In this paper, we establish a connection between differential operators and Narayana numbers of both kinds, as well as a kind of numbers related to central binomial coefficients studied by Sulanke (Electron. J. Combin. 7 (2000), R40).
It is well known that the central binomial coefficients have the following expressions; $$\binom{2n}{n}=\sum_{k=0}^n{\binom{n}{k}}^2,~\binom{2n+1}{n}=\sum_{k=0}^n{\binom{n}{k}}\binom{n+1}{k}.$$
For \(0\leq k\leq n\), the Narayana numbers of types \(A\) are defined as; $$N(n,k)=\frac{1}{n}\binom{n}{k+1}\binom{n}{k}.$$
Let \(N_n(x)=\sum_{k=0}^{n-1}N(n,k)x^k\) be the Narayana polynomials of types \(A\) (see [1]). It is well known that \(N_n(x)\) is the rank-generating function of the lattice of non-crossing partition lattice with cardinality \(\frac{1}{n+1}\binom{2n}{n}\) (see[2]). Hence the Catalan numbers have the following expression; $$\frac{1}{n+1}\binom{2n}{n}=\sum_{k=0}^{n-1}\frac{1}{n}\binom{n}{k+1}\binom{n}{k}.$$
The Narayana numbers of type \(B\) are given as; $$M(n,k)=\binom{n}{k}^2.$$Let \(M_n(x)=\sum_{k=0}^nM(n,k)x^k\). Reiner [2] showed that \(M_n(x)\) is the rank-generating function of a ranked self-dual lattice with the cardinality \(\binom{2n}{n}\).
Let \(P(n,k)={\binom{n}{k}}\binom{n+1}{k},\) and \(S=\mathbb{P}\times \mathbb{P}\). According to [3 Proposition 1], \(P(n,k)\) is the number of paths in \(A_1(n+1)\) having \(k+1\) steps, where \(A_1(n)\) is the set of all lattice paths running from \((0;-1)\) to \((n;n)\) that use the steps in \(S\) and that remain strictly above the line \(y=-1\) except initially.
The numbers \(N(n,k),M(n,k)\) and \(P(n,k)\) have been extensively studied. The readers are referred to[4] for details. In [5], Daboul et al., reveals that $$\frac{d^n}{dx^n}(e^{1/x})=(-1)^ne^{1/x}\sum_{k=1}^{n}{\binom{n}{k}\binom{n-1}{k-1}(n-k)!x^{-n-k}},$$ where the \(\binom{n}{k}\binom{n-1}{k-1}(n-k)!\) are the Lah numbers. Motivated by this result, in this paper we show that the numbers \(M(n,k),N(n,k)\) and \(P(n,k)\) can be generated by higher-order derivative of functions of \(e^x\). As an application, we obtain new recurrence relations for these classical combinatorial numbers.
Lemma 1. For \(0\leq k\leq n+1\), we have \begin{align*} \overline{N}(n+1,k)&=((n+1)(n+2)+2nk+k^2+3k)\overline{N}(n,k)+(4n+2n^2-2(k^2-1)){\overline{N}}(n,k-1)\\&\,\,\,\,\,\,+(n(n-1)-(k-2)(2n-k+1))\overline{N}(n,k-2),\\ \overline{M}(n+1,k)&=((n+1)^2+2(n+1)k+k^2)\overline{M}(n,k)+(1+4n+2n^2-2k(k-1)){\overline{M}}(n,k-1)\\&\,\,\,\,\,\,+(n^2-(2n+2-k)(k-2))\overline{M}(n,k-2), \end{align*} with initial conditions \(\overline{N}(0,0)=\overline{M}(0,0)=1\) and \(\overline{N}(0,k)=\overline{M}(0,k)=0\) for \(k\neq 0\).
In the following discussion, let \(D=\frac{d}{dx}\).Theorem 1. For \(n\geq 1\), we have
Proof.
Note that
\begin{eqnarray*}
(De^xD)\left(\frac{1}{1-e^x}\right)&=&\frac{2e^{2x}}{(1-e^x)^{3}},\\(De^xD)^2\left(\frac{1}{1-e^x}\right)&=&\frac{12e^{3x}(1+e^x)}{(1-e^x)^{5}},\\
(De^xD)^3\left(\frac{1}{1-e^x}\right)&=&\frac{144e^{4x}(1+3e^x+e^{2x})}{(1-e^x)^{7}}.
\end{eqnarray*}
Hence the formula (1) holds for \(n=1,2,3\). Assume that the result holds for \(n\), where \(n\geq 3\).
Let \(\overline{N}_n(x)=\sum_{k=0}^{n-1}\overline{N}(n,k)x^k\).
Note that
\begin{align*}
&(De^xD)^{n+1}\left(\frac{1}{1-e^x}\right)=(De^xD)\left(\frac{e^{(n+1)x}\overline{N}_n(e^x)}{(1-e^x)^{2n+1}}\right).
\end{align*}
It follows that
\(
\overline{N}_{n+1}(x)=((n+1)(n+2)+(4n+2n^2)x+n(n-1)x^2)\overline{N}_n(x)+(4x-6x^2+2x^3+2nx(1-x^2))D(\overline{N}_n(x))\\+x^2(1-x)^2D^2(\overline{N}_n(x)).
\)
Equating the coefficients of \(x^k\) in both sides, we immediately get the recurrence relation of \(\overline{N}(n,k)\) given in Lemma 1.
Therefore, the result holds for \(n+1\).
Similarly, note that
\begin{eqnarray*}
(e^xD^2)\left(\frac{1}{1-e^x}\right)&=&\frac{e^{2x}(1+e^x)}{(1-e^x)^{3}},\\(e^xD^2)^2\left(\frac{1}{1-e^x}\right)&=&\frac{4e^{3x}(1+4e^x+e^{2x})}{(1-e^x)^{5}},\\
(e^xD^2)^3\left(\frac{1}{1-e^x}\right)&=&\frac{36e^{4x}(1+9e^x+9e^{2x}+e^{3x})}{(1-e^x)^{7}}.
\end{eqnarray*}
Hence the formula (2) holds for \(n=1,2,3\). Assume it holds for \(n\), where \(n\geq 3\).
Let \(\overline{M}_n(x)=\sum_{k=0}^{n}\overline{M}(n,k)x^k\).
Note that
\begin{align*}
&(e^xD^2)^{n+1}\left(\frac{1}{1-e^x}\right)=(e^xD^2)\left(\frac{e^{(n+1)x}\overline{M}_n(e^x)}{(1-e^x)^{2n+1}}\right).
\end{align*}
It follows that
\(
\overline{M}_{n+1}(x)=(1+x+n^2(1+x)^2+n(2+4x))\overline{M}_n(x)+(3x-4x^2+x^3+2nx(1-x^2))D(\overline{M}_n(x))\\+x^2(1-x)^2D^2(\overline{M}_n(x)).
\)
Equating the coefficients of \(x^k\) in both sides, we immediately get the recurrence relation of \(\overline{M}(n,k)\) given in Lemma 1.
Therefore, the result holds for \(n+1\). Along the same lines, it is routine to derive (3).
This completes the proof.
Lemma 2. For \(0\leq k\leq n+1\), we have \( (n+1)(n+2)P(n+1,n+1-k)=[(n+2)^2+(2n+5)k+k(k-1)]P(n,n-k)\\+[2(n^2+3n+1)-6(k-1)-2(k-1)(k-2)]P(n,n-k+1)+[n^2-(2n-1)(k-2)+(k-2)(k-3)]P(n,n-k+2). \)
Theorem 2. For \(n\geq 1\), we have
Proof.
Note that
$$(D^2e^x)\frac{e^x}{(1-e^x)^2}=\frac{2e^{2x}(2+e^x)}{(1-e^x)^4},$$
$$(D^2e^x)^2\frac{e^x}{(1-e^x)^2}=\frac{12e^{3x}(3+6e^x+e^{2x})}{(1-e^x)^6}.$$
Hence the result holds for \(n=1,2\). Assume that the result holds for \(n\).
Then from (4), we
get the recurrence relation
\(
(n+1)(n+2)P_{n+1}(x)=[n^{2}x^2+(2+n)^2+2x(1+3n+n^2)]P_n(x)+x(1-x)[(2n-1)x+2n+5]P_n'(x)+x^2(1-x)^2P_n”(x).
\)
Equating the coefficients of \(x^k\) in both sides, we get the recurrence relation of the numbers \(P(n,n-k)\), which is given in Lemma 2,
as desired.
Along the same lines, one can derive (5).
This completes the proof.
Corollary 1. For \(n\geq 1\), let \(D_y=\frac{d}{dy}\), we have
Proof. It’s not hard to verify the equations hold when \(n=1,2\)$$(yD_yy^2D_y)\left(\frac{1}{1-y}\right)=\frac{2y^{2}}{(1-y)^{3}},$$ $$(yD_yy^2D_y)^2\left(\frac{1}{1-y}\right)=\frac{12y^{3}(1+y)}{(1-y)^{5}}.$$ Assume the result holds for \(m\), where \(m\geq3\). Setting \(y=e^x\), we get \begin{align*} (yD_yy^2D_y)(yD_yy^2D_y)^{m}\left(\frac{1}{1-y}\right)=(e^xD_ye^{2x}D_y)\frac{m!(m+1)!y^{n+1}N_m(y)}{(1-y)^{2m+1}}\\=(De^xD)\frac{m!(m+1)!e^{(m+1)x}N_m(e^x)}{(1-e^x)^{2m+1}}\\=\frac{(m+1)!(m+2)!e^{(m+2)x}N_{m+1}(e^x)}{(1-e^x)^{2m+3}}\\=\frac{(m+1)!(m+2)!y^{m+1}N_{m+1}(y)}{(1-y)^{2m+3}}. \end{align*} Along the same lines, we can get the other statements. This completes the proof.