In this paper, we obtained some new properties of Zagreb indices. We mainly give explicit formulas to the second Zagreb index of semitotal-line graph (or middle graph), semitotal-point graph and total transformation graphs \(G^{xyz}.\)
Transformation graphs receives information from the original graph and converts source information into a new structure. If it is possible to figure out the given graph from the transformed graph in polynomial time, such operation may be used to survey miscellaneous structural properties of the original graph considering the transformation graphs. Therefore it fosters the research of transformation graphs and their structural properties [12].
Sampathkumar [13] introduced the concepts of semitotal-point graph and semitotal-line graph which are stated as follows:
Let \(G=(V,E)\) be a graph. The semitotal-line graph \(T_2(G)\) is a graph with \(V(T_2(G)) = V(G) \cup E(G)\) and any two vertices \(u,v \in T_2(G)\) are adjacent if and only if
Note that the definition of semitotal-line graph and middle graphs [14] are identical. These two concepts have been introduced in the same year.
The semitotal-point graph \(T_1(G)\) is a graph with \(V(T_1(G)) = V(G) \cup E(G)\) and any two vertices \(u,v \in T_1(G)\) are adjacent if and only if
The total graph \(T(G)\) of a graph \(G\) is the graph whose vertex set is \(V(G)\cup E(G)\), and in which two vertices are adjacent if and only if they are adjacent or incident in \(G\) [15].
Let \(G=(V,E)\) be a graph and \(x,y,z\) be three variables taking values \(+\) or \(-\). The total transformation graph \(G^{xyz}\) is a graph having \(V(G) \cup E(G)\) as a vertex set, and for \(\alpha, \beta \in V(G) \cup E(G)\), \(\alpha\) and \(\beta\) are adjacent in \(G^{xyz}\) if and only if
Since there are eight distinct 3-permutations of \(\{+, -\}\), we obtain eight graphical transformations of \(G\). It is interesting to see that \(G^{+++}\) is exactly the total graph \(T(G)\) of \(G\) and \(G^{—}\) is the complement of \(T(G)\). Also for a given graph \(G\), \(G^{++-}\) and \(G^{–+}\), \(G^{+-+}\) and \(G^{-+-}\), \(G^{-++}\) and \(G^{+–}\) are the other three pairs of complementary graphs.
The basic properties of these total transformation can be seen in [12,16,17, 18].
In this paper, we obtained some new properties of Zagreb indices. We mainly give explicit formulae for the second Zagreb index of semitotal-point graph, semitotal-line graph and eight total transformation graphs.
Observation 1. For a positive integer \(k\), we have \(\xi_{k}(G) = \sum_{v \in V(G)} (d_G(v))^{k}\). One can see that \(\xi_1(G)\) is just the number of edges in \(G\), and \(\xi_2(G)\) is the first Zagreb index \(M_1(G)\).
Observation 2. For any nonempty graph \(G\), we have $$ \sum_{uv \in E(G)} \big[d_G(u)^2 + d_G(v)^2 \big] = \sum_{w \in V(G)} d_G(w)^3 = \xi_3(G). $$
Theorem 1.[6] Let \(G\) be any nontrivial graph of order \(n\) and size \(m\). Then $$ \overline{M_2}(G) =2m^{2} – M_{2}(G) – \frac{1}{2}M_{1}(G) . $$
In the next theorem, the explicit formulas of first Zagreb index are given [19].Theorem 2.[19] Let \(G\) be any nontrivial graph of order \(n\) and size \(m\). Then \begin{eqnarray*} M_1(T_1(G)) &=& M_1(G)+2M_2(G)+\xi_3(G) ,\\ M_1(T_2(G)) &=& 4(m + M_1(G)),\\ M_1(G^{+++}) &=& 4M_1(G)+ 2M_2(G) + \xi_3(G),\\ M_1(G^{—}) &=& (m+n)[(m+n)^2+6m -2n +1]+ 8m + 2(m+n-3)M_1(G)+ 2M_2(G) + \xi_3(G),\\ M_1(G^{++-}) &=& mn(m+n-8)+ 16m + 2(n-4)M_1(G) + 2M_2(G) + \xi_3(G), \\ M_1(G^{–+}) &=& n(n-1)^{2} +m(m+3)^{2}-2(m +3)M_1(G) + 2M_2(G) + \xi_3(G),\\ M_1(G^{+-+}) &=& m(m+3)^2 -2(m + 1)M_1(G) + 2M_2(G) + \xi_3(G). \end{eqnarray*} \begin{eqnarray*} M_1(G^{-+-}) &=& (m+n)[n(m+n) -2(n+4m)] + m[(n-4)^2+9]+ 2(n-2)M_1(G) + 2M_2(G) + \xi_3(G) ,\\ M_1(G^{-++}) &=& n(n-1)^2 + 2M_2(G) + \xi_3(G),\\ M_1(G^{+–}) &=& m[(nm +1) +(m+n)(m +n -2)]- 2(m+n-1)M_1(G) + 2M_2(G) + \xi_3(G). \end{eqnarray*}
In the following Lemma, the order and size of transformation graphs are given [19].Lemma 1. [19] Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \begin{eqnarray*} |V(T_{1}(G))| &=& m+n , |E(T_1(G))| =m= \frac{1}{2}[2m + M_1(G)]. \\ |V(T_{2}(G))| &=& m+n , |E(T_2(G))| =3m.\\ |V(G^{+++})| &=& m +n, |E(G^{+++})| = m = \frac{1}{2}[4m + M_1(G)].\\ |V(G^{—})| &=& m +n, |E(G^{—})| = m =\frac{1}{2}[(m+n-1)(m+n)-4m- M_1(G)]. \\ |V(G^{++-})| &=& m +n, |E(G^{++-})| =m =\frac{1}{2}[2m(n-2)+ M_1(G)].\\ |V(G^{–+})| &=& m +n, |E(G^{–+})| =m =\frac{1}{2}[m(m+n) + n(n+1)- M_1(G)].\\ |V(G^{+-+})| &=& m +n, |E(G^{+-+})| =m =\frac{1}{2}[m(m+7) – M_1(G)].\\ |V(G^{-+-})| &=& m +n, |E(G^{-+-})| =m =\frac{1}{2}[n(m+n-1) + m(n-8) + M_1(G)].\\ |V(G^{-++})| &=& m +n, |E(G^{-++})| =m =\frac{1}{2}[n(n-1) + M_1(G)].\\ |V(G^{+–})| &=& m +n, |E(G^{+–})| =m =\frac{1}{2}[m(m +2n -1) – M_1(G)]. \end{eqnarray*}
In the next Lemma, the edge partition of transformation graphs in terms of \(E(G)\) and \(E(L(G))\) are given.Lemma 2. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then
Theorem 3. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \(M_2(T_1(G)) = 4 (4m + M_{1}(G))\).
Proof. Note that for \(u \in V(T_1(G)) \cap V(G) \), \(d_{_{T_1(G)}}(u) =2d_G(u)\) and for \(u \in V(T_1(G) \cap E(G)\), \(d_{_{T_1(G)}}(u) =2\). Therefore by Lemma 2, \begin{eqnarray*} M_2(T_1(G)) &=& \sum_{u \in V(T_1(G))} (2d(u))^2 + 2\sum_{u \in V(T_1(G)) \cap V(G)} 4d(u) = 4 (4m + M_{1}(G)). \end{eqnarray*} as desired.
Theorem 4. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \(M_2(T_2(G)) = 2M_{1}(G) +4M_{2}(G) + \xi_{3}(G).\)
Proof. Suppose \(e =uv\) is a vertex in \(T_2(G)\). It can be easily seen that \(d_{T_2(G)}(e) = d_G(u) + d_G(v)\) and if \(u \in V(T_2(G)) \cap V(G)\), then \(d_{T_2(G)}(u) =d_G(u)\). Therefore by Lemma 2, \begin{eqnarray*} M_2(T_2(G)) &=& \sum_{_{u \in V(T_2(G)) \cap V(G)}} (d(u) + d(v))^2 + 2d(u)\sum_{_{u \in V(T_2(G) \cap E(G))}} (d(u) + d(v))= 2M_{1}(G) +4M_{2}(G) + \xi_{3}(G) . \end{eqnarray*} This completes the proof.
Theorem 5. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \( M_2(G^{+++}) = 8M_1(G)+ 6M_2(G) + \xi_3(G) . \)
Proof. Note that \(E(G^{+++}) = E(G) \cup E(L(G) \cup 2E(G)\) and for \(u \in V(G^{+++}) \cap V(G)\), \(d_{G^{+++}}(u) = 2d_G(u)\) and for \(u \in V(G^{+++}) \cap E(G)\), \(d_{G^{+++}}(u) = d_G(u)+d_G(v)\). Therefore by Lemma 2, \begin{eqnarray*} M_2(G^{+++}) &=& \sum \limits_{u \in V(G^{+++}) \cap V(G)} 2d(u))^2 + \sum\limits_{u \in E(G^{+++}) \cap V(G)} (d(u)+d(v))^2 + 4d(u)\sum \limits_{u, v \in E(G) } (d(u)+d(v)) \\ &=& 4M_{1}(G) + 2M_{2}(G) + \xi_{3}(G) +4M_{1}(G) + 4M_{2}(G) \\ &=& 8M_1(G)+ 6M_2(G) + \xi_3(G). \end{eqnarray*} as asserted.
Theorem 6. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \( M_2(G^{—}) = mn(m +n)^{2} -2m(m+n)(3n+4) +m(n +16)- 3(m+n-1)M_{1}(G)+ 2(n-1)M_{2}(G) +\xi_{3}(G). \)
Proof. Note that \(E(G^{—}) = E(\overline{G}) \cup E(\overline{L(G)}) \cup (n-2) \cdot E(G)\), and for \(u \in V(G^{—}) \cap V(G)\), \(d_{G^{—}}(u) = m + n -1 – 2d_G(u)\) and for \(u \in V(G^{—}) \cap E(G)\), \(d_{G^{—}}(u) = m + n -1 – (d_G(u) +d_G(v))\). Therefore by Lemma 2, \begin{eqnarray*} M_2(G^{—}) &=& \sum_{u \in V(G^{—}) \cap V(G)} (m + n -(1 + 2d_G(u)))^2 + \sum_{u \in V(G^{—})\cap E(G)} (m + n -(1 + (d_G(u) +d_G(v))))^2 \\ &&+ (n-2)(m + n -(1 + 2d_G(u)))\sum_{u ,v \in E(G)} (m + n -(1 + (d_G(u) +d_G(v)))) \\ &=& \big[m(m+n)^{2} +2m(m+n) +17m + 4M_{1}(G) \big] + \big[m(m+n)^{2} +2m(m+n) + m \\&&-2(m +n -1) M_{1}(G) +2M_{2}(G) + \xi_{3}(G) \big]+ (n-2) \big[m(m+n)^{2} -6m(m+n) +5m \\&&- (m +n +3) M_{1}(G) +2M_{2}(G) \big]. \end{eqnarray*} This completes the proof.
In fully analogous manner we arrive also at:Theorem 7. Let \(G\) be a nontrivial graph of order \(n\) and size \(m\). Then \begin{eqnarray*} M_2(G^{++-}) &=& m^{3} +m(n-4) \big[ n(m+1) -2(m+2) \big] + \big[n(m+2) -2(m+4) \big] M_{1}(G)+ 2M_{2}(G) + \xi_{3}(G), \\ M_2(G^{–+}) &=& m(m+3)^{2} +m(n-1)[2m+n+5] -2(m+n+2) M_{1}(G)+ 2M_{2}(G) + \xi_{3}, \\ M_2(G^{+-+}) &=& m(m+3)(m +11)-2(m +3)M_{1}(G)- 2M_2(G) + \xi_3(G), \\ M_2(G^{-+-}) &=& m\big[(m +n)^{2} + (n-4)^{2} \big] +m(n-2)(n-4)(n-4m) – 10m(m+n)\\&&+ 9m \big[ (n-2)^{2} +mn -11 \big] M_{1}(G) + \xi_{3}(G), \\ M_2(G^{-++}) &=& m(n-1)^2 + 2(n-1)M_{1}(G)+ 2M_2(G) + \xi_3(G), \end{eqnarray*} \begin{eqnarray*} M_2(G^{+–}) &=& m(m^{2}+1) + m(m+n)(m +n -2) +m^{2}(n-2)(m +n+1)- (n(m +2)-2)M_{1}(G) \\&&+2M_{2}(G) + \xi_{3}(G). \end{eqnarray*}
Applying Theorem 1, from the results of Theorems 3-7 and Lemma 1, we can deduce expressions for the second Zagreb coindex of the transformation graphs and total transformation graphs \(G^{xyz}\). These are collected in the following:Corollary 8. Let \(G\) be a graph of order \(n\) and size \(m.\) Then \begin{eqnarray*} \overline{M_{2}}(T_{1}(G)) &=& 2m^{2} -16m +(M_{1}(G))^{2} +4 (m-1)M_{1}(G) – \frac{1}{2} \big[M_{1}(G) +2M_{2}(G) + \xi_{3}(G) \big], \\ \overline{M_{2}}(T_{2}(G)) &=& 18m^{2} -2m -4M_{1}(G) -4M_{2}(G) – \xi_{3}(G),\\ \overline{M_{2}}(G^{+++}) &=& \frac{1}{2} \big[4m^{2} +(M_{1}(G))^{2} +4(2m-1)M_{1}(G) -2M_{2}(G) – \xi_{3}(G) \big]- 8M_{1}(G) -6M_{2}(G) – \xi_{3}(G),\\ \overline{M_{2}}(G^{—}) &=& \frac{1}{2} \big[(m+n-1)(m+n) -(4m+M_{1}(G)) \big]^{2}- mn(m +n)^{2} + 2m(m+n)(3n+4) -m(n +16) \\ &&+ 3(m+n-1)M_{1}(G)- 2(n-1)M_{2}(G) -\xi_{3}(G) – \frac{1}{2} \big[(m+n)[(m+n)^2+6m -2n +1]\\&&77+ 8m + 2(m+n-3)M_1(G)+ 2M_2(G) + \xi_3(G) \big],\\ \overline{M_{2}}(G^{++-}) &=& \frac{1}{2} \big[(2m(n-2)) +M_{1}(G)^{2} -mn(m+n-8) -16m – 2(n-4)M_{1}(G) -2M_{2}(G) – \xi_{3}(G)\big] \\&&- \big[ m^{3} +m(n-4) \big[ n(m+1) -2(m+2) \big] + \big[n(m+2) -2(m+4) \big] M_{1}(G) + 2M_{2}(G) + \xi_{3} \big], \\ \overline{M_{2}}(G^{–+}) &=& \frac{1}{2} \bigg[(m(m+n) +n(n+1) -M_{1}(G))^{2} – \big[ n(n-1)^{2} +m(m+3)^{2}-2(m +3)M_1(G) + 2M_2(G) \\&&+ \xi_3(G) \big] \bigg] -\big[ m(m+3)^{2} +m(n-1)[2m+n+5] -2(m+n+2) M_{1}(G) + 2M_{2}(G) + \xi_{3}\big], \\ \overline{M_{2}}(G^{+-+}) &=& \frac{1}{2} \bigg[[m(m+7) – M_1(G)]^{2} – \big[ m(m+3)^2 -2(m + 1)M_1(G) + 2M_2(G) + \xi_3(G) \big] \bigg]\\ &&- \big[ m(m+3)(m +11)-2(m +3)M_{1}(G)- 2M_2(G) + \xi_3(G\big],\\ \overline{M_{2}}(G^{-+-}) &=& \frac{1}{2} \bigg[[n(m+n-1) + m(n-8) + M_1(G)]^{2} – \big[(m+n)[n(m+n) -2(n+4m)]\\ &&- m[(n-4)^2+9] + 2(n-2)M_1(G) + 2M_2(G) + \xi_3(G) \big] \bigg] – \bigg[m\big[(m +n)^{2} + (n-4)^{2} \big] \\ &&-m(n-2)(n-4)(n-4m) – 10m(m+n) + 9m \big[ (n-2)^{2} +mn -11 \big] M_{1}(G) + \xi_{3}(G) \bigg], \end{eqnarray*} \begin{eqnarray*} \overline{M_{2}}(G^{-++}) &=& \frac{1}{2} \bigg[[n(n-1) + M_1(G)]^{2} – \big[n(n-1)^2 + 2M_2(G) + \xi_3(G) \big] \bigg] – \bigg[m(n-1)^2 \\ &&+ 2(n-1)M_{1}(G)+ 2M_2(G) + \xi_3(G) \bigg],\\ \overline{M_{2}}(G^{+–}) &=& \frac{1}{2} \bigg[[m(m +2n -1) – M_1(G)]^{2} – \big[m[(nm +1) +(m+n)(m +n -2)] \\ &&- 2(m+n-1)M_1(G) + 2M_2(G) + \xi_3(G) \big] \bigg] -\bigg[m(m^{2}+1) + m(m+n)(m +n -2) \\ &&- m^{2}(n-2)(m +n+1) – (n(m +2)-2)M_{1}(G) +2M_{2}(G) + \xi_{3}(G). \bigg].\end{eqnarray*}
Proof. The proof follows from the Theorems 1 and 3-7.