The novel resolvability parameter, local edge partition dimension of graphs

Author(s): Sikander Ali1, Furqan Ahmad1, Muhammad Kamran Jamil1
1Department of Mathematics, Riphah International University, Lahore, Pakistan
Copyright © Sikander Ali, Furqan Ahmad, Muhammad Kamran Jamil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce a new resolvability parameter named as the local edge partition dimension \((LEPD)\) of graphs. The local edge partition dimension \((LEPD)\) makes a specialty of partitioning the vertex set of a graph into awesome instructions based totally on localized resolving properties. Our findings offer a fresh angle on graph resolvability, offering capability insights for optimizing network overall performance and structural analysis. Let \(G=(V, E)\) be a connected graph with vertex set \(V\) and edge set \(E\). A partition set \({R}_{p}=\{{R}_{p1},{R}_{p2},{R}_{p3}\dots,{R}_{pn}\}\) contain subsets of vertices of \(G\). If for every pair of adjacent edges \(p\) and \(q\) in \(G\), then \(d(p,{R}_{p})\neq d(q,{R}_{p})\) and if \(p\) and \(q\) are non-adjacent then not necessary \(d(p,{R}_{p})\neq d(q,{R}_{p})\) then \({R}_{p}\) is called a local edge resolving partition set and minimum cardinality of such set is called local edge partition dimension. We discussed local metric, local edge metric, metric, edge metric dimension, local partition, local edge partition, partition dimension, and edge partition dimension of the Petersen graph.