In this paper, we define the binomial transform of the generalized fifth order Jacobsthal sequence and as special cases, the binomial transform of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas sequences will be introduced. We investigate their properties in details.
In this paper, we introduce the binomial transform of the generalized fifth order Jacobsthal sequence and we investigate, in detail, two special cases which we call them the binomial transform of the fifth order Jacobsthal and fifth order Jacobsthal-Lucas sequences. We investigate their properties in the next sections. In this section, we present some properties of the generalized \((r,s,t,u,v)\) sequence (generalized Pentanacci) sequence.
The generalized \((r,s,t,u,v)\) sequence (the generalized Pentanacci sequence or 5-step Fibonacci sequence)
\begin{equation*} \{W_{n}\}_{n\geq 0}=\{W_{n}(W_{0},W_{1},W_{2},W_{3},W_{4};r,s,t,u,v)\}_{n\geq 0} \end{equation*} is defined by the fifth-order recurrence relationsAs \(\{W_{n}\}\) is a fifth order recurrence sequence (difference equation), it’s characteristic equation is
Theorem 1. (Binet’s formula of generalized \((r,s,t,u,v)\) numbers (generalized Pentanacci numbers))
Lemma 1. Suppose that \(f_{W_{n}}(x)=\sum\limits_{n=0}^{\infty }W_{n}x^{n}\) is the ordinary generating function of the generalized \( (r,s,t,u,v)\) sequence \(\{W_{n}\}_{n\geq 0}.\) Then, \(\sum\limits_{n=0}^{\infty }W_{n}x^{n}\) is given by
Theorem 2. (Binet’s formula of generalized \((r,s,t,u,v)\) numbers)
For more details on the generalized \((r,s,t,u,v)\) numbers, see [4].
Some special cases of \((r,s,t,u,v)\) sequence \(\{G_{n}(0,1,r,r^{2}+s, r^{3}+2sr+t ;r,s,t,u,v)\}\) and Lucas \((r,s,t,u,v)\) sequence \(\{H_{n}(5,r, 2s+r^{2},r^{3}+3sr+3t,r^{4}+4r^{2}s+4tr+2s^{2}+4u ;r,s,t,u,v)\}\) are as follows:
Lemma 1 gives the following results as particular examples (generating functions of \((r,s,t,u,v)\), Lucas \((r,s,t,u,v)\) and modified \((r,s,t,u,v)\) numbers).
Corollary 1. Generating functions of \((r,s,t,u,v)\), Lucas \((r,s,t,u,v)\) and modified \( (r,s,t,u,v)\) numbers are \begin{eqnarray*} \sum\limits_{n=0}^{\infty }G_{n}x^{n} &=&\frac{x}{ 1-rx-sx^{2}-tx^{3}-ux^{4}-vx^{5}}, \\ \sum\limits_{n=0}^{\infty }H_{n}x^{n} &=&\frac{5-4rx-3sx^{2}-2tx^{3}-ux^{4}}{ 1-rx-sx^{2}-tx^{3}-ux^{4}-vx^{5}}, \end{eqnarray*} respectively.
The following theorem shows that the generalized Pentanacci sequence \(W_{n}\) at negative indices can be expressed by the sequence itself at positive indices.Theorem 3. For \(n\in \mathbb{Z},\) for the generalized Pentanacci sequence (or generalized \((r,s,t,u,v)\)-sequence or 5-step Fibonacci sequence) we have the following: \begin{eqnarray*} W_{-n}&=&\frac{1}{24} v^{-n}(W_{0}H_{n}^{4}-4W_{n}H_{n}^{3}+3W_{0}H_{2n}^{2}+12H_{n}^{2}W_{2n}-6W_{0}H_{n}^{2}H_{2n}-6W_{0}H_{4n}-8W_{n}H_{3n}-12H_{2n}W_{2n}\\ &&-24H_{n}W_{3n}+24W_{4n}+8W_{0}H_{n}H_{3n}+12W_{n}H_{n}H_{2n}) \\ &=& v^{-n}(W_{4n}-H_{n}W_{3n}+\frac{1}{2}(H_{n}^{2}-H_{2n})W_{2n}- \frac{1}{6}(H_{n}^{3}+2H_{3n}-3H_{2n}H_{n})W_{n}\\ &&+\frac{1}{24} (H_{n}^{4}+3H_{2n}^{2}-6H_{n}^{2}H_{2n}-6H_{4n}+8H_{3n}H_{n})W_{0}). \end{eqnarray*}
Proof. For the proof, see [5], Theorem 1.
Using Theorem 3, we have the following corollary, see [5], Corollary 4.Corollary 2. For \(n\in \mathbb{Z},\) we have \begin{equation*} H_{-n}=\frac{1}{24} v^{-n}(H_{n}^{4}+3H_{2n}^{2}-6H_{n}^{2}H_{2n}-6H_{4n}+8H_{3n}H_{n}). \end{equation*}
Note that \(G_{-n}\) and \(H_{-n}\) can be given as follows by using \(G_{0}=0\) and \(H_{0}=5\) in Theorem 3: \begin{eqnarray*} G_{-n} &=& v^{-n}(G_{4n}-H_{n}G_{3n}+\frac{1}{2} (H_{n}^{2}-H_{2n})G_{2n}-\frac{1}{6}(H_{n}^{3}+2H_{3n}-3H_{2n}H_{n})G_{n}), \\ H_{-n} &=&\frac{1}{24} v^{-n}(H_{n}^{4}+3H_{2n}^{2}-6H_{n}^{2}H_{2n}-6H_{4n}+8H_{3n}H_{n}), \end{eqnarray*} respectively.Next, we consider the case \(r=1,\) \(s=1,t=1,u=1,v=2\) and in this case we write \(V_{n}=W_{n}.\) A generalized fifth order Jacobsthal sequence \( \{V_{n}\}_{n\geq 0}=\{V_{n}(V_{0},V_{1},V_{2},V_{3},V_{4})\}_{n\geq 0}\) is defined by the fifth order recurrence relations
The sequence \(\{V_{n}\}_{n\geq 0}\) can be extended to negative subscripts by defining
\begin{equation*} V_{-n}=-\frac{1}{2}V_{-(n-1)}-\frac{1}{2}V_{-(n-2)}-\frac{1}{2}V_{-(n-3)}- \frac{1}{2}V_{-(n-4)}+\frac{1}{2}V_{-(n-5)} \end{equation*} for \(n=1,2,3,….\) Therefore, recurrence (9) holds for all integer \(n.\) For more information on the generalized fifth order Jacobsthal numbers, see [7].The first few generalized fifth order Jacobsthal numbers with positive subscript and negative subscript are given in the Table 1
\(n\) | \(V_{n}\) | \(V_{-n}\) |
---|---|---|
\(0\) | \(V_{0}\) | \(…\) |
\(1\) | \(V_{1}\) | \(\frac{1}{2}V_{4}-\frac{1}{2}V_{1}-\frac{1}{2}V_{2}-\frac{1}{ 2}V_{3}-\frac{1}{2}V_{0}\) |
\(2\) | \(V_{2}\) | \(\frac{3}{4}V_{3}-\frac{1}{4}V_{1}-\frac{1}{4}V_{2}-\frac{1}{ 4}V_{0}-\frac{1}{4}V_{4}\) |
\(3\) | \(V_{3}\) | \(\frac{7}{8}V_{2}-\frac{1}{8}V_{1}-\frac{1}{8}V_{0}-\frac{1}{ 8}V_{3}-\frac{1}{8}V_{4}\) |
\(4\) | \(V_{4}\) | \(\frac{15}{16}V_{1}-\frac{1}{16}V_{0}-\frac{1}{16}V_{2}- \frac{1}{16}V_{3}-\frac{1}{16}V_{4}\) |
\(5\) | \(2V_{0}+V_{1}+V_{2}+V_{3}+V_{4}\) | \(\frac{31}{32}V_{0}-\frac{1}{32} V_{1}-\frac{1}{32}V_{2}-\frac{1}{32}V_{3}-\frac{1}{32}V_{4}\) |
\(6\) | \(2V_{0}+3V_{1}+2V_{2}+2V_{3}+2V_{4}\) | \(\frac{31}{64}V_{4}-\frac{33}{64 }V_{1}-\frac{33}{64}V_{2}-\frac{33}{64}V_{3}-\frac{33}{64}V_{0}\) |
\(7\) | \(4V_{0}+4V_{1}+5V_{2}+4V_{3}+4V_{4}\) | \(\frac{95}{128}V_{3}-\frac{33}{ 128}V_{1}-\frac{33}{128}V_{2}-\frac{33}{128}V_{0}-\frac{33}{128}V_{4}\) |
Eq. (3) can be used to obtain Binet’s formula of generalized fifth order Jacobsthal numbers. Generalized fifth order Jacobsthal numbers can be expressed, for all integers \(n,\) using Binet’s formula
\begin{eqnarray*} { V}_{n} &{ =}&\frac{p_{1}\alpha ^{n}}{(\alpha -\beta )(\alpha -\gamma )(\alpha -\delta )(\alpha -\lambda )}{ + }\frac{p_{2}\beta ^{n}}{(\beta -\alpha )(\beta -\gamma )(\beta -\delta )(\beta -\lambda )}{ +}\frac{p_{3}\gamma ^{n}}{(\gamma -\alpha )(\gamma -\beta )(\gamma -\delta )(\gamma -\lambda )} \\ &&{ +}\frac{p_{4}\delta ^{n}}{(\delta -\alpha )(\delta -\beta )(\delta -\gamma )(\delta -\lambda )}{ +}\frac{p_{5}\lambda ^{n} }{(\lambda -\alpha )(\lambda -\beta )(\lambda -\gamma )(\lambda -\delta )} { ,} \end{eqnarray*} where \begin{align*} { p}_{1} &{ =}{ V}_{4}{ -(\beta +\gamma +\delta +\lambda )V}_{3}{ +(\beta \lambda +\beta \gamma +\lambda \gamma +\beta \delta +\lambda \delta +\gamma \delta )V}_{2}{ -(\beta \lambda \gamma +\beta \lambda \delta +\beta \gamma \delta +\lambda \gamma \delta )V}_{1} { +(\beta \lambda \gamma \delta )V}_{0}{ ,} \\ { p}_{2} &{ =}{ V}_{4}{ -(\alpha +\gamma +\delta +\lambda )V}_{3}{ +( \alpha \lambda +\alpha \gamma +\alpha \delta +\lambda \gamma +\lambda \delta +\gamma \delta )V}_{2}{ -(\alpha \lambda \gamma +\alpha \lambda \delta +\alpha \gamma \delta +\lambda \gamma \delta )V}_{1}{ +(\alpha \lambda \gamma \delta )V}_{0}{ ,} \\ { p}_{3} &{ =}{ V}_{4}{ -(\alpha +\beta +\delta +\lambda )V}_{3}{ +(\alpha \beta + \alpha \lambda +\beta \lambda +\alpha \delta +\beta \delta +\lambda \delta )V}_{2}{ -(\alpha \beta \lambda + \alpha \beta \delta +\alpha \lambda \delta +\beta \lambda \delta )V}_{1}{ +(\alpha \beta \lambda \delta )V}_{0} { ,} \\ { p}_{4} &{ =}{ V}_{4}{ -(\alpha +\beta +\gamma +\lambda )V}_{3}{ +(\alpha \beta + \alpha \lambda +\alpha \gamma +\beta \lambda +\beta \gamma +\lambda \gamma )V}_{2}{ -(\alpha \beta \lambda +\alpha \beta \gamma +\alpha \lambda \gamma +\beta \lambda \gamma )V}_{1}{ +(\alpha \beta \lambda \gamma )V}_{0}{ ,} \\ { p}_{5} &{ =}{ V}_{4}{ -(\alpha +\beta +\gamma +\delta )V}_{3}{ +(\alpha \beta +\alpha \gamma +\alpha \delta +\beta \gamma +\beta \delta +\gamma \delta )V}_{2}{ -(\alpha \beta \gamma + \alpha \beta \delta +\alpha \gamma \delta +\beta \gamma \delta )V}_{1}{ +(\alpha \beta \gamma \delta )V}_{0}{ .} \end{align*} As \(\{V_{n}\}\) is a fifth order recurrence sequence (difference equation), it’s characteristic equation isNext, we present the first few values of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas numbers with positive and negative subscripts in the following Table 2:
\(n\) | \(0\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) | \(13\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(J_{n}\) | \(0\) | \(1\) | \(1\) | \(1\) | \(1\) | \(4\) | \(9\) | \(17\) | \(33\) | \(65\) | \( 132\) | \(265\) | \(529\) | \( 1057\) |
\(J_{-n}\) | \(-1\) | \(0\) | \(\frac{1}{2}\) | \(\frac{3}{4}\) | \(-\frac{1}{8}\) | \( -\frac{17}{16}\) | \(-\frac{1}{32}\) | \(\frac{31}{64}\) | \(\frac{95}{128}\) | \(- \frac{33}{256}\) | \(-\frac{545}{512}\) | \( -\frac{33}{1024}\) | \( \frac{991}{2048}\) | |
\(j_{n}\) | \(2\) | \(1\) | \(5\) | \(10\) | \(20\) | \(40\) | \(77\) | \(157\) | \(314\) | \(628\) | \( 1256\) | \( 2509\) | \( 5021\) | \( 10042\) |
\(j_{-n}\) | \(1\) | \(\frac{1}{2}\) | \(\frac{1}{4}\) | \(-\frac{11}{8}\) | \(\frac{ 13}{16}\) | \(\frac{13}{32}\) | \(\frac{13}{64}\) | \(\frac{13}{128}\) | \(-\frac{371 }{256}\) | \(\frac{397}{512}\) | \(\frac{397}{1024}\) | \(\frac{397}{2048}\) | \( \frac{397}{4096}\) | |
\(S_{n}\) | \( 0\) | \(1\) | \(1\) | \( 2\) | \( 4\) | \( 8\) | \(17\) | \(33\) | \(66\) | \(132\) | \(264\) | \(529\) | \(1057\) | \(2114\) |
\(S_{-n}\) | \(0\) | \( 0\) | \(0\) | \(\frac{1}{2}\) | \(-\frac{1}{4}\) | \(-\frac{1}{8}\) | \(-\frac{1}{16}\) | \(-\frac{1}{32}\) | \(\frac{31}{64}\) | \(- \frac{33}{128}\) | \(-\frac{33}{256}\) | \(-\frac{33}{512}\) | \(-\frac{33}{1024}\) | |
\(R_{n}\) | \( 5\) | \(1\) | \( 3\) | \(7\) | \(15\) | \( 36\) | \( 63\) | \( 127\) | \( 255\) | \( 511\) | \(1028\) | \( 2047\) | \( 4095\) | \( 8191\) |
\(R_{-n}\) | \(-\frac{1}{2}\) | \( -\frac{3}{4}\) | \( – \frac{7}{8}\) | \(-\frac{15}{16}\) | \( \frac{129}{32}\) | \(-\frac{63}{ 64}\) | \(-\frac{127}{128}\) | \( -\frac{255}{256}\) | \(-\frac{511}{512 }\) | \(\frac{4097}{1024}\) | \( -\frac{2047}{2048}\) | \( – \frac{4095}{4096}\) | \(-\frac{8191}{8192}\) |
For all integers \(n,\) Binet formulas of fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas numbers are
\begin{eqnarray*} J_{n} &=&\frac{( \alpha ^{3}-\alpha -2)\alpha ^{n}}{(\alpha -\beta )(\alpha -\gamma )(\alpha -\delta )(\alpha -\lambda )}+\frac{ ( \beta ^{3}-\beta -2)\beta ^{n}}{(\beta -\alpha )(\beta -\gamma )(\beta -\delta )(\beta -\lambda )} \\ &&+\frac{( \gamma ^{3}-\gamma -2)\gamma ^{n}}{(\gamma -\alpha )(\gamma -\beta )(\gamma -\delta )(\gamma -\lambda )}+\frac{(\delta ^{3}-\delta -2)\delta ^{n}}{(\delta -\alpha )(\delta -\beta )(\delta -\gamma )(\delta -\lambda )} \\ &&+\frac{( \lambda ^{3}-\lambda -2)\lambda ^{n}}{(\lambda -\alpha )(\lambda -\beta )(\lambda -\gamma )(\lambda -\delta )}, \end{eqnarray*} \begin{eqnarray*} j_{n} &=&\frac{(\alpha ^{4}+4\alpha ^{3}+4\alpha ^{2}+4\alpha +4)\alpha ^{n-1}}{(\alpha -\beta )(\alpha -\gamma )(\alpha -\delta )(\alpha -\lambda )} +\frac{(\beta ^{4}+4\beta ^{3}+4\beta ^{2}+4\beta +4)\beta ^{n-1}}{(\beta -\alpha )(\beta -\gamma )(\beta -\delta )(\beta -\lambda )} \\ &&+\frac{(\gamma ^{4}+4\gamma ^{3}+4\gamma ^{2}+4\gamma +4)\gamma ^{n-1}}{ (\gamma -\alpha )(\gamma -\beta )(\gamma -\delta )(\gamma -\lambda )}+\frac{ (\delta ^{4}+4\delta ^{3}+4\delta ^{2}+4\delta +4)\delta ^{n-1}}{(\delta -\alpha )(\delta -\beta )(\delta -\gamma )(\delta -\lambda )} \\ &&+\frac{(\lambda ^{4}+4\lambda ^{3}+4\lambda ^{2}+4\lambda +4)\lambda ^{n-1} }{(\lambda -\alpha )(\lambda -\beta )(\lambda -\gamma )(\lambda -\delta )}, \end{eqnarray*} \begin{eqnarray*} S_{n} &=&\frac{\alpha ^{n+3}}{(\alpha -\beta )(\alpha -\gamma )(\alpha -\delta )(\alpha -\lambda )}+\frac{\beta ^{n+3}}{(\beta -\alpha )(\beta -\gamma )(\beta -\delta )(\beta -\lambda )} \\ &&+\frac{\gamma ^{n+3}}{(\gamma -\alpha )(\gamma -\beta )(\gamma -\delta )(\gamma -\lambda )}+\frac{\delta ^{n+3}}{(\delta -\alpha )(\delta -\beta )(\delta -\gamma )(\delta -\lambda )} \\ &&+\frac{\lambda ^{n+3}}{(\lambda -\alpha )(\lambda -\beta )(\lambda -\gamma )(\lambda -\delta )},\\ R_{n}&=&\alpha ^{n}+\beta ^{n}+\gamma ^{n}+\delta ^{n}+\lambda ^{n} \end{eqnarray*} respectively.Binet formulas of fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas numbers can be given in the following forms:
\begin{eqnarray*} J_{n} &=&\frac{4}{31}\alpha ^{n}-\frac{1}{155}((6\sqrt{5}+5)+2\sqrt{2}\sqrt{ \sqrt{5}+5}(6+\sqrt{5})i)\beta ^{n} \\ &&+\frac{1}{155}(-(6\sqrt{5}+5)+2\sqrt{2}\sqrt{\sqrt{5}+5}(6+\sqrt{5} )i)\gamma ^{n} \\ &&+\frac{1}{155}((6\sqrt{5}-5)+2\sqrt{2}\sqrt{5-\sqrt{5}}(\sqrt{5} -6)i)\delta ^{n} \\ &&+\frac{1}{155}((6\sqrt{5}-5)+2\sqrt{2}\sqrt{5-\sqrt{5}}(-\sqrt{5} +6)i)\lambda ^{n}, \end{eqnarray*} \begin{eqnarray*} j_{n} &=&\frac{38}{31}\alpha ^{n}+\frac{1}{1240}(12(20-7\sqrt{5})+\sqrt{ \sqrt{5}+5}(111\sqrt{2}+3\sqrt{10})i)\beta ^{n} \\ &&+\frac{1}{1240}(12(20-7\sqrt{5})-\sqrt{\sqrt{5}+5}(111\sqrt{2}+3\sqrt{10} )i)\gamma ^{n} \\ &&+\frac{1}{1240}(12(20+7\sqrt{5})+\sqrt{5-\sqrt{5}}(111\sqrt{2}-3\sqrt{10} )i)\delta ^{n} \\ &&+\frac{1}{1240}(12(20+7\sqrt{5})+\sqrt{5-\sqrt{5}}(-111\sqrt{2}+3\sqrt{10} )i)\lambda ^{n}, \end{eqnarray*} \begin{eqnarray*} S_{n} &=&\frac{8}{31}\alpha ^{n}+\frac{1}{1240}(4(-20+7\sqrt{5})-\sqrt{2} \sqrt{\sqrt{5}+5}(37i+i\sqrt{5}))\beta ^{n} \\ &&+\frac{1}{1240}(4(-20+7\sqrt{5})+\sqrt{2}\sqrt{\sqrt{5}+5}(37i+i\sqrt{5} ))\gamma ^{n} \end{eqnarray*}\begin{eqnarray*} &&+\frac{1}{1240}(-4(20+ 7\sqrt{5})+\sqrt{2}\sqrt{\sqrt{5}+5} (21-19\sqrt{5})i)\delta ^{n} \\ &&+\frac{1}{1240}(-4(20+ 7\sqrt{5})+\sqrt{2}\sqrt{\sqrt{5}+5} (-21+19\sqrt{5})i)\lambda ^{n},\\ R_{n}&=&\alpha ^{n}+\beta ^{n}+\gamma ^{n}+\delta ^{n}+\lambda ^{n}\,. \end{eqnarray*} Next, we give the ordinary generating function \(\sum\limits_{n=0}^{\infty }V_{n}x^{n}\) of the sequence \(V_{n}.\)Lemma 2. Suppose that \(f_{V_{n}}(x)=\sum\limits_{n=0}^{ \infty }V_{n}x^{n}\) is the ordinary generating function of the generalized fifth order Jacobsthal sequence \(\{V_{n}\}_{n\geq 0}.\) Then, \(\sum\limits_{n=0}^{\infty }V_{n}x^{n}\) is given by \begin{equation*} \sum\limits_{n=0}^{\infty }{ V}_{n}{ x}^{n}=\frac{ { V}_{0}{ +(V}_{1}{ -V}_{0} { )x+(V}_{2}{ -V}_{1}{ -V}_{0} { )x}^{2}{ +(V}_{3}{ -V}_{2} { -V}_{1}{ -V}_{0}{ )x}^{3} { +(V}_{4}{ -V}_{3}{ -V}_{2} { -V}_{1}{ -V}_{0}{ )x}^{4}}{ 1-x-x^{2}-x^{3}-x^{4}-2x^{5}}\,. \end{equation*}
The previous Lemma gives the following results as particular examples: generating function of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas are \begin{eqnarray*} f_{J_{n}}(x) &=&\sum_{n=0}^{\infty }J_{n}x^{n}=\frac{x-x^{3}-2x^{4}}{ 1-x-x^{2}-x^{3}-x^{4}-2x^{5}}, \\ f_{j_{n}}(x) &=&\sum_{n=0}^{\infty }j_{n}x^{n}=\frac{2-x+2x^{2}+2x^{3}+2x^{4} }{1-x-x^{2}-x^{3}-x^{4}-2x^{5}}, \\ f_{S_{n}}(x) &=&\sum_{n=0}^{\infty }S_{n}x^{n}=\frac{x}{ 1-x-x^{2}-x^{3}-x^{4}-2x^{5}}, \\ f_{R_{n}}(x) &=&\sum_{n=0}^{\infty }R_{n}x^{n}=\frac{5-4x-3x^{2}-2x^{3}-x^{4} }{1-x-x^{2}-x^{3}-x^{4}-2x^{5}}, \end{eqnarray*} respectively.In this section, we define the binomial transform of the generalized fifth order Jacobsthal sequence \(V_{n}\) and as special cases the binomial transform of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas sequences will be introduced.
Definition 1. The binomial transform of the generalized fifth order Jacobsthal sequence \( V_{n}\) is defined by \begin{equation*} b_{n}=\widehat{V}_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}V_{i}. \end{equation*}
The few terms of \(b_{n}\) are \begin{eqnarray*} b_{0} &=&\sum\limits_{i=0}^{0}\binom{0}{i}V_{i}=V_{0}, \\ b_{1} &=&\sum\limits_{i=0}^{1}\binom{1}{i}V_{i}=V_{0}+V_{1}, \\ b_{2} &=&\sum\limits_{i=0}^{2}\binom{2}{i}V_{i}=V_{0}+2V_{1}+V_{2}, \\ b_{3} &=&\sum\limits_{i=0}^{3}\binom{3}{i}V_{i}=V_{0}+3V_{1}+3V_{2}+V_{3}, \\ b_{4} &=&\sum\limits_{i=0}^{4}\binom{4}{i} V_{i}=V_{0}+4V_{1}+6V_{2}+4V_{3}+V_{4}. \end{eqnarray*} Translated to matrix language, \(b_{n}\) has the nice (lower-triangular matrix) form \begin{equation*} \left( \begin{array}{c} b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ \vdots \end{array} \right) =\left( \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 2 & 1 & 0 & 0 & \cdots \\ 1 & 3 & 3 & 1 & 0 & \cdots \\ 1 & 4 & 6 & 4 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{array} \right) \left( \begin{array}{c} V_{0} \\ V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ \vdots \end{array} \right) . \end{equation*} As special cases of \(b_{n}=\widehat{V}_{n}\), the binomial transforms of the fifth order Jacobsthal and fifth order Jacobsthal-Lucas sequences are defined as follows: The binomial transform of the fifth order Jacobsthal sequence \(J_{n}\) is \begin{equation*} \widehat{J}_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}J_{i}, \end{equation*} and the binomial transform of the fifth order Jacobsthal-Lucas sequence \( j_{n}\) is \begin{equation*} \widehat{j}_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}j_{i}, \end{equation*} The binomial transform of the adjusted fifth order Jacobsthal sequence \( S_{n} \) is \begin{equation*} \widehat{S}_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}S_{i}, \end{equation*} and the binomial transform of the modified fifth order Jacobsthal-Lucas sequence \(R_{n}\) is \begin{equation*} \widehat{R}_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}R_{i}. \end{equation*}Lemma 3. For \(n\geq 0,\) the binomial transform of the generalized fifth order Jacobsthal sequence \(V_{n}\) satisfies the following relation: \begin{equation*} b_{n+1}=\sum\limits_{i=0}^{n}\binom{n}{i}(V_{i}+V_{i+1}). \end{equation*}
Proof. We use the following well-known identity: \begin{equation*} \binom{n+1}{i}=\binom{n}{i}+\binom{n}{i-1}. \end{equation*} Note also that \begin{equation*} \binom{n+1}{0}=\binom{n}{0}=1\text{ and }\binom{n}{n+1}=0. \end{equation*} Then \begin{eqnarray*} b_{n+1} &=&V_{0}+\sum\limits_{i=1}^{n+1}\binom{n+1}{i}V_{i} \\ &=&V_{0}+\sum\limits_{i=1}^{n+1}\binom{n}{i}V_{i}+\sum\limits_{i=1}^{n+1} \binom{n}{i-1}V_{i} \\ &=&V_{0}+\sum\limits_{i=1}^{n}\binom{n}{i}V_{i}+\sum\limits_{i=0}^{n}\binom{n }{i}V_{i+1} \\ &=&\sum\limits_{i=0}^{n}\binom{n}{i}V_{i}+\sum\limits_{i=0}^{n}\binom{n}{i} V_{i+1} \\ &=&\sum\limits_{i=0}^{n}\binom{n}{i}(V_{i}+V_{i+1}). \end{eqnarray*} This completes the proof.
Remark 1. From the Lemma 3, we see that \begin{equation*} b_{n+1}=b_{n}+\sum\limits_{i=0}^{n}\binom{n}{i}V_{i+1}. \end{equation*}
The following theorem gives recurrent relations of the binomial transform of the generalized fifth order Jacobsthal sequence.Theorem 4. For \(n\geq 0,\) the binomial transform of the generalized fifth order Jacobsthal sequence \(V_{n}\) satisfies the following recurrence relation:
Proof. To show (15), writing \begin{equation*} b_{n+5}=r_{1}\times b_{n+4}+s_{1}\times b_{n+3}+t_{1}\times b_{n+2}+u_{1}\times b_{n+1}+v_{1}\times b_{n} \end{equation*} and taking the values \(n=0,1,2,3,4\) and then solving the system of equations \begin{eqnarray*} b_{5} &=&r_{1}\times b_{4}+s_{1}\times b_{3}+t_{1}\times b_{2}+u_{1}\times b_{1}+v_{1}\times b_{0} \\ b_{6} &=&r_{1}\times b_{5}+s_{1}\times b_{4}+t_{1}\times b_{3}+u_{1}\times b_{2}+v_{1}\times b_{1} \\ b_{7} &=&r_{1}\times b_{6}+s_{1}\times b_{5}+t_{1}\times b_{4}+u_{1}\times b_{3}+v_{1}\times b_{2} \\ b_{8} &=&r_{1}\times b_{7}+s_{1}\times b_{6}+t_{1}\times b_{5}+u_{1}\times b_{4}+v_{1}\times b_{3} \\ b_{9} &=&r_{1}\times b_{8}+s_{1}\times b_{7}+t_{1}\times b_{6}+u_{1}\times b_{5}+v_{1}\times b_{4} \end{eqnarray*} we find that \(r_{1}=6,s_{1}=-13,t_{1}=14,u_{1}=-7,v_{1}=3.\)
The sequence \(\{b_{n}\}_{n\geq 0}\) can be extended to negative subscripts by defining \begin{equation*} b_{-n}=\frac{7}{3}b_{-(n-1)}-\frac{14}{3}b_{-(n-2)}+\frac{13}{3} b_{-(n-3)}-2b_{-(n-4)}+\frac{1}{3}b_{-(n-5)} \end{equation*} for \(n=1,2,3,…\). Therefore, recurrence (15) holds for all integer \(n.\)Note that the recurence relation (15) is independent from initial values. So,
\begin{eqnarray*} \widehat{J}_{n+5} &=&6\widehat{J}_{n+4}-13\widehat{J}_{n+3}+14\widehat{J} _{n+2}-7\widehat{J}_{n+1}+3\widehat{J}_{n}, \\ \widehat{j}_{n+5} &=&6\widehat{j}_{n+4}-13\widehat{j}_{n+3}+14\widehat{j} _{n+2}-7\widehat{j}_{n+1}+3\widehat{j}_{n}, \\ \widehat{S}_{n+5} &=&6\widehat{S}_{n+4}-13\widehat{S}_{n+3}+14\widehat{S} _{n+2}-7\widehat{S}_{n+1}+3\widehat{S}_{n}, \end{eqnarray*}\begin{eqnarray*} \widehat{R}_{n+5} &=&6\widehat{R}_{n+4}-13\widehat{R}_{n+3}+14\widehat{R} _{n+2}-7\widehat{R}_{n+1}+3\widehat{R}_{n}. \end{eqnarray*}The first few terms of the binomial transform of the generalized fifth order Jacobsthal sequence with positive subscript and negative subscript are given in the following Table 3.
\(n\) | \(b_{n}\) | \(b_{-n}\) |
---|---|---|
\(0\) | \(V_{0}\) | \(V_{0}\) |
\(1\) | \(V_{0}+V_{1}\) | \(\frac{1}{3}\left(V_{0}-2V_{1}+V_{2}-2V_{3}+V_{4}\right) \) |
\(2\) | \(V_{0}+2V_{1}+V_{2}\) | \(-\frac{1}{9}\left(11V_{0}+2V_{1}+2V_{2}+11V_{3}-7V_{4}\right) \) |
\(3\) | \(V_{0}+3V_{1}+3V_{2}+V_{3}\) | \(-\frac{1}{27}\left(47V_{0}-34V_{1}+47V_{2}-7V_{3}-7V_{4}\right) \) |
\(4\) | \( V_{0}+4V_{1}+6V_{2}+4V_{3}+V_{4}\) | \(\frac{1}{81}\left(115V_{0}+115V_{1}-128V_{2}+277V_{3}-128V_{4}\right) \) |
\(5\) | \( 3V_{0}+6V_{1}+11V_{2}+11V_{3}+6V_{4}\) | \(\frac{1}{243} \left( 1411V_{0}-533V_{1}+682V_{2}+682V_{3}-533V_{4}\right) \) |
\(6\) | \( 15V_{0}+15V_{1}+23V_{2}+28V_{3}+23V_{4}\) | \(\frac{1}{729} \left( 1411V_{0}-4421V_{1}+5056V_{2}-4421V_{3}+1411V_{4}\right) \) |
\(7\) | \( 61V_{0}+53V_{1}+61V_{2}+74V_{3}+74V_{4}\) | \(-\frac{1}{2187 }\left( 29207V_{0}+776V_{1}+776V_{2}+29207V_{3}-16720V_{4}\right) \) |
The first few terms of the binomial transform numbers of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas sequences with positive subscript and negative subscript are given in the following Table 4.
\(n\) | \(0\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\widehat{J}_{n}\) | \(0\) | \(1\) | \(3\) | \(7\) | \( 15\) | \(34\) | \(89\) | \(262\) | \(807\) | \(2489\) | \(7590\) | \(22914\) |
\(\widehat{J}_{-n}\) | \(-\frac{2}{3}\) | \(-\frac{8}{9}\) | \(\frac{1}{27}\) | \( \frac{136}{81}\) | \(\frac{298}{243}\) | \(-\frac{2375}{729}\) | \(-\frac{14\,039}{ 2187}\) | \(\frac{14\,392}{6561}\) | \(\frac{375\,247}{19\,683}\) | \(\frac{ 788\,590}{59\,049}\) | \(-\frac{6474\,437}{177\,147}\) | |
\(\widehat{j}_{n}\) | \(2\) | \(3\) | \(9\) | \(30\) | \(96\) | \(297\) | \(900\) | \( 2700\) | \(8076\) | \(24165\) | \(72393\) | \(217077\) |
\(\widehat{j}_{-n}\) | \(\frac{5}{3}\) | \(-\frac{4}{9}\) | \(-\frac{85}{27}\) | \( -\frac{85}{81}\) | \(\frac{1859}{243}\) | \(\frac{7691}{729}\) | \(-\frac{20740}{ 2187}\) | \(-\frac{243814}{6561}\) | \(-\frac{243814}{19683}\) | \(\frac{5011547}{ 59049}\) | \(\frac{20777630}{177147}\) | |
\(\widehat{S}_{n}\) | \(0\) | \(1\) | \(3\) | \(8\) | \(22\) | \(63\) | \(186\) | \( 558\) | \(1682\) | \(5067\) | \(15235\) | \(45739\) |
\(\widehat{S}_{-n}\) | \(-\frac{1}{3}\) | \(\frac{2}{9}\) | \(\frac{29}{27}\) | \( \frac{29}{81}\) | \(-\frac{619}{243}\) | \(-\frac{2563}{729}\) | \(\frac{6914}{2187 }\) | \(\frac{81272}{6561}\) | \(\frac{81272}{19683}\) | \(-\frac{1670515}{59049}\) | \(-\frac{6925876}{177147}\) | |
\(\widehat{R}_{n}\) | \(5\) | \(6\) | \(10\) | \(24\) | \(70\) | \(221\) | \( 700 \) | \( 2169\) | \(6590\) | \(19806\) | \(59295\) | \(177469\) |
\(\widehat{R}_{-n}\) | \(\frac{7}{3}\) | \(-\frac{35}{9}\) | \(-\frac{188}{27}\) | \(\frac{325}{81}\) | \(\frac{5347}{243}\) | \(\frac{8020}{729}\) | \(-\frac{102788 }{2187}\) | \(-\frac{498635}{6561}\) | \(\frac{925102}{19683}\) | \(\frac{14526055 }{59049}\) | \(\frac{21789082}{177147}\) |
Eq. (3) can be used to obtain Binet’s formula of the binomial transform of generalized fifth order Jacobsthal numbers. Binet’s formula of the binomial transform of generalized fifth order Jacobsthal numbers can be given as
Next, we give the ordinary generating function \(f_{b_{n}}(x)=\sum \limits_{n=0}^{\infty }b_{n}x^{n}\) of the sequence \(b_{n}.\)
Lemma 4. Suppose that \(f_{b_{n}}(x)=\sum\limits_{n=0}^{\infty }b_{n}x^{n}\) is the ordinary generating function of the binomial transform of the generalized fifth order Jacobsthal sequence \(\{V_{n}\}_{n\geq 0}.\) Then, \(f_{b_{n}}(x)\) is given by
Proof. Using Lemma 1, we obtain \begin{eqnarray*} f_{b_{n}}(x) &=&\frac{{ b}_{0}{ +(b}_{1} { -6b}_{0}{ )x+(b}_{2}{ -6b}_{1}+13 { b}_{0}{ )x}^{2}{ +(b}_{3} { -6b}_{2}+13{ b}_{1}{ -14b}_{0} { )x}^{3}{ +(b}_{4}{ -6b}_{3}+13 { b}_{2}{ -14b}_{1}+7{ b}_{0} { )x}^{4}}{1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}} \\ &=&\frac{V_{0}{ +(V_{1}-5V_{0})x+(8V_{0}-4V_{1}+V_{2})x}^{2} { +(4V_{1}-6V_{0}-3V_{2}+V_{3})x}^{3}{ +(V_{0}-2V_{1}+V_{2}-2V_{3}+V_{4})x}^{4}}{1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}}\,, \end{eqnarray*} where \begin{eqnarray*} b_{0} &=&V_{0}, \\ b_{1} &=&V_{0}+V_{1}, \\ b_{2} &=&V_{0}+2V_{1}+V_{2}, \\ b_{3} &=&V_{0}+3V_{1}+3V_{2}+V_{3}, \\ b_{4} &=&V_{0}+4V_{1}+6V_{2}+4V_{3}+V_{4}. \end{eqnarray*}
Note that P. Barry shows in [26] that if \(A(x)\) is the generating function of the sequence \(\{a_{n}\},\) then \begin{equation*} S(x)=\frac{1}{1-x}A\left(\frac{x}{1-x}\right) \end{equation*} is the generating function of the sequence \(\{b_{n}\}\) with \( b_{n}=\sum\limits_{i=0}^{n}\binom{n}{i}a_{i}.\) In our case, since \begin{equation*} A(x)=\frac{{ V}_{0}{ +(V}_{1}{ -V}_{0} { )x+(V}_{2}{ -V}_{1}{ -V}_{0} { )x}^{2}{ +(V}_{3}{ -V}_{2} { -V}_{1}{ -V}_{0}{ )x}^{3} { +(V}_{4}{ -V}_{3}{ -V}_{2} { -V}_{1}{ -V}_{0}{ )x}^{4}}{ 1-x-x^{2}-x^{3}-x^{4}-2x^{5}},\text{ see Lemma 2,} \end{equation*} we obtain \begin{eqnarray*} S(x) &=&\frac{1}{1-x}A(\frac{x}{1-x}) \\ &=&\frac{V_{0}{ +(V_{1}-5V_{0})x+(8V_{0}-4V_{1}+V_{2})x}^{2} { +(4V_{1}-6V_{0}-3V_{2}+V_{3})x}^{3}{ +(V_{0}-2V_{1}+V_{2}-2V_{3}+V_{4})x}^{4}}{1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}}\,. \end{eqnarray*} The Lemma 4 gives the following results as particular examples.Corollary 3. Generating functions of the binomial transform of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas numbers are \begin{eqnarray*} \sum_{n=0}^{\infty }\widehat{J}_{n}x^{n} &=&\frac{x-3x^{2}+2x^{3}-2x^{4}}{ 1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}}\,, \\ \sum_{n=0}^{\infty }\widehat{j}_{n}x^{n} &=&\frac{2-9x+17x^{2}-13x^{3}+5x^{4} }{1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}} \,,\\ \sum_{n=0}^{\infty }\widehat{S}_{n}x^{n} &=&\frac{x-3x^{2}+3x^{3}-x^{4}}{ 1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}} \,,\\ \sum_{n=0}^{\infty }\widehat{R}_{n}x^{n} &=&\frac{ 5-24x+39x^{2}-28x^{3}+7x^{4}}{1-6x+13x^{2}-14x^{3}+7x^{4}-3x^{5}}\,. \end{eqnarray*} respectively.
Theorem 5.(Simson formula of generalized Pentanacci numbers) For all integers \(n,\) we have
Proof. Eq. (18) is given in [27], Theorem 3.1.
Taking \(\{W_{n}\}=\{b_{n}\}\) in the above theorem and considering \( b_{n+5}=6b_{n+4}-13b_{n+3}+14b_{n+2}-7b_{n+1}+3b_{n},\) \( r=6,s=-13,t=14,u=-7,v=3,\) we have the following proposition.
Proposition 1. For all integers \(n,\) Simson formula of binomial transforms of generalized fifth order Jacobsthal numbers is given as \begin{equation*} \left\vert \begin{array}{ccccc} b_{n+4} & b_{n+3} & b_{n+2} & b_{n+1} & b_{n} \\ b_{n+3} & b_{n+2} & b_{n+1} & b_{n} & b_{n-1} \\ b_{n+2} & b_{n+1} & b_{n} & b_{n-1} & b_{n-2} \\ b_{n+1} & b_{n} & b_{n-1} & b_{n-2} & b_{n-3} \\ b_{n} & b_{n-1} & b_{n-2} & b_{n-3} & b_{n-4} \end{array} \right\vert =3^{n}\left\vert \begin{array}{ccccc} b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ b_{3} & b_{2} & b_{1} & b_{0} & b_{-1} \\ b_{2} & b_{1} & b_{0} & b_{-1} & b_{-2} \\ b_{1} & b_{0} & b_{-1} & b_{-2} & b_{-3} \\ b_{0} & b_{-1} & b_{-2} & b_{-3} & b_{-4} \end{array} \right\vert . \end{equation*}
The Proposition 1 gives the following results as particular examples.Corollary 4. For all integers \(n,\) Simson formula of binomial transforms of the fifth order Jacobsthal, fifth order Jacobsthal-Lucas, adjusted fifth order Jacobsthal and modified fifth order Jacobsthal-Lucas numbers are given as \begin{eqnarray*} \left\vert \begin{array}{ccccc} \widehat{J}_{n+4} & \widehat{J}_{n+3} & \widehat{J}_{n+2} & \widehat{J}_{n+1} & \widehat{J}_{n} \\ \widehat{J}_{n+3} & \widehat{J}_{n+2} & \widehat{J}_{n+1} & \widehat{J}_{n} & \widehat{J}_{n-1} \\ \widehat{J}_{n+2} & \widehat{J}_{n+1} & \widehat{J}_{n} & \widehat{J}_{n-1} & \widehat{J}_{n-2} \\ \widehat{J}_{n+1} & \widehat{J}_{n} & \widehat{J}_{n-1} & \widehat{J}_{n-2} & \widehat{J}_{n-3} \\ \widehat{J}_{n} & \widehat{J}_{n-1} & \widehat{J}_{n-2} & \widehat{J}_{n-3} & \widehat{J}_{n-4} \end{array} \right\vert &=&44\times 3^{n-4}, \\ \left\vert \begin{array}{ccccc} \widehat{j}_{n+4} & \widehat{j}_{n+3} & \widehat{j}_{n+2} & \widehat{j}_{n+1} & \widehat{j}_{n} \\ \widehat{j}_{n+3} & \widehat{j}_{n+2} & \widehat{j}_{n+1} & \widehat{j}_{n} & \widehat{j}_{n-1} \\ \widehat{j}_{n+2} & \widehat{j}_{n+1} & \widehat{j}_{n} & \widehat{j}_{n-1} & \widehat{j}_{n-2} \\ \widehat{j}_{n+1} & \widehat{j}_{n} & \widehat{j}_{n-1} & \widehat{j}_{n-2} & \widehat{j}_{n-3} \\ \widehat{j}_{n} & \widehat{j}_{n-1} & \widehat{j}_{n-2} & \widehat{j}_{n-3} & \widehat{j}_{n-4} \end{array} \right\vert &=&38\times 3^{n}, \\ \left\vert \begin{array}{ccccc} \widehat{S}_{n+4} & \widehat{S}_{n+3} & \widehat{S}_{n+2} & \widehat{S}_{n+1} & \widehat{S}_{n} \\ \widehat{S}_{n+3} & \widehat{S}_{n+2} & \widehat{S}_{n+1} & \widehat{S}_{n} & \widehat{S}_{n-1} \\ \widehat{S}_{n+2} & \widehat{S}_{n+1} & \widehat{S}_{n} & \widehat{S}_{n-1} & \widehat{S}_{n-2} \\ \widehat{S}_{n+1} & \widehat{S}_{n} & \widehat{S}_{n-1} & \widehat{S}_{n-2} & \widehat{S}_{n-3} \\ \widehat{S}_{n} & \widehat{S}_{n-1} & \widehat{S}_{n-2} & \widehat{S}_{n-3} & \widehat{S}_{n-4} \end{array} \right\vert &=&8\times 3^{n-4}, \\ \left\vert \begin{array}{ccccc} \widehat{R}_{n+4} & \widehat{R}_{n+3} & \widehat{R}_{n+2} & \widehat{R}_{n+1} & \widehat{R}_{n} \\ \widehat{R}_{n+3} & \widehat{R}_{n+2} & \widehat{R}_{n+1} & \widehat{R}_{n} & \widehat{R}_{n-1} \\ \widehat{R}_{n+2} & \widehat{R}_{n+1} & \widehat{R}_{n} & \widehat{R}_{n-1} & \widehat{R}_{n-2} \\ \widehat{R}_{n+1} & \widehat{R}_{n} & \widehat{R}_{n-1} & \widehat{R}_{n-2} & \widehat{R}_{n-3} \\ \widehat{R}_{n} & \widehat{R}_{n-1} & \widehat{R}_{n-2} & \widehat{R}_{n-3} & \widehat{R}_{n-4} \end{array} \right\vert &=&120125\times 3^{n-4}, \end{eqnarray*} respectively.
Lemma 5. The following equalities are true: \begin{eqnarray*} 171\widehat{J}_{n} &=&-22\widehat{j}_{n+6}+123\widehat{j}_{n+5}-259\widehat{j }_{n+4}+329\widehat{j}_{n+3}-193\widehat{j}_{n+2}, \\ 57\widehat{J}_{n} &=&-3\widehat{j}_{n+5}+9\widehat{j}_{n+4}+7\widehat{j} _{n+3}-13\widehat{j}_{n+2}-22\widehat{j}_{n+1}, \\ 57\widehat{J}_{n} &=&-9\widehat{j}_{n+4}+46\widehat{j}_{n+3}-55\widehat{j} _{n+2}-\widehat{j}_{n+1}-9\widehat{j}_{n}, \\ 57\widehat{J}_{n} &=&-8\widehat{j}_{n+3}+62\widehat{j}_{n+2}-127\widehat{j} _{n+1}+54\widehat{j}_{n}-27\widehat{j}_{n-1}, \\ 57\widehat{J}_{n} &=&14\widehat{j}_{n+2}-23\widehat{j}_{n+1}-58\widehat{j} _{n}+29\widehat{j}_{n-1}-24\widehat{j}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 198\widehat{j}_{n} &=&5\widehat{J}_{n+6}-285\widehat{J}_{n+5}+1532\widehat{J} _{n+4}-2764\widehat{J}_{n+3}+2003\widehat{J}_{n+2}, \\ 66\widehat{j}_{n} &=&-85\widehat{J}_{n+5}+489\widehat{J}_{n+4}-898\widehat{J} _{n+3}+656\widehat{J}_{n+2}+5\widehat{J}_{n+1}, \\ 22\widehat{j}_{n} &=&-7\widehat{J}_{n+4}+69\widehat{J}_{n+3}-178\widehat{J} _{n+2}+200\widehat{J}_{n+1}-85\widehat{J}_{n}, \\ 22\widehat{j}_{n} &=&27\widehat{J}_{n+3}-87\widehat{J}_{n+2}+102\widehat{J} _{n+1}-36\widehat{J}_{n}-21\widehat{J}_{n-1}, \\ 22\widehat{j}_{n} &=&75\widehat{J}_{n+2}-249\widehat{J}_{n+1}+342\widehat{J} _{n}-210\widehat{J}_{n-1}+81\widehat{J}_{n-2}. \end{eqnarray*}
Proof. Writing \begin{equation*} \widehat{J}_{n}=a\times \widehat{j}_{n+6}+b\times \widehat{j}_{n+5}+c\times \widehat{j}_{n+4}+d\times \widehat{j}_{n+3}+e\times \widehat{j}_{n+2} \end{equation*} and solving the system of equations \begin{eqnarray*} \widehat{J}_{0} &=&a\times \widehat{j}_{6}+b\times \widehat{j}_{5}+c\times \widehat{j}_{4}+d\times \widehat{j}_{3}+e\times \widehat{j}_{2} \\ \widehat{J}_{1} &=&a\times \widehat{j}_{7}+b\times \widehat{j}_{6}+c\times \widehat{j}_{5}+d\times \widehat{j}_{4}+e\times \widehat{j}_{3} \\ \widehat{J}_{2} &=&a\times \widehat{j}_{8}+b\times \widehat{j}_{7}+c\times \widehat{j}_{6}+d\times \widehat{j}_{5}+e\times \widehat{j}_{4} \\ \widehat{J}_{3} &=&a\times \widehat{j}_{9}+b\times \widehat{j}_{8}+c\times \widehat{j}_{7}+d\times \widehat{j}_{6}+e\times \widehat{j}_{5} \\ \widehat{J}_{4} &=&a\times \widehat{j}_{10}+b\times \widehat{j}_{9}+c\times \widehat{j}_{8}+d\times \widehat{j}_{7}+e\times \widehat{j}_{6} \end{eqnarray*} we find that \(a=-\frac{22}{171},b=\frac{41}{57},c=-\frac{259}{171},d=\frac{ 329}{171},e=-\frac{193}{171}.\) The other equalities can be proved similarly.
Now, we give a few basic relations between \(\{\widehat{J}_{n}\}\) and \(\{ \widehat{S}_{n}\}\).Lemma 6. The following equalities are true: \begin{eqnarray*} 18\widehat{J}_{n} &=&7\widehat{S}_{n+6}-39\widehat{S}_{n+5}+82\widehat{S} _{n+4}-104\widehat{S}_{n+3}+61\widehat{S}_{n+2}, \\ 6\widehat{J}_{n} &=&\widehat{S}_{n+5}-3\widehat{S}_{n+4}-2\widehat{S}_{n+3}+4 \widehat{S}_{n+2}+7\widehat{S}_{n+1}, \\ 2\widehat{J}_{n} &=&\widehat{S}_{n+4}-5\widehat{S}_{n+3}+6\widehat{S}_{n+2}+ \widehat{S}_{n}, \\ 2\widehat{J}_{n} &=&\widehat{S}_{n+3}-7\widehat{S}_{n+2}+14\widehat{S} _{n+1}-6\widehat{S}_{n}+3\widehat{S}_{n-1}, \\ 2\widehat{J}_{n} &=&-\widehat{S}_{n+2}+\widehat{S}_{n+1}+8\widehat{S}_{n}-4 \widehat{S}_{n-1}+3\widehat{S}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 99\widehat{S}_{n} &=&\widehat{J}_{n+6}+42\widehat{J}_{n+5}-248\widehat{J} _{n+4}+457\widehat{J}_{n+3}-332\widehat{J}_{n+2}, \\ 33\widehat{S}_{n} &=&16\widehat{J}_{n+5}-87\widehat{J}_{n+4}+157\widehat{J} _{n+3}-113\widehat{J}_{n+2}+\widehat{J}_{n+1}, \\ 11\widehat{S}_{n} &=&3\widehat{J}_{n+4}-17\widehat{J}_{n+3}+37\widehat{J} _{n+2}-37\widehat{J}_{n+1}+16\widehat{J}_{n}, \\ 11\widehat{S}_{n} &=&\widehat{J}_{n+3}-2\widehat{J}_{n+2}+5\widehat{J} _{n+1}-5\widehat{J}_{n}+9\widehat{J}_{n-1}, \\ 11\widehat{S}_{n} &=&4\widehat{J}_{n+2}-8\widehat{J}_{n+1}+9\widehat{J}_{n}+2 \widehat{J}_{n-1}+3\widehat{J}_{n-2}. \end{eqnarray*}
Next, we present a few basic relations between \(\{\widehat{J}_{n}\}\) and \(\{ \widehat{R}_{n}\}\).Lemma 7. The following equalities are true: \begin{eqnarray*} 43245\widehat{J}_{n} &=&164\widehat{R}_{n+6}+1182\widehat{R}_{n+5}-7993 \widehat{R}_{n+4}+15017\widehat{R}_{n+3}-17692\widehat{R}_{n+2}, \\ 14415\widehat{J}_{n} &=&722\widehat{R}_{n+5}-3375\widehat{R}_{n+4}+5771 \widehat{R}_{n+3}-6280\widehat{R}_{n+2}+164\widehat{R}_{n+1}, \\ 4805\widehat{J}_{n} &=&319\widehat{R}_{n+4}-1205\widehat{R}_{n+3}+1276 \widehat{R}_{n+2}-1630\widehat{R}_{n+1}+722\widehat{R}_{n}, \\ 4805\widehat{J}_{n} &=&709\widehat{R}_{n+3}-2871\widehat{R}_{n+2}+2836 \widehat{R}_{n+1}-1511\widehat{R}_{n}+957\widehat{R}_{n-1}, \\ 4805\widehat{J}_{n} &=&1383\widehat{R}_{n+2}-6381\widehat{R}_{n+1}+8415 \widehat{R}_{n}-4006\widehat{R}_{n-1}+2127\widehat{R}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 396\widehat{R}_{n} &=&1163\widehat{J}_{n+6}-7881\widehat{J}_{n+5}+19664 \widehat{J}_{n+4}-22810\widehat{J}_{n+3}+10379\widehat{J}_{n+2}, \\ 132\widehat{R}_{n} &=&-301\widehat{J}_{n+5}+1515\widehat{J}_{n+4}-2176 \widehat{J}_{n+3}+746\widehat{J}_{n+2}+1163\widehat{J}_{n+1}, \\ 44\widehat{R}_{n} &=&-97\widehat{J}_{n+4}+579\widehat{J}_{n+3}-1156\widehat{J }_{n+2}+1090\widehat{J}_{n+1}-301\widehat{J}_{n}, \\ 44\widehat{R}_{n} &=&-3\widehat{J}_{n+3}+105\widehat{J}_{n+2}-268\widehat{J} _{n+1}+378\widehat{J}_{n}-291\widehat{J}_{n-1}, \\ 44\widehat{R}_{n} &=&87\widehat{J}_{n+2}-229\widehat{J}_{n+1}+336\widehat{J} _{n}-270\widehat{J}_{n-1}-9\widehat{J}_{n-2}. \end{eqnarray*}
Now, we give a few basic relations between \(\{\widehat{j}_{n}\}\) and \(\{ \widehat{S}_{n}\}\).Lemma 8. The following equalities are true: \begin{eqnarray*} 36\widehat{j}_{n} &=&-83\widehat{S}_{n+6}+465\widehat{S}_{n+5}-872\widehat{S} _{n+4}+706\widehat{S}_{n+3}-83\widehat{S}_{n+2}, \end{eqnarray*}\begin{eqnarray*} 12\widehat{j}_{n} &=&-11\widehat{S}_{n+5}+69\widehat{S}_{n+4}-152\widehat{S} _{n+3}+166\widehat{S}_{n+2}-83\widehat{S}_{n+1}, \\ 4\widehat{j}_{n} &=&\widehat{S}_{n+4}-3\widehat{S}_{n+3}+4\widehat{S}_{n+2}-2 \widehat{S}_{n+1}-11\widehat{S}_{n}, \\ 4\widehat{j}_{n} &=&3\widehat{S}_{n+3}-9\widehat{S}_{n+2}+12\widehat{S} _{n+1}-18\widehat{S}_{n}+3\widehat{S}_{n-1}, \\ 4\widehat{j}_{n} &=&9\widehat{S}_{n+2}-27\widehat{S}_{n+1}+24\widehat{S} _{n}-18\widehat{S}_{n-1}+9\widehat{S}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 171\widehat{S}_{n} &=&-44\widehat{j}_{n+6}+246\widehat{j}_{n+5}-461\widehat{j }_{n+4}+373\widehat{j}_{n+3}-44\widehat{j}_{n+2}, \\ 57\widehat{S}_{n} &=&-6\widehat{j}_{n+5}+37\widehat{j}_{n+4}-81\widehat{j} _{n+3}+88\widehat{j}_{n+2}-44\widehat{j}_{n+1}, \\ 57\widehat{S}_{n} &=&\widehat{j}_{n+4}-3\widehat{j}_{n+3}+4\widehat{j} _{n+2}-2\widehat{j}_{n+1}-18\widehat{j}_{n}, \\ 57\widehat{S}_{n} &=&3\widehat{j}_{n+3}-9\widehat{j}_{n+2}+12\widehat{j} _{n+1}-25\widehat{j}_{n}+3\widehat{j}_{n-1}, \\ 57\widehat{S}_{n} &=&9\widehat{j}_{n+2}-27\widehat{j}_{n+1}+17\widehat{j} _{n}-18\widehat{j}_{n-1}+9\widehat{j}_{n-2}. \end{eqnarray*}
Next, we present a few basic relations between \(\{\widehat{j}_{n}\}\) and \(\{ \widehat{R}_{n}\}\).Lemma 9. The following equalities are true: \begin{eqnarray*} 43245\widehat{j}_{n} &=&11881\widehat{R}_{n+6}-71634\widehat{R}_{n+5}+151312 \widehat{R}_{n+4}-141779\widehat{R}_{n+3}+41176\widehat{R}_{n+2}, \\ 14415\widehat{j}_{n} &=&-116\widehat{R}_{n+5}-1047\widehat{R}_{n+4}+8185 \widehat{R}_{n+3}-13997\widehat{R}_{n+2}+11881\widehat{R}_{n+1}, \\ 4805\widehat{j}_{n} &=&-581\widehat{R}_{n+4}+3231\widehat{R}_{n+3}-5207 \widehat{R}_{n+2}+4231\widehat{R}_{n+1}-116\widehat{R}_{n}, \\ 4805\widehat{j}_{n} &=&-255\widehat{R}_{n+3}+2346\widehat{R}_{n+2}-3903 \widehat{R}_{n+1}+3951\widehat{R}_{n}-1743\widehat{R}_{n-1}, \\ 4805\widehat{j}_{n} &=&816\widehat{R}_{n+2}-588\widehat{R}_{n+1}+381\widehat{ R}_{n}+42\widehat{R}_{n-1}-765\widehat{R}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 342\widehat{R}_{n} &=&457\widehat{j}_{n+6}-2397\widehat{j}_{n+5}+3994 \widehat{j}_{n+4}-2396\widehat{j}_{n+3}-1025\widehat{j}_{n+2}, \\ 114\widehat{R}_{n} &=&115\widehat{j}_{n+5}-649\widehat{j}_{n+4}+1334\widehat{ j}_{n+3}-1408\widehat{j}_{n+2}+457\widehat{j}_{n+1}, \\ 114\widehat{R}_{n} &=&41\widehat{j}_{n+4}-161\widehat{j}_{n+3}+202\widehat{j} _{n+2}-348\widehat{j}_{n+1}+345\widehat{j}_{n}, \\ 114\widehat{R}_{n} &=&85\widehat{j}_{n+3}-331\widehat{j}_{n+2}+226\widehat{j} _{n+1}+58\widehat{j}_{n}+123\widehat{j}_{n-1}, \\ 114\widehat{R}_{n} &=&179\widehat{j}_{n+2}-879\widehat{j}_{n+1}+1248\widehat{ j}_{n}-472\widehat{j}_{n-1}+255\widehat{j}_{n-2}. \end{eqnarray*}
Now, we give a few basic relations between \(\{\widehat{S}_{n}\}\) and \(\{ \widehat{R}_{n}\}\).Lemma 10. The following equalities are true: \begin{eqnarray*} 43245\widehat{S}_{n} &=&-3857\widehat{R}_{n+6}+23568\widehat{R}_{n+5}-50024 \widehat{R}_{n+4}+47053\widehat{R}_{n+3}-13622\widehat{R}_{n+2}, \\ 14415\widehat{S}_{n} &=&142\widehat{R}_{n+5}+39\widehat{R}_{n+4}-2315 \widehat{R}_{n+3}+4459\widehat{R}_{n+2}-3857\widehat{R}_{n+1}, \\ 4805\widehat{S}_{n} &=&297\widehat{R}_{n+4}-1387\widehat{R}_{n+3}+2149 \widehat{R}_{n+2}-1617\widehat{R}_{n+1}+142\widehat{R}_{n}, \\ 4805\widehat{S}_{n} &=&395\widehat{R}_{n+3}-1712\widehat{R}_{n+2}+2541 \widehat{R}_{n+1}-1937\widehat{R}_{n}+891\widehat{R}_{n-1}, \\ 4805\widehat{S}_{n} &=&658\widehat{R}_{n+2}-2594\widehat{R}_{n+1}+3593 \widehat{R}_{n}-1874\widehat{R}_{n-1}+1185\widehat{R}_{n-2}, \end{eqnarray*} and \begin{eqnarray*} 72\widehat{R}_{n} &=&-287\widehat{S}_{n+6}+1509\widehat{S}_{n+5}-2516 \widehat{S}_{n+4}+1510\widehat{S}_{n+3}+649\widehat{S}_{n+2}, \\ 24\widehat{R}_{n} &=&-71\widehat{S}_{n+5}+405\widehat{S}_{n+4}-836\widehat{S} _{n+3}+886\widehat{S}_{n+2}-287\widehat{S}_{n+1}, \\ 8\widehat{R}_{n} &=&-7\widehat{S}_{n+4}+29\widehat{S}_{n+3}-36\widehat{S} _{n+2}+70\widehat{S}_{n+1}-71\widehat{S}_{n}, \\ 8\widehat{R}_{n} &=&-13\widehat{S}_{n+3}+55\widehat{S}_{n+2}-28\widehat{S} _{n+1}-22\widehat{S}_{n}-21\widehat{S}_{n-1}, \\ 8\widehat{R}_{n} &=&-23\widehat{S}_{n+2}+141\widehat{S}_{n+1}-204\widehat{S} _{n}+70\widehat{S}_{n-1}-39\widehat{S}_{n-2}. \end{eqnarray*}
Proposition 2. For \(n\in \mathbb{Z},\) binomial Transform of the generalized fifth order Jacobsthal sequence have the following identity: \begin{eqnarray*} b_{-n}&=&\frac{1}{24} 3^{-n}(b_{0}\widehat{R}_{n}^{4}-4b_{n} \widehat{R}_{n}^{3}+3b_{0}\widehat{R}_{2n}^{2}+12\widehat{R} _{n}^{2}b_{2n}-6b_{0}\widehat{R}_{n}^{2}\widehat{R}_{2n}-6b_{0}\widehat{R} _{4n}-8b_{n}\widehat{R}_{3n}-12\widehat{R}_{2n}b_{2n}-24\widehat{R} _{n}b_{3n}+24b_{4n}\\ &&+8b_{0}\widehat{R}_{n}\widehat{R}_{3n}+12b_{n}\widehat{R} _{n}\widehat{R}_{2n})\\ &=&3^{-n}(b_{4n}-\widehat{R}_{n}b_{3n}+\frac{1}{2}(\widehat{R}_{n}^{2}- \widehat{R}_{2n})b_{2n}-\frac{1}{6}(\widehat{R}_{n}^{3}+2\widehat{R}_{3n}-3 \widehat{R}_{2n}\widehat{R}_{n})b_{n}\\ &&+\frac{1}{24}(\widehat{R}_{n}^{4}+3 \widehat{R}_{2n}^{2}-6\widehat{R}_{n}^{2}\widehat{R}_{2n}-6\widehat{R}_{4n}+8 \widehat{R}_{3n}\widehat{R}_{n})b_{0}). \end{eqnarray*}
Using Proposition 2 (and Corollary 2), we obtain the following corollary which gives the connection between the special cases of binomial transform of generalized fifth order Jacobsthal sequence at the positive index and the negative index: for binomial transform of fifth order Jacobsthal, fifth order Jacobsthal-Lucas numbers: take \(b_{n}=\widehat{J}_{n}\) with \(\widehat{J}_{0}=0,\widehat{J}_{1}=1, \widehat{J}_{2}=3,\widehat{J}_{3}=7,\widehat{J}_{4}=15,\) take \(b_{n}= \widehat{j}_{n}\) with \(\widehat{j}_{0}=2,\widehat{j}_{1}=3,\widehat{j}_{2}=9, \widehat{j}_{3}=30,\widehat{j}_{4}=96,\) take \(b_{n}=\widehat{S}_{n}\) with \( \widehat{S}_{0}=0,\widehat{S}_{1}=1,\widehat{S}_{2}=3,\widehat{S}_{3}=8, \widehat{S}_{4}=22,\) take \(b_{n}=\widehat{R}_{n}\) with \(\widehat{R}_{0}=5, \widehat{R}_{1}=6,\widehat{R}_{2}=10,\widehat{R}_{3}=24,\widehat{R}_{4}=70,\) respectively. Note that in this case we have \(H_{n}=\widehat{R}_{n}\). Note also that \(G_{n}\neq \widehat{S}_{n}\).Corollary 5. For \(n\in \mathbb{Z},\) we have the following recurrence relations:
Proposition 3. If \(r=6,s=-13,t=14,u=-7,v=3,\) then for \(n\geq 0\) we have the following formulas:
Proof. Take \(r=6,s=-13,t=14,u=-7,v=3,\) in Theorem 2.1 in [28].
From the last proposition, we have the following corollary which gives sum formulas of binomial transform of fifth order Jacobsthal numbers (take \( b_{n}=\widehat{J}_{n}\) with \(\widehat{J}_{0}=0,\widehat{J}_{1}=1,\widehat{J} _{2}=3,\widehat{J}_{3}=7,\widehat{J}_{4}= 15\)).Corollary 6. For \(n\geq 0\) we have the following formulas:
Corollary 7. For \(n\geq 0\) we have the following formulas:
Corollary 8. For \(n\geq 0\) we have the following formulas:
Corollary 9. For \(n\geq 0\) we have the following formulas:
Proposition 4. If \(r=6,s=-13,t=14,u=-7,v=3,\) then for \(n\geq 1\) we have the following formulas:
Proof. Take \(r=6,s=-13,t=14,u=-7,v=3,\) in Theorem 3.1 in [28].
From the last proposition, we have the following corollary which gives sum formulas of binomial transform of fifth order Jacobsthal numbers (take \( b_{n}=\widehat{J}_{n}\) with \(\widehat{J}_{0}=0,\widehat{J}_{1}=1,\widehat{J} _{2}=3,\widehat{J}_{3}=7,\widehat{J}_{4}= 15).\)Corollary 10. For \(n\geq 1,\) binomial transform of fifth order Jacobsthal numbers have the following properties.
Corollary 11. For \(n\geq 1,\) binomial transform of fifth order Jacobsthal-Lucas numbers have the following properties.
Corollary 12. For \(n\geq 1,\) binomial transform of adjusted fifth order Jacobsthal numbers have the following properties.
Corollary 13. For \(n\geq 1,\) binomial transform of modified fifth order Jacobsthal-Lucas numbers have the following properties.
Theorem 6. For all integers \(m,n\geq 0,\) we have
Proof.
Theorem 7. For \(m,n\geq 0,\) we have \begin{eqnarray*} b_{n+m} &=&b_{n}\sum_{k=0}^{m+1}\sum_{l=k}^{m+1}\sum_{p=l}^{m+1}\widehat{S} _{k} \\ &&+b_{n-1}\left( -13\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m}\widehat{S} _{k}+14\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}-7\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} +3\sum_{k=0}^{m-3}\sum_{l=k}^{m-3}\sum_{p=l}^{m-3}\widehat{S} _{k} \right) \\ &&+b_{n-2}\left( 14\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m}\widehat{S} _{k}-7\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}+3\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} \right) \\ &&+b_{n-3}\left( -7\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m}\widehat{S} _{k}+3\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S}_{k}\right) + 3b_{n-4}\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m}\widehat{S} _{k}. \end{eqnarray*}
Proof. From the equation \(C_{n+m}=C_{n}B_{m}=B_{m}C_{n},\) we see that an element of \(C_{n+m}\) is the product of row \(C_{n}\) and a column \( B_{m}.\) From the last equation, we say that an element of \(C_{n+m}\) is the product of a row \(C_{n}\) and column \(B_{m}.\) We just compare the linear combination of the 2nd row and 1st column entries of the matrices \(C_{n+m}\) and \(C_{n}B_{m}\). This completes the proof.
Corollary 14. For \(m,n\geq 0,\) we have \begin{eqnarray*} \widehat{J}_{n+m} &=&\widehat{J}_{n}\sum_{k=0}^{m+1}\sum_{l=k}^{m+1} \sum_{p=l}^{m+1}\widehat{S}_{k} +\widehat{J}_{n-1}\left( -13\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+14\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}-7\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} +3\sum_{k=0}^{m-3}\sum_{l=k}^{m-3}\sum_{p=l}^{m-3}\widehat{S} _{k} \right) \\ &&+\widehat{J}_{n-2}\left( 14\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}-7\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}+3\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} \right) \\ &&+\widehat{J}_{n-3}\left( -7\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+3\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}\right) + 3\widehat{J}_{n-4}\sum_{k=0}^{m}\sum_{l=k}^{m} \sum_{p=l}^{m}\widehat{S}_{k}, \end{eqnarray*} \begin{eqnarray*} \widehat{j}_{n+m} &=&\widehat{j}_{n}\sum_{k=0}^{m+1}\sum_{l=k}^{m+1} \sum_{p=l}^{m+1}\widehat{S}_{k} \\ &&+\widehat{j}_{n-1}\left( -13\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+14\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}-7\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} +3\sum_{k=0}^{m-3}\sum_{l=k}^{m-3}\sum_{p=l}^{m-3}\widehat{S} _{k} \right) \\ &&+\widehat{j}_{n-2}\left( 14\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}-7\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}+3\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} \right) \\ &&+\widehat{j}_{n-3}\left( -7\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+3\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}\right) + 3\widehat{j}_{n-4}\sum_{k=0}^{m}\sum_{l=k}^{m} \sum_{p=l}^{m}\widehat{S}_{k}, \end{eqnarray*} \begin{eqnarray*} \widehat{S}_{n+m} &=&\widehat{S}_{n}\sum_{k=0}^{m+1}\sum_{l=k}^{m+1} \sum_{p=l}^{m+1}\widehat{S}_{k} \\ &&+\widehat{S}_{n-1}\left( -13\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+14\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}-7\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} +3\sum_{k=0}^{m-3}\sum_{l=k}^{m-3}\sum_{p=l}^{m-3}\widehat{S} _{k} \right) \\ &&+\widehat{S}_{n-2}\left( 14\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}-7\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}+3\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} \right) \\ &&+\widehat{S}_{n-3}\left( -7\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+3\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}\right) + 3\widehat{S}_{n-4}\sum_{k=0}^{m}\sum_{l=k}^{m} \sum_{p=l}^{m}\widehat{S}_{k}, \end{eqnarray*} and \begin{eqnarray*} \widehat{R}_{n+m} &=&\widehat{R}_{n}\sum_{k=0}^{m+1}\sum_{l=k}^{m+1} \sum_{p=l}^{m+1}\widehat{S}_{k} \\ &&+\widehat{R}_{n-1}\left( -13\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+14\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}-7\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} +3\sum_{k=0}^{m-3}\sum_{l=k}^{m-3}\sum_{p=l}^{m-3}\widehat{S} _{k}\right) \\ &&+\widehat{R}_{n-2}\left( 14\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}-7\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}+3\sum_{k=0}^{m-2}\sum_{l=k}^{m-2}\sum_{p=l}^{m-2}\widehat{S} _{k} \right) \\ &&+\widehat{R}_{n-3}\left( -7\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}+3\sum_{k=0}^{m-1}\sum_{l=k}^{m-1}\sum_{p=l}^{m-1}\widehat{S} _{k}\right) +3\widehat{R}_{n-4}\sum_{k=0}^{m}\sum_{l=k}^{m}\sum_{p=l}^{m} \widehat{S}_{k}. \end{eqnarray*}