For a given connected graph \(G\) and a real number \(\alpha\), denote by \(d(u)\) the degree of vertex \(u\) of \(G\), and denote by \(\chi_{\alpha}(G)=\sum_{uv\in E(G)} \big(d(u)+d(v)\big)^{\alpha}\) the general sum-connectivity index of \(G\). In the present note, we determine the smallest general sum-connectivity index of trees (resp., chemical trees) together with corresponding extremal trees among all trees (resp., chemical trees) with \(n\) vertices and \(k\) pendant vertices for \(0<\alpha<1.\)