, 4200,3150, 1260, 210, —\) . The expansion gives infinite series. So the expansion of\({\mathrm{\ }\left(x+y+z\right)}^{-\ 5}\) using Kifilideen trinomial theorem of negative power of – n based on standardized and matrix approach, we have:

\[{\left(x+y+z\right)}^{-\ 5}= x^{-5}y^0z^0 — 5x^{-6}y^1z^0-\mathrm{5}x^{-6}y^0z^1+15x^{-7}y^2z^0 +30x^{-7}y^1z^1+15x^{-7}y^0z^1-35x^{-8}y^3z^0-\] \[105x^{-8}y^2z^1-105x^{-8}y^1z^2-{35x}^{-8}y^0z^3+{70x}^{-9}y^4z^0+{280x}^{-9}y^3z^1+{420x}^{-9}y^2z^2{+280x}^{-9}y^1z^3\] \[+{70x}^{-9}y^0z^4{-126x}^{-10}y^5z^0{-630x}^{-10}y^4z^1{-1260x}^{-10}y^3z^2{-1260x}^{-10}y^2z^3{-630x}^{-10}y^1z^4{-126x}^{-10}y^0z^5\] \[{+210x}^{-11}y^6z^0{+1260x}^{-10}y^5z^1{+3150x}^{-10}y^4z^2{+4200x}^{-10}y^3z^3{+3150x}^{-10}y^2z^4{+1260x}^{-10}y^1z^5{+210x}^{-11}y^0z^6\]

[d] From Kifilideen coefficient table 4 for negative power of -3, the coefficients in ascending order are \(1, – 3, -3, 6, 12, 6, -10, -30, -30, -10, 15, 60, 90, 60, 15, -21, -105, -210, -210, -105, -21, 28, 168, 420, 560, 420,\)
\(168, 28, —-\). The expansion gives infinite series. So the expansion of\({\mathrm{\ }\left(1+y+z\right)}^{-\ 3}\) using Kifilideen trinomial theorem of negative power of \(\ -\ n\ \) based on standardized and matrix approach, we have:

\[{\mathrm{\ }\left(1+x+y\right)}^{-\ 3}=1-3x^1y^0-3x^0y^1+6x^2y^0+12x^1y^1+6x^0y^2-10x^3y^0-30x^2y^1-30x^1y^2-10x^0y^3\] \[+15x^4y^0+60x^3y^1+90x^2y^2+6{0x}^1y^3+15x^0y^4{-21y}^5z^0{-105y}^4z^1{-210y}^3z^2-{210y}^2z^3-105y^1z^4\] \[\ {-21y}^0z^5{+28y}^6z^0{+168y}^5z^1{+420y}^4z^2+560y^3z^3+420y^2z^4+168y^1z^5+28y^0z^6+\dots, \tag{8}\]

[ii] Expand the trinomial expression \({\left[x+y+z\right]}^{-1}\ \)using Kifilideen trinomial theorem for negative power of \(-n\) based on standardized and matrix approach. Obtain the coefficients of the series using Kifilideen coefficient table. Hence or otherwise generate the series of\(\ \ \frac{35}{82}\) (Hint: take x = 2, y = \(\frac{1}{5}\) and z = \(\frac{1}{7})\)
Solution
From Kifilideen coefficient Table 4 for negative power of \(-\ 1\), the coefficients in ascending order are \(1, -1, -1, 1, 2, 1, -1, -3, -3, -1, 1, 4, 6, 4, 1, -1, -5, -10, -10, -5, -1, 1, 6, 15, 20, 15, 6, 1, -7, -21. -35, -35, {\dots}\). The expansion gives infinite series. So the expansion of\({\mathrm{\ }\left(1+y+z\right)}^{-\ 3}\) using Kifilideen trinomial theorem of negative power of \(-\ n\ \)based on standardized and matrix approach, we have:

\[{\left[x+y+z\right]}^{-1}={x^{-1}y}^0z^0-{x^{-2}y}^1z^0-{x^{-2}y}^0z^1{{+x}^{-3}y}^2z^0{{+2x}^{-3}y}^1z^1{{+x}^{-3}y}^0z^2 -{x^{-4}y}^3z^0-3{x^{-4}y}^2z^1\] \[-{{3x}^{-4}y}^1z^2-{x^{-4}y}^0z^3+{x^{-5}y}^4z^0{+4x^{-5}y}^3z^1{{+6x}^{-5}y}^2z^2{{+4x}^{-5}y}^1z^3{{+x}^{-5}y}^0z^4-{x^{-6}y}^5z^0-{{5x}^{-6}y}^4z^1\] \[{{-10x}^{-6}y}^3z^2{{-10x}^{-6}y}^2z^3{{-5x}^{-6}y}^1z^4-{x^{-6}y}^0z^5{+x^{-7}y}^6z^0+6{x^{-7}y}^5z^1{{+15x}^{-7}y}^4z^2{{+20x}^{-7}y}^3z^3{{+15x}^{-7}y}^2z^3\] \[+6{x^{-7}y}^1z^5{{+x}^{-7}y}^0z^6{{-x}^{-8}y}^7z^0-7{x^{-8}y}^6z^1{{-21x}^{-8}y}^5z^2{{-35x}^{-8}y}^4z^3{{-35x}^{-8}y}^3z^3-21{x^{-8}y}^2z^5{{-7x}^{-8}y}^1z^6\] \[\ -{x^{-8}y}^0z^7+\dots, \tag{9}\]

\[{\left[x+y+z\right]}^{-1}=x^{-1}-x^{-2}y-x^{-2}z{{+x}^{-3}y}^2{+2x}^{-3}yz{+x}^{-3}z^2-{x^{-4}y}^3-3{x^{-4}y}^2z-{3x}^{-4}yz^2-x^{-4}z^3\] \[+{x^{-5}y}^4{+4x^{-5}y}^3z{{+6x}^{-5}y}^2z^2{+4x}^{-5}yz^3{+x}^{-5}z^4-{x^{-6}y}^5-{{5x}^{-6}y}^4z{{-10x}^{-6}y}^3z^2{{-10x}^{-6}y}^2z^3{-5x}^{-6}z^4\] \[-x^{-6}z^5+6{x^{-7}y}^5z^1{{+15x}^{-7}y}^4z^2{{+20x}^{-7}y}^3z^3{{+15x}^{-7}y}^2z^3+6x^{-7}yz^5{+x}^{-7}z^6{{-x}^{-8}y}^7-7{x^{-8}y}^6z^1\] \[\ {{-21x}^{-8}y}^5z^2{{-35x}^{-8}y}^4z^3{{-35x}^{-8}y}^3z^3-21{x^{-8}y}^2z^5{-7x}^{-8}yz^6{-x}^{-8}z^7+\dots, \tag{10}\]

[b] \(\frac{35}{82}={\left[2+\frac{1}{5}+\frac{1}{7}\right]}^{-1}\)

Using the Kifilideen expansion above where x = 2, y = \(\frac{1}{5}\) and z = \(\frac{1}{7}\) , we have:

\[\frac{35}{82}={\left[2+\frac{1}{5}+\frac{1}{7}\right]}^{-1}=\frac{1}{2}-\frac{1}{4\times 5}-\frac{1}{4\times 7}+\frac{1}{8\times 25}+\frac{2}{8\times 5\times 7}+\frac{1}{8\times 49}-\frac{1}{16\times 125}-\frac{3}{16\times 25\times 7}-\frac{3}{16\times 5\times 49}\]

\[-\frac{1}{16\times 343}+\frac{1}{32\times 625}+\frac{4}{32\times 125\times 7}+\frac{6}{32\times 25\times 49}+\frac{4}{32\times 5\times 343}+\frac{1}{32\times 2401}-\frac{1}{64\times 3125}-\frac{5}{64\times 625\times 7}\]

\[-\frac{10}{64\times 125\times 49} -\frac{10}{64\times 25\times 343}-\frac{5}{64\times 5\times 2401}-\frac{1}{64\times 16807}+\frac{1}{128\times 15625}+\frac{6}{128\times 3125\times 7}+\frac{15}{128\times 625\times 49}\]

\[+\frac{20}{128\times 125\times 343}+\frac{15}{128\times 25\times 2401}+\frac{6}{128\times 5\times 16807}+\frac{1}{128\times 117649}-\frac{1}{256\times 78125}-\frac{7}{256\times 15625\times 7}\]

\[\ -\frac{21}{256\times 3125\times 49}-\frac{35}{256\times 625\times 343}-\frac{35}{256\times 125\times 2401}-\frac{21}{256\times 25\times 16807} -\frac{7}{256\times 5\times 117649}-\frac{1}{256\times 823543}\dots, \tag{11}\]

The evaluation of the above series gives 0.426829 to 6 decimal places. Also, using calculator \(\frac{35}{82}\) gives 0.426829 to 6 decimal places. This indicates that the negative power of \(-1\) of Kifilideen trinomial theorem and coefficient of negative power of \(-1\) from the Kifilideen Coefficient table are valid.

[iii] Expand the trinomial expression \({\left[x+y+z\right]}^3\ \)using Kifilideen trinomial theorem for positive power of\(\ n\) based on standardized and matrix approach. Obtain the coefficients of the series using Kifilideen coefficient table. Hence or otherwise generate the series of\(\ \ {\left[3.74\right]}^3\) and evaluate its value (Hint: take x = 3, y = \(0.7\ \)or \(\frac{7}{10}\) and z = \(0.04\) or \(\frac{4}{100}).\)

Solution

[a] From Kifilideen coefficient Table 3 for positive power of \(3\), the coefficients in ascending order are 1, 3, 3, 1, 3, 6, 3, 3, 3, 1. So the expansion of \({\left[x+y+z\right]}^3\ \)using Kifilideen trinomial theorem based on standardized and matrix approach, we have: \[{\left[x+y+z\right]}^3=\ x^3y^0z^0{+3x}^2y^1z^0{+3x}^1y^2z^0+x^0y^3z^0{+3x}^2y^0z^1{+6x}^1y^1z^1{+3x}^0y^2z^1{+3x}^1y^0z^2{+3x}^0y^1z^2\] \[\ +x^0y^0z^3, \tag{12}\] \[\ {\left[x+y+z\right]}^3=\ x^3{+3x}^2y+3xy^2+y^3{+3x}^2z+6xyz+3y^2z+3xz^2+3yz^2+z^3, \tag{13}\] [b] \({\left[3.74\right]}^3={\left[3+\frac{7}{10}+\frac{4}{100}\right]}^3\)

Using the kif expansion above where x = 3, y = \(\frac{7}{10}\) and z = \(\frac{4}{100}\) , we have \[\ {\left[3.74\right]}^3={\left[3+\frac{7}{10}+\frac{4}{100}\right]}^3=27+\frac{189}{10}+\frac{441}{100}+\frac{343}{1000}+\frac{108}{100}+\frac{504}{1000}+\frac{588}{10000}+\frac{144}{10000}+\frac{336}{100000}+\frac{64}{1000000}, \tag{14}\]

\[\ {\left[3.74\right]}^3=27+18.9+4.41+0.343+1.08+0.504+0.0588+0.0144+0.00336+0.000064, \tag{15}\]

\[\ {\left[3.74\right]}^3=52.313624, \tag{16}\]

From calculator, the value of\(\ {\left[3.74\right]}^{\ 3}\)is also \(52.313624.\) This indicates that the positive power of \(3\) of Kifilideen trinomial theorem and coefficient of positive power of 3 of trinomial expression from the Kifilideen Coefficient table are valid.

[iv] Determine the power combination of the Kifilideen expansion of negative power of \(-3\) in the row \(13\) and column \(10\) of the Kif matrix of the Kifilideen expansion \({[x+y+z]}^{-3}.\) Hence or otherwise determine the term the generate the power combination and using Kifilideen coefficient table of negative power of \(-n\) of trinomial theorem determine the coefficient of the power combination.

Solution

[a] From the question, \(n=-3,\ r=13\ and\ c=10\)

Using Kifilideen General Row Column Matrix formula for negative power of \(\ -\ n\) [12],

\[\ CP_{rc}=n00-110\left(r-1\right)+9(r-c), \tag{17}\] \[\ {CP}_{rc}=-300-110\left(13-1\right)+9(13-10), \tag{18}\] \[\ {CP}_{rc}=-1593, \tag{19}\] [b] From Kifilideen General Term formula for negative power of \(-n\) [12],

\[t=\frac{{[n-k]}^2+\left[n-k\right]+2f+2}{2}\mathrm{\ }\]

Where,

\(t-\) the required t\({}^{th}\) term

\(k-\) the first component part of the power combination

\(i-\ \)the second component part of the power combination

\(f-\) the third component part of the power combination

\(n-\)the negative power of – n of the trinomial expression

From, \({CP}_{rc}=-1593\), \(k=-15,\ i=9\ and\ f=3\)

\[t=\frac{{[-3–15]}^2+\left[-3–15\right]+2\times 3+2}{2}\]

\(t=82\)\({}^{th\ }\)term

Using the Kifilideen Coefficient table of negative power of \(-3\),

The coefficient of \({CP}_{rc}=-1593\) of term \(82\)\({}^{th\ }\)term is \(+\ 20020\).

3.2. Demonstration on the implementation of Kifilideen theorem of matrix transformation of positive power of n of trinomial expression

Given that a term in the Kifilideen expansion of \({\left[\frac{y^3}{{{4x}^2z}^{\ 5}}-\frac{{x^7z}^{\ 4}}{2y}+\frac{e{y^6z}^{\ 8}}{x}\right]}^{\ n}\)is \(\frac{-1575}{2048}x^{\ 26}{y^{13}z}^{\ 8}\) where \(e\) is a constant value. Using Kifilideen matrix transformation method of positive power of \(n\) of trinomial expression. Find

[i] the power combination

[ii] the degree of the positive power of the trinomial expression

[iii] the t\({}^{th}\) term

[iv] the value of e.

Solution

[i] Trinomial expression: \({\left[4^{-1}x^{-2}y^3z^{-5}-{2^{-1}x}^7y^{-1}z^4+ex^{-1}y^6z^8\right]}^n\)

Power combination to be obtained: \(\ \ \ \ \ \ k\ \ \ \ i\ \ \ \ \ \ f\)

\(t\)\({}^{th}\) term of the power combination: \(\frac{-1575}{2048}x^{\ 26}{y^{13}z}^{\ 8}\)

Using the kifilideen matrix transformation method, so

\[ \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]: \left[ \begin{array}{ccc} -2 & 7 & -1 \\ 3 & -1 & 6 \\ -5 & 4 & 8 \end{array} \right] \left[ \begin{array}{c} k \\ i \\ f \end{array} \right]=\left[ \begin{array}{c} 26 \\ 13 \\ 8 \end{array} \right], \tag{20}\]

Also, \(k+i+f=n\)

Using Crammer’s rule, so \[k=\frac{\Delta k}{\Delta }=\frac{\left| \begin{array}{ccc} 26 & 7 & -1 \\ 13 & -1 & 6 \\ 8 & 4 & 8 \end{array} \right|}{\left| \begin{array}{ccc} -2 & 7 & -1 \\ 3 & -1 & 6 \\ -5 & 4 & 8 \end{array} \right|}\]

\[\ k=\frac{-1284}{-321}, \tag{21}\]

\[\ k=4, \tag{22}\]

\[i=\frac{\Delta i}{\Delta }=\frac{\left| \begin{array}{ccc} -2 & 26 & -1 \\ 3 & 13 & 6 \\ -5 & 8 & 8 \end{array} \right|}{\left| \begin{array}{ccc} -2 & 7 & -1 \\ 3 & -1 & 6 \\ -5 & 4 & 8 \end{array} \right|}\]

\[\ i=\frac{-1605}{-321}, \tag{23}\]

\[\ i=5, \tag{24}\]

\[f=\frac{\Delta f}{\Delta }=\frac{\left| \begin{array}{ccc} -2 & 7 & 26 \\ 3 & -1 & 13 \\ -5 & 4 & 8 \end{array} \right|}{\left| \begin{array}{ccc} -2 & 7 & -1 \\ 3 & -1 & 6 \\ -5 & 4 & 8 \end{array} \right|}\]

\[\ f=\frac{-321}{-321}, \tag{25}\]

\[\ f=1, \tag{26}\] So, the power combination \(=kif=451\)

[ii] the positive power of n of the trinomial expression \(=n\)= \(k+i+f=4+5+1\) \[ \n=10, \tag{27}\]

[iii] \(C_p\) \(=kif=451\) \[\ k=4,\ i=5\ and\ f=1, \tag{28}\] \[\ n=k+i+f=4+5+1=10, \tag{29}\]

From Kifilideen general term formula [19],

\[t=\frac{-f^2+2fn+3f+2i+2}{2}\]

Where,

\(C_p-\ \) the given power combination

\(k,i,f-\) the component parts of the power combination

\(f-\)the third component part of the given power combination

\(i-\)the second component part of the given power combination

\(n-\)the degree of the positive power of the trinomial expression

\(t-\ \)the term of the given power combination to be determined

\[t=\frac{-{[1]}^2+2\times 1\times 10+3\times 1+2\times 5+2}{2}\]

\(\ \ \ \ \ t=17\)\({}^{th}\) term

OR

Using Kifilideen general power combination formula [11,20,21],

\[\ C_p =kif=451, \tag{30}\] \[\ k=4,\ i=5\ and\ f=1, \tag{31}\] \[\ n=k+i+f=4+5+1=10, \tag{32}\] \[\ a=f=1, \tag{33}\] \[\ m=\frac{a}{2}\left[2n-a-1\right]=\frac{1}{2}\left[2\times 10-1-1\right]=9, \tag{34}\] \[C_p=kif=-90t+ 81 a+ 90m +n90\]

Where,

\(C_P\) \(\mathrm{-}\) Power combination, \(kif\)

t- nth term of the kifilideen trinomial theorem

a- the power of the third digit, \(f\) of the power combination or the value of the third digit of the column or group the term fall into

a and m – are constant values for a particular group or column of the matrix

n- the power of the trinomial expression

\(k,\ i\ \)and \(f\) \(–\) the first, second and third component part of the power combination

\(451\) \(=kif=\) \(90t + 81\) \(\times 1\) + 90 \(\times 9\) \(+\) 1090

\(t=17\)\({}^{th}\) term

OR

Using alternate Kifilideen general power combination formula [19],

From the question, \(C_p\) \(=kif=451\)

\(k=4,\ i=5,\ f=1\) and \(n=10\)

\({\ C}_p\) \(=kif=\) \(90t\) \(-\) 45 \(f^2\) \(+36f+\) 90 \(fn+\) \(n90\)

\(451=\) \(\mathrm{-}\) \(90t\) \(-\) 45 \({[1]}^2\) \(+36\times 1+\) 90 \(\times 1\times 10+\) 1090

\(t=17\) \({}^{th}\) term

[iv] From the question, \(u\ =\ 4,\ v\ =\ 1,\ w=e\ and\ q=\frac{-1575}{2048}\)

Using Kifilideen matrix transformation method,

\[\ {}^n_{kif}{Cu^k}v^iw^f=q, \tag{35}\] \[\ {}^{10}_{451}{C{[4^{-1}]}^4}{[-2^{-1}]}^5{[e]}^1=\frac{-1575}{2048}, \tag{36}\]

From the Kifilideen coefficient table, the coefficient of the 17\({}^{th}\)\({}^{\ }\)term on the n = 10 column is 1260

\[\ 1260\boldsymbol{\times }\frac{1}{256}\times -\frac{1}{32}\boldsymbol{\times }e=\frac{-1575}{2048}, \tag{37}\]

\[\ e=5, \tag{38}\]

4. Conclusion

Kifilideen theorem of matrix transformation of positive power of \(n\) of trinomial expression in which three variables \(x,\ y\) and \(z\) are found in parts of the trinomial expression was established. The research work established Kifilideen coefficient tables for positive and negative powers of \(n\) and\(-n\) of Kifilideen trinomial theorem base on standardized and matrix approach. The development of theorem of matrix transformation of positive power of \(n\) of trinomial expression would make the process of evaluating such positive power of \(n\) of the trinomial expression easy. The inaugurated tables had been fully utilized to generate series of expansion for positive and negative power of binomial and trinomial expressions. The Kifilideen coefficient tables are handy and effective in generating the coefficients of terms and series of the Kifilideen expansion of trinomial expression of powers of \(n\) and \(-n\).

References:

  1. Goss, D. (2011). The Ongoing Binomial Revolution. Number Theory, Spring.

  2. Aljohani, S. (2016). History of Bionomial Theory. International Journal of Scientific and Engineering Research, 7(4), 161 – 162.

  3. Malhotra, O. P., Gupta, S. K., & Gangal, A. ISC Maths XI. S. Chand Publishing.

  4. Guicciardini, N. (2012). John Wallis as editor of Newton’s mathematical work. Notes and Records of the Royal Society, 66(1), 3-17.

  5. Bogomolny, A. (2018). Treatise on Arithmetical Triangle. Cut the Knot, Wolfram Technology, New Brunswick, New Jersey, United States.

  6. Leavitt, S. (2011). The Simple Complexity of Pascal’s Triangle. Master Project, Department of Mathematics, PennState College of Information Science and Technology, Westgate Building, University Park, Pennsylvania, United States.

  7. Brothers, H. J. (2012). 96.20 Pascal’s triangle: The hidden store. The Mathematical Gazette, 96(535), 145-148.

  8. Hosch, W. L., & Chauhan, Y. (2013). Pascal’s Triangle. Britannica, Chicago, Illinois, U.S., 30 pages.

  9. Lodder, J. (2017). Pascal’s Triangle and Mathematical Induction. Number Theory, 5, 1-26.

  10. James, L. T. (2019). Analogues Between Leibniz’s Harmonic Triangle and Pascal’s Arithmetic Triangle.

  11. Osanyinpeju, K. L. (2020a). Development of Kifilideen Trinomial Theorem Using Matrix Approach. International Journal of Innovations in Engineering Research and Technology, 7(7), 117-135.

  12. Osanyinpeju K.L. (2021a). Inauguration of Negative Power of – n of Kifilideen Trinomial Theorem using Standardized and Matrix Methods. 2nd International Conference on Engineering and Environmental Sciences (ICEES) Theme: Re – Thinking Engineering and Technology for Engineering Sustainability in the Face of Global Pandemic 23rd – 25th November 2021 12 pg.

  13. Osanyinpeju, K. L. (2021b). Inauguration of Negative Power of – n of Kifilideen Trinomial Theorem using Standardized and Matrix Methods. Acta Electronica Malaysia, 5(1), 17-23.

  14. Osanyinpeju, K. L. (2022). Four and Five Figures of Kifilideen (Power of Base 11) and Antikifilideen (Antipower of BASE 11) Tables as a Tool for Mathematics Computation. Momona Ethiopian Journal of Science, 14(2), 178-196.

  15. Osanyinpeju, K. L. (2019, November). Development of Kifilideen (Power of Base 11) and Antikifilideen (Antipower of Base 11) Tables. In 1st International Conference on Engineering and Environmental Sciences (ICEES) Theme: Advancing Technology and Environment Burdens (Challenges and Sustainable Solution 5th-7th November 2019 pg 957-968.

  16. Osanyinpeju, K. L. (2020). Computation of the power of base of two digits number using Kifilideen (Matrix, Combination and Distributive (MCD)) approach. Matrix Science Mathematics, 4(1), 14-19.

  17. Osanyinpeju, K. L. (2020). Development of Kifilideen (Power of Base 11), Antikifilideen (Antipower of Base 11) and Other Tables. Eliva Press SRL Publisher, MD-2060, bd. Cuza-Voda, 1/4, of, 21, 136.

  18. Osanyinpeju, K. L. (2020). Utilization of Kifilideen Trinomial Theorem based on Matrix Approach in Computation of the Power of Base of Tri-Digits Number. In International Conference on Electrical Engineering Applications (ICEEA’2020), Department of Electrical Engineering, Ahmadu Bello University, Zaria, Nigeria. 23rd-25th (pp. 192-199).

  19. Osanyinpeju K.L. (2021c). Invention of the Kifilideen General Term Formula of Positive Power of n of Kifilideen Trinomial Theorem based on Standardized and matrix methods with other Establishments. Federal University of Agriculture Abeokuta, Ogun State, Nigeria 12 pg.

  20. Osanyinpeju, K. L. (2021, November). Application of Expansion of Negative Power of–n of Kifilideen Trinomial Theorem for the Transformation of Compound Fraction into Series of Partial Fraction with Other Developments (Paper Presentation). In 2nd International Conference on Engineering and Environmental Sciences (ICEES), Osun State University. Theme: Re–thinking Engineering and Technology for Engineering Sustainability in the Face of Global Pandemic (pp. 23-25).

  21. Osanyinpeju, K. L. (2020, July). Development of Kifilideen Trinomial Theorem Using Matrix Approach. In International Conference on Electrical Engineering Applications (ICEEA 2020), Department of Electrical Engineering, Ahmadu Bello University, Zaria, Kaduna State, Nigeria. (Vol. 5792353).