Differential operators and Narayana numbers

Author(s): Jie Xiong1, Qi Fang2
1School of Mathematics,Northeastern University, Shenyang 110004, P. R. China.
2School of Mathematics, Northeastern University, Shenyang 110004, P. R. China.
Copyright © Jie Xiong, Qi Fang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we establish a connection between differential operators and Narayana numbers of both kinds, as well as a kind of numbers related to central binomial coefficients studied by Sulanke (Electron. J. Combin. 7 (2000), R40).

Keywords: Narayana numbers, recurrence relations, differential operators.

1. Introduction

It is well known that the central binomial coefficients have the following expressions; $$\binom{2n}{n}=\sum_{k=0}^n{\binom{n}{k}}^2,~\binom{2n+1}{n}=\sum_{k=0}^n{\binom{n}{k}}\binom{n+1}{k}.$$

For \(0\leq k\leq n\), the Narayana numbers of types \(A\) are defined as; $$N(n,k)=\frac{1}{n}\binom{n}{k+1}\binom{n}{k}.$$

Let \(N_n(x)=\sum_{k=0}^{n-1}N(n,k)x^k\) be the Narayana polynomials of types \(A\) (see [1]). It is well known that \(N_n(x)\) is the rank-generating function of the lattice of non-crossing partition lattice with cardinality \(\frac{1}{n+1}\binom{2n}{n}\) (see[2]). Hence the Catalan numbers have the following expression; $$\frac{1}{n+1}\binom{2n}{n}=\sum_{k=0}^{n-1}\frac{1}{n}\binom{n}{k+1}\binom{n}{k}.$$

The Narayana numbers of type \(B\) are given as; $$M(n,k)=\binom{n}{k}^2.$$

Let \(M_n(x)=\sum_{k=0}^nM(n,k)x^k\). Reiner [2] showed that \(M_n(x)\) is the rank-generating function of a ranked self-dual lattice with the cardinality \(\binom{2n}{n}\).

Let \(P(n,k)={\binom{n}{k}}\binom{n+1}{k},\) and \(S=\mathbb{P}\times \mathbb{P}\). According to [3 Proposition 1], \(P(n,k)\) is the number of paths in \(A_1(n+1)\) having \(k+1\) steps, where \(A_1(n)\) is the set of all lattice paths running from \((0;-1)\) to \((n;n)\) that use the steps in \(S\) and that remain strictly above the line \(y=-1\) except initially.

The numbers \(N(n,k),M(n,k)\) and \(P(n,k)\) have been extensively studied. The readers are referred to[4] for details. In [5], Daboul et al., reveals that $$\frac{d^n}{dx^n}(e^{1/x})=(-1)^ne^{1/x}\sum_{k=1}^{n}{\binom{n}{k}\binom{n-1}{k-1}(n-k)!x^{-n-k}},$$ where the \(\binom{n}{k}\binom{n-1}{k-1}(n-k)!\) are the Lah numbers. Motivated by this result, in this paper we show that the numbers \(M(n,k),N(n,k)\) and \(P(n,k)\) can be generated by higher-order derivative of functions of \(e^x\). As an application, we obtain new recurrence relations for these classical combinatorial numbers.

2. Differential operators and Narayana polynomials

Let \(P_n(x)=\sum_{k=0}^nP(n,k)x^{n-k},~Q_n(x)=\sum_{k=0}^nP(n,k)x^{k},\) then \(Q_n(x)=x^nP_n(1/x)\). The first few \(N_n(x),M_n(x)\) and \(P_n(x)\) are listed as follows; \begin{align*} N_1(x)&=1,~N_2(x)=1+x,N_3(x)=1+3x+x^2,~N_4(x)=1+6x+6x^2+x^3,\\ M_1(x)&=1+x,~M_2(x)=1+4x+x^2,M_3(x)=1+9x+9x^2+x^3,\\ P_1(x)&=2+x,~P_2(x)=3+6x+x^2,P_3(x)=4+18x+12x^2+x^3. \end{align*} We define \(\overline{N}(n,k)=(n+1)!n!N(n,k)\) and \(\overline{M}(n,k)=n!^2M(n,k)\). By using the explicit formulas of \(\overline{N}(n,k)\) and \(\overline{M}(n,k)\), it is routine to verify the following lemma.

Lemma 1. For \(0\leq k\leq n+1\), we have \begin{align*} \overline{N}(n+1,k)&=((n+1)(n+2)+2nk+k^2+3k)\overline{N}(n,k)+(4n+2n^2-2(k^2-1)){\overline{N}}(n,k-1)\\&\,\,\,\,\,\,+(n(n-1)-(k-2)(2n-k+1))\overline{N}(n,k-2),\\ \overline{M}(n+1,k)&=((n+1)^2+2(n+1)k+k^2)\overline{M}(n,k)+(1+4n+2n^2-2k(k-1)){\overline{M}}(n,k-1)\\&\,\,\,\,\,\,+(n^2-(2n+2-k)(k-2))\overline{M}(n,k-2), \end{align*} with initial conditions \(\overline{N}(0,0)=\overline{M}(0,0)=1\) and \(\overline{N}(0,k)=\overline{M}(0,k)=0\) for \(k\neq 0\).

In the following discussion, let \(D=\frac{d}{dx}\).

Theorem 1. For \(n\geq 1\), we have

\begin{equation}\label{eq01} (De^xD)^n\left(\frac{1}{1-e^x}\right)=\frac{n!(n+1)!e^{(n+1)x}N_n(e^x)}{(1-e^x)^{2n+1}}, \end{equation}
(1)
\begin{equation}\label{eq02} (e^xD^2)^n\left(\frac{1}{1-e^x}\right)=\frac{n!^2e^{(n+1)x}M_n(e^x)}{(1-e^x)^{2n+1}}, \end{equation}
(2)
\begin{equation}\label{eq03} (D^2e^x)^n\left(\frac{1}{1-e^x}\right)=\frac{n!^2e^{nx}M_n(e^x)}{(1-e^x)^{2n+1}}. \end{equation}
(3)

Proof. Note that \begin{eqnarray*} (De^xD)\left(\frac{1}{1-e^x}\right)&=&\frac{2e^{2x}}{(1-e^x)^{3}},\\(De^xD)^2\left(\frac{1}{1-e^x}\right)&=&\frac{12e^{3x}(1+e^x)}{(1-e^x)^{5}},\\ (De^xD)^3\left(\frac{1}{1-e^x}\right)&=&\frac{144e^{4x}(1+3e^x+e^{2x})}{(1-e^x)^{7}}. \end{eqnarray*} Hence the formula (1) holds for \(n=1,2,3\). Assume that the result holds for \(n\), where \(n\geq 3\). Let \(\overline{N}_n(x)=\sum_{k=0}^{n-1}\overline{N}(n,k)x^k\). Note that \begin{align*} &(De^xD)^{n+1}\left(\frac{1}{1-e^x}\right)=(De^xD)\left(\frac{e^{(n+1)x}\overline{N}_n(e^x)}{(1-e^x)^{2n+1}}\right). \end{align*} It follows that
\( \overline{N}_{n+1}(x)=((n+1)(n+2)+(4n+2n^2)x+n(n-1)x^2)\overline{N}_n(x)+(4x-6x^2+2x^3+2nx(1-x^2))D(\overline{N}_n(x))\\+x^2(1-x)^2D^2(\overline{N}_n(x)). \) Equating the coefficients of \(x^k\) in both sides, we immediately get the recurrence relation of \(\overline{N}(n,k)\) given in Lemma 1. Therefore, the result holds for \(n+1\). Similarly, note that \begin{eqnarray*} (e^xD^2)\left(\frac{1}{1-e^x}\right)&=&\frac{e^{2x}(1+e^x)}{(1-e^x)^{3}},\\(e^xD^2)^2\left(\frac{1}{1-e^x}\right)&=&\frac{4e^{3x}(1+4e^x+e^{2x})}{(1-e^x)^{5}},\\ (e^xD^2)^3\left(\frac{1}{1-e^x}\right)&=&\frac{36e^{4x}(1+9e^x+9e^{2x}+e^{3x})}{(1-e^x)^{7}}. \end{eqnarray*} Hence the formula (2) holds for \(n=1,2,3\). Assume it holds for \(n\), where \(n\geq 3\). Let \(\overline{M}_n(x)=\sum_{k=0}^{n}\overline{M}(n,k)x^k\). Note that \begin{align*} &(e^xD^2)^{n+1}\left(\frac{1}{1-e^x}\right)=(e^xD^2)\left(\frac{e^{(n+1)x}\overline{M}_n(e^x)}{(1-e^x)^{2n+1}}\right). \end{align*} It follows that
\( \overline{M}_{n+1}(x)=(1+x+n^2(1+x)^2+n(2+4x))\overline{M}_n(x)+(3x-4x^2+x^3+2nx(1-x^2))D(\overline{M}_n(x))\\+x^2(1-x)^2D^2(\overline{M}_n(x)). \) Equating the coefficients of \(x^k\) in both sides, we immediately get the recurrence relation of \(\overline{M}(n,k)\) given in Lemma 1. Therefore, the result holds for \(n+1\). Along the same lines, it is routine to derive (3). This completes the proof.

Note that \(P(n,n-k)={\binom{n}{n-k}}\binom{n+1}{n-k},\) then \(P(n+1,n+1-k)={\binom{n+1}{n+1-k}}\binom{n+2}{n+1-k}.\) It is easy to verify the following lemma;

Lemma 2. For \(0\leq k\leq n+1\), we have \( (n+1)(n+2)P(n+1,n+1-k)=[(n+2)^2+(2n+5)k+k(k-1)]P(n,n-k)\\+[2(n^2+3n+1)-6(k-1)-2(k-1)(k-2)]P(n,n-k+1)+[n^2-(2n-1)(k-2)+(k-2)(k-3)]P(n,n-k+2). \)

Theorem 2. For \(n\geq 1\), we have

\begin{equation}\label{eq04} (D^2e^x)^n\frac{e^x}{(1-e^x)^2}=\frac{n!(n+1)!e^{(n+1)x}P_n(e^x)}{(1-e^x)^{2n+2}}, \end{equation}
(4)
\begin{equation}\label{eq05} (De^xD)^n\frac{e^x}{(1-e^x)^2}=\frac{n!(n+1)!e^{(n+1)x}Q_n(e^x)}{(1-e^x)^{2n+2}}. \end{equation}
(5)

Proof. Note that $$(D^2e^x)\frac{e^x}{(1-e^x)^2}=\frac{2e^{2x}(2+e^x)}{(1-e^x)^4},$$ $$(D^2e^x)^2\frac{e^x}{(1-e^x)^2}=\frac{12e^{3x}(3+6e^x+e^{2x})}{(1-e^x)^6}.$$ Hence the result holds for \(n=1,2\). Assume that the result holds for \(n\). Then from (4), we get the recurrence relation
\( (n+1)(n+2)P_{n+1}(x)=[n^{2}x^2+(2+n)^2+2x(1+3n+n^2)]P_n(x)+x(1-x)[(2n-1)x+2n+5]P_n'(x)+x^2(1-x)^2P_n”(x). \) Equating the coefficients of \(x^k\) in both sides, we get the recurrence relation of the numbers \(P(n,n-k)\), which is given in Lemma 2, as desired. Along the same lines, one can derive (5). This completes the proof.

By a change of variable \(y=e^x\), we end our paper by giving a corollary;

Corollary 1. For \(n\geq 1\), let \(D_y=\frac{d}{dy}\), we have

  1. \((yD_yy^2D_y)^n\left(\frac{1}{1-y}\right)=\frac{n!(n+1)!y^{n+1}N_n(y)}{(1-y)^{2n+1}},\)
  2. \((y^2D_yyD_y)^n\left(\frac{1}{1-y}\right)=\frac{n!^2y^{(n+1)}M_n(y)}{(1-y)^{2n+1}},\)
  3. \((yD_yyD_yy)^n\left(\frac{1}{1-y}\right)=\frac{n!^2y^{n}M_n(y)}{(1-y)^{2n+1}},\)
  4. \((yD_yyD_yy)^n\frac{y}{(1-y)^2}=\frac{n!(n+1)!y^{(n+1)}P_n(y)}{(1-y)^{2n+2}},\)
  5. \((yD_yy^2D_y)^n\frac{y}{(1-y)^2}=\frac{n!(n+1)!y^{(n+1)}Q_n(y)}{(1-y)^{2n+2}}.\)

Proof. It’s not hard to verify the equations hold when \(n=1,2\)$$(yD_yy^2D_y)\left(\frac{1}{1-y}\right)=\frac{2y^{2}}{(1-y)^{3}},$$ $$(yD_yy^2D_y)^2\left(\frac{1}{1-y}\right)=\frac{12y^{3}(1+y)}{(1-y)^{5}}.$$ Assume the result holds for \(m\), where \(m\geq3\). Setting \(y=e^x\), we get \begin{align*} (yD_yy^2D_y)(yD_yy^2D_y)^{m}\left(\frac{1}{1-y}\right)=(e^xD_ye^{2x}D_y)\frac{m!(m+1)!y^{n+1}N_m(y)}{(1-y)^{2m+1}}\\=(De^xD)\frac{m!(m+1)!e^{(m+1)x}N_m(e^x)}{(1-e^x)^{2m+1}}\\=\frac{(m+1)!(m+2)!e^{(m+2)x}N_{m+1}(e^x)}{(1-e^x)^{2m+3}}\\=\frac{(m+1)!(m+2)!y^{m+1}N_{m+1}(y)}{(1-y)^{2m+3}}. \end{align*} Along the same lines, we can get the other statements. This completes the proof.

Acknowledgments

The authors appreciate the careful review, corrections and helpful suggestions to this paper made by the referee.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest:

The authors declare no conflict of interest.

References:

  1. Bonin, J., Shapiro, L., & Simion, R. (1993). Some q-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths. Journal of Statistical Planning and Inference, 34}(1), 35-55.[Google Scholor]
  2. Reiner, V. (1997). Non-crossing partitions for classical reflection groups. Discrete Mathematics, 177(1-3), 195-222.[Google Scholor]
  3. Sulanke, R. A. (2000). Counting lattice paths by Narayana polynomials. The Electronic Journal of Combinatorics, 7, R40.[Google Scholor]
  4. Sloane, N. J. (2008). The on-line encyclopedia of integer sequences. Published electronically at http://oeis.org.[Google Scholor]
  5. Daboul, S., Mangaldan, J., Spivey, M. Z., & Taylor, P. J. (2013). The Lah Numbers and the n th Derivative of \(e^{\frac{1}{x}}\). Mathematics Magazine, 86(1), 39-47.[Google Scholor]