The Sombor index (\(SO\)) and the modified Sombor index (\(^mSO\)) are two closely related vertex-degree-based graph invariants. Both were introduced in the 2020s, and have already found a variety of chemical, physicochemical, and network-theoretical applications. In this paper, we examine the product \(SO \cdot {^mSO}\) and determine its main properties. It is found that the structure-dependence of this product is fully different from that of either \(SO\) or \(^mSO\). Lower and upper bounds for \(SO \cdot {^mSO}\) are established and the extremal graphs are characterized. For connected graphs, the minimum value of the product \(SO \cdot {^mSO}\) is the square of the number of edges. In the case of trees, the maximum value pertains to a special type of eclipsed sun graph, trees with a single branching point.