A bijective mapping \(\varsigma\) assigns each vertex of a graph \(G\) a unique positive integer from 1 to \(|V(G)|\), with edge weights defined as the sum of the values at its endpoints. The mapping ensures that no two adjacent edges at a common vertex have the same weight, and each \(k\)-color class is connected to every other \(k-1\) color class. A graph \(G\) possesses \(b\)-color local edge antimagic coloring if it satisfies the aforementioned criteria and it corresponds to a maximum graph coloring. This paper extensively studies the bounds, non-existence, and results of b-color local edge antimagic coloring in fundamental graph structures.