Contents

Coefficient estimates of some classes of rational functions

Author(s): Hanan Darwish1, Suliman Sowileh2, Abd AL-Monem Lashin1
1Department of Mathematics Faculty of Science Mansoura, University Mansoura, 35516, Egypt.
2Department of Mathematics Faculty of Science Mansoura, University Mansoura, 35516, Egypt
Copyright © Hanan Darwish, Suliman Sowileh, Abd AL-Monem Lashin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(\mathcal{A}\) be the class of analytic and univalent functions in the open unit disc \(\Delta\) normalized such that \(f(0)=0=f^{\prime }(0)-1.\) In this paper, for \(\psi \in \mathcal{A}\) of the form \(\frac{z}{f(z)}, f(z)=1+\sum\limits_{n=1}^{\infty }a_{_{n}}z^{n}\) and \(0\leq \alpha \leq 1,\) we introduce and investigate interesting subclasses \(\mathcal{H}_{\sigma }(\phi ), \;S_{\sigma }(\alpha ,\phi ), \; M_{\sigma }(\alpha ,\phi ),\) \( \Im _{\alpha} (\alpha ,\phi )\) and \(\beta _{\alpha}(\lambda ,\phi ) \left( \lambda \geq 0 \right)\) of analytic and bi-univalent Ma-Minda starlike and convex functions. Furthermore, we find estimates on the coefficients \(\left\vert a_{1}\right\vert\) and \(\left\vert a_{2}\right\vert\) for functions in these classess. Several related classes of functions are also considered.

Keywords: Rational functions; Bi-starlike functions; Bi-convex functions; Subordination.

1. Introduction

Let \(\mathcal{A\ }\) be the class of all analytic functions \(f\) in the open unit disk \(\Delta =\{z\in \mathbb{C} :\left\vert z\right\vert < 1\}\) and normalized by the conditions \(f(0)=0\) and \(f^{\prime }(0)=1.\) Also, by \(\wp\) we shall denote the subclass of all functions in \(\mathcal{A}\) which are univalent in \(\Delta.\) Let \(P\) denote the class of functions \(p(z)\) of the form \begin{equation*} p(z)=1+\sum\limits_{n=1}^{\infty }c_{_{n}}z^{n} \end{equation*} which are analytic in \(\Delta\) such that \begin{equation*} p(0)=1\text{and Re}\left\{ p(z)\right\} >0\ \ \ \left( z\in \Delta \right) . \end{equation*} If the functions \(f\) and \(g\) are analytic in \(\Delta ,\) then \(f\) is said to be subordinate to \(g,\) written \(f(z)\prec g(z),\) provided there is an analytic function \(w(z)\) defined on \(\Delta\) with \(w(0)=0\) and \(\left\vert w(z)\right\vert < 1\) so that \(f(z)=g(w(z)).\) Furthermore , if the function \(g(z)\) is univalent in \(\mathbb{\triangle },\) then we have the following equivalence (see for details, [1, 2, 3, 4, 5,6, 7, 8, 9, 10,11, 12]): \begin{equation*} f(z)\prec g(z)\Leftrightarrow f(0)=g(0)\ \textrm{and}\ f(\mathbb{\triangle })\subset g(\mathbb{\triangle }). \end{equation*} Some of the important and well-investigated subclasses of the univalent function class \(\wp\) include (for example) the class \(S(\alpha )\) of starlike functions of order \(\alpha\) in \(\Delta\) and the class \( C(\alpha )\) of convex functions of order \(\alpha\) in \(\Delta\). By definition, we have
\begin{equation} S(\alpha )=\left\{ f:f\in \wp \ \ \textrm{and}\ \ \textrm{Re}\frac{zf^{\prime }(z)}{ f(z)}>\alpha \ \ \ \ (z\in \Delta ,\ 0\leq \alpha < 1)\right\} \label{1.a} \end{equation}
(1)
and
\begin{equation} C(\alpha )=\left\{ f:f\in \wp \ \ \textrm{and}\ \ \textrm{Re}\left( 1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\right) >\alpha \ \ \ \ (z\in \Delta ,\ 0\leq \alpha < 1)\right\} . \label{1.b} \end{equation}
(2)
It readily follows from the definitions (1) and (2) that
\begin{equation} f(z)\in C(\alpha )\iff zf^{\prime }(z)\in S(\alpha ). \label{1.c} \end{equation}
(3)
It is well known that for each \(f\in \wp ,\) the koebe one-quarter theorem [13] ensures the image of \(\Delta\) under \(f\) contains a disk of radius \(1/4.\) Thus every univalent function \(f\in \wp \) has an inverse \(f^{-1}\) which satisfies \begin{equation*} f^{-1}(f(z))=z\ (\left\vert z\right\vert < 1) \end{equation*} and \begin{equation*} f(f^{-1}(w))=w,\ \ \ (\left\vert w\right\vert < r_{0}(f),\ r_{0}(f)\geq 1/4). \end{equation*} In fact, the inverse function \(g=f^{-1}\) is defined by \begin{equation*} g(w)=f^{-1}(w)=w-a_{2}w^{2}+(2a_{2}^{2}-a_{3})w^{3}-(5a_{2}^{2}-5a_{2}a_{3}+a_{4})w^{4}+…. \end{equation*} A function \(f\in \mathcal{A}\) is said to bi-univalent in \(\Delta\) if both \(f\) and \(f^{-1}\) are univalent in \(\Delta.\) Let \(\sigma\) denote the class of bi-univalent functions defined in the unit disk \(\Delta\) and let \( \phi \in P\) and \(\phi (\Delta )\) is symmetric with respect to the the real axis, such a function has a Taylor series of the form:
\begin{equation} \phi (z)=1+B_{1}z+B_{2}z^{2}+B_{3}z^{3}+…\left( B_{1}>0\right) . \label{2.1} \end{equation}
(4)
In [14], the authors introduced the class \(S(\phi)\) of the so-called Ma and Minda starlike functions and the class \(C(\phi )\) of Ma and Minda convex functions, unifying several previously studied classes related to those of starlike and convex functions. The class \(S(\phi)\) consists of all the functions \(f\in \mathcal{A}\) satisfying subordination \(\dfrac{zf^{\prime }(z)}{f(z)}\prec \phi (z),\) whereas \(C(\phi )\) is formed with functions \(f\in \mathcal{A}\) for which the subordination \(1+\) \(\dfrac{ zf^{\prime \prime }(z)}{f^{\prime }(z)}\prec \phi (z)\) holds. Lewin [15] investigated the class \(\sigma\) and showed that \(\left\vert a_{2}\right\vert < 1.51\) for function \(f(z)=z+\sum\limits_{n=2}^{\infty }a_{_{n}}z^{n}\in \sigma\). Subsequently, Brannan and Clunie [16] conjectured that \(\left\vert a_{2}\right\vert < \sqrt{2}.\) Netanyahu [17], on the other hand, showed that max \(\left\vert a_{2}\right\vert =4/3\) if \(f(z)\in \sigma .\) Brannan and Taha [18] and Taha[19] introduced certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike and convex functions, they introduced bi-starlike functions and bi-convex functions and found non-sharp estimates on the first two Taylor-Maclaurin coefficients \(\left\vert a_{2}\right\vert\) and \(\left\vert a_{3}\right\vert .\) Recently, many authors investigated bounds for various subclasses of bi-univalent functions (see [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]). In [34], Mitrinovic essentially investigated certain geometric properties of functions \(\psi\) of the form
\begin{equation} \psi (z)=\frac{z}{f(z)},\ \ \ f(z)=1+\sum\limits_{n=1}^{\infty }a_{_{n}}z^{n}. \label{1.1} \end{equation}
(5)

In [35], Reade et al. derived coefficient conditions that guarantee the univalence, starlikeness or convexity of rational functions of the form (5), these results have been improved and generalized in [36]. In this paper, estimates on the initial coefficients for bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type of rational form (5) are obtained. Several related classes are also considered.

In order to derive our main results, we require the following lemma.

Lemma 1.1. (see 37) If \(p(z)\in P\), then

\begin{equation} \left\vert c_{n}\right\vert \leq 2\ \ \ \ \left( n\in \mathbb{N} =\left\{ 1,2,…\right\} \right) . \label{1.2} \end{equation}
(6)

2. Coefficients estimates

A function \(\psi (z)\in \mathcal{A}\) with Re \(\left( \psi ^{\prime }(z)\right) >0\) is known to be univalent. This motivates the following class of functions.

Definition 2.1. A function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\phi )\) if the following conditions are satisfied: \begin{equation*} \psi ^{\prime }(z)\prec \phi (z)\left( z\in \Delta \right) \ \text{and} \ g^{\prime }(w)\prec \phi (w)\left( w\in \Delta \right) ,\ \ \ \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2\gamma ^{2}z^{2}+…\left( 0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.1 of the bi-univalent function class \( \mathcal{H}_{\sigma }(\phi )\) we obtain a new class \(\mathcal{H}_{\sigma }(\gamma )\) given by Definition 2.2 below.

Definition 2.2. For \(0< \gamma \leq 1,\) a function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\gamma )\) if the following conditions are satisfied: \[\psi^{\prime }(z)\prec \left( \frac{1+z}{1-z}\right)^{\gamma }\left( z\in \Delta \right)\] and \[g^{\prime }(w)\prec \left( \frac{1+w}{1-w} \right) ^{\gamma }\left( w\in \Delta \right) , \] where \(g(w):=\psi ^{-1}(w).\)

If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+…\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.1 of the bi-univalent function class \( \mathcal{H}_{\sigma }(\phi )\) we obtain, a new class \(\mathcal{H}_{\sigma }(\nu )\) given by Definition 2.3 below.

Definition 2.3. For \(0< \nu \leq 1,\) a function \(\psi \in \sigma\) given by (5) is said to be in the class \(\mathcal{H}_{\sigma }(\nu )\) if the following conditions hold true: \begin{equation*} \psi ^{\prime }(z)\prec \frac{1+(1-2\nu )z}{1-z}\left( z\in \Delta \right) \ \text{and} \ g^{\prime }(w)\prec \frac{1+(1-2\nu )w}{1-w}\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

Theorem 2.4. Let \(\psi (z)\in \mathcal{H}_{\sigma }(\phi )\) be of the form (5). Then

\begin{equation} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert 3B_{1}^{2}-4B_{2}+4B_{1}\right\vert }}\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{1}{3}B_{1}. \label{2.2} \end{equation}
(7)

Proof. Let \(\psi (z)\in \mathcal{H}_{\sigma }(\phi )\) and \(g=\psi ^{-1}.\) Then there exist two functions \(u\) and \(v,\) analytic in \(\Delta,\) with \noindent \(u(0)=v(0)=0,\ \ \left\vert u(z)\right\vert < 1\) and \( \left\vert v(w)\right\vert < 1,\ z,w\in \Delta ,\) such that

\begin{equation} \psi ^{\prime }(z)=\phi (u(z)) \ \text{and} \ g^{\prime }(w)=\phi (v(w)). \label{2.3} \end{equation}
(8)
Next, define the functions \(p_{1}\) and \(p_{2}\) by \begin{equation*} p_{1}(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1}z+c_{2}z^{2}+…\ \text{and}\ p_{2}(w)=\frac{1+v(w)}{1-v(w)}=1+b_{1}w+b_{2}^{2}w^{2}+…, \end{equation*} or, equivalently,
\begin{equation} u(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left[ c_{1}z+\left( c_{2}- \frac{c_{1}^{2}}{2}\right) z^{2}+…\right] , \label{2.4} \end{equation}
(9)
and
\begin{equation} v(w)=\frac{p_{2}(w)-1}{p_{2}(w)+1}=\frac{1}{2}\left[ b_{1}w+\left( b_{2}- \frac{b_{1}^{2}}{2}\right) w^{2}+…\right] . \label{2.5} \end{equation}
(7)
Then \(p_{1}\) and \(p_{2}\) analytic in \(\Delta\) with \( p_{1}(0)=1=p_{2}(0).\) Since \(u,v:\Delta \longrightarrow \Delta ,\) the functions \(p_{1}\) and \(p_{2}\) have a positive real part in \(\Delta,\) and \( \left\vert b_{i}\right\vert \leq 2\) and \(\left\vert c_{i}\right\vert \leq 2.\) Clearly, upon substituting from (9) and (10) into (8), if we make use of (4), we find that
\begin{equation} \psi ^{\prime }(z)=\phi (\frac{p_{1}(z)-1}{p_{1}(z)+1})=1+\frac{1}{2} B_{1}c_{1}z+\left[ \frac{1}{2}B_{1}\left( c_{2}-\frac{c_{1}^{2}}{2}\right) + \frac{1}{4}B_{2}c_{1}^{2}\right] z^{2}+…, \label{2.6} \end{equation}
(11)
and
\begin{equation} g^{\prime }(w)=\phi (\frac{p_{2}(w)-1}{p_{2}(w)+1})=1+\frac{1}{2} B_{1}b_{1}w+\left[ \frac{1}{2}B_{1}\left( b_{2}-\frac{b_{1}^{2}}{2}\right) + \frac{1}{4}B_{2}b_{1}^{2}\right] w^{2}+…\ .. \label{2.61} \end{equation}
(12)
Since \(\psi \in \sigma \) has the Maclaurin’s series given by
\begin{equation} \psi (z)=z-a_{1}z^{2}+(a_{1}^{2}-a_{2})z^{3}+…, \label{2.9} \end{equation}
(13)
a computation shows that its inverse \(g=\psi ^{-1}\) has the expansion
\begin{equation} g(w)=\psi ^{-1}(w)=w+a_{1}w^{2}+(a_{1}^{2}+a_{2})w^{3}+…\ . \label{2.91} \end{equation}
(14)
Using (13) and (14) in (11) and (12) respectively, we get
\begin{equation} -2a_{1}=\frac{1}{2}B_{1}c_{1} \label{2.10} \end{equation}
(15)
\begin{equation} 3(a_{1}^{2}-a_{2})=\frac{1}{2}B_{1}(c_{2}-\frac{c_{1}^{2}}{2})+\frac{1}{4} B_{2}c_{1}^{2}, \label{2.11} \end{equation}
(16)
\begin{equation} 2a_{1}=\frac{1}{2}B_{1}b_{1} \label{2.12} \end{equation}
(17)
and
\begin{equation} 3(a_{1}^{2}+a_{2})=\frac{1}{2}B_{1}(b_{2}-\frac{b_{1}^{2}}{2})+\frac{1}{4} B_{2}b_{1}^{2}. \label{2.13} \end{equation}
(18)
From (15) and (17), we have
\begin{equation} c_{1}=-b_{1}. \label{2.14} \end{equation}
(19)
Adding (16) and (18) and then using (15) and (19), we get \begin{equation*} a_{1}^{2}=\frac{B_{1}^{3}(c_{2}+b_{2})}{4(3B_{1}^{2}-4B_{2}+4B_{1})}, \end{equation*} and now, by applying Lemma 1.1 for the coefficients \(b_{2}\) and \(c_{2},\) the last equation gives the bound of \(\left\vert a_{1}\right\vert\) from (7). By subtracting (18) from (16), further computations using (19) lead to \begin{equation*} a_{2}=\frac{1}{12}B_{1}(b_{2}-c_{2}). \end{equation*} The bound of \(\left\vert a_{2}\right\vert ,\) as asserted in (7), is now a consequence of Lemma 1.1, and this completes our proof. Using the parameter setting of Definition 2.2 in Theorem 2.4, we get the following corollary.

Corollary 2.5. For \(0< \gamma \leq 1,\) let the function \(\psi \in \mathcal{H} _{\sigma }(\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{\sqrt{2}\gamma }{\sqrt{\gamma +2}}\ \ \ \text{and}\ \left\vert a_{2}\right\vert \leq \frac{2}{3}\gamma . \end{equation*}

Using the parameter setting of Definition 2.3 in Theorem 2.1, we get the following corollary.

Corollary 2.6. For \(0< \nu \leq 1,\) let the function \(\psi \in \mathcal{H} _{\sigma }(\nu )\) be given by (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2}{3}\left( 1-\nu \right) }\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{2}{3}\left( 1-\nu \right) . \end{equation*}

Definition 2.7. A function \(\psi \in \sigma\) is given by (5) is said to be in the class \(S_{\sigma }(\alpha ,\phi )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \phi (z)\left( z\in \Delta \right) \ \ \ \text{and } \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)} \prec \phi (w)\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2 \gamma ^{2}z^{2}+…\left(0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.4 of the bi-univalent function class \( S_{\sigma }(\alpha ,\phi ),\) we obtain a new class \(S_{\sigma }(\alpha ,\gamma )\) given by Definition 2.5 below.

Definition 2.8. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( S_{\sigma }(\alpha ,\gamma )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \left( \frac{1+z}{1-z}\right) ^{\gamma }\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)} \prec \left( \frac{1+w}{1-w}\right) ^{\gamma }\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+…\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.4 of the bi-univalent function class \( S_{\sigma }(\alpha ,\phi )\) we obtain a new class \(S_{\sigma }(\alpha ,\nu )\) given by Definition 2.6 below.

Definition 2.9 For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( S_{\sigma }(\alpha ,\nu )\) if the following subordinations hold: \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}\prec \frac{1+(1-2\nu )z}{1-z}\left( z\in \Delta \right) \end{equation*} and \begin{equation*} \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)} \prec \frac{1+(1-2\nu )w}{1-w}\left( w\in \Delta \right) , \end{equation*} where \(g(w)=\psi ^{-1}(w).\)

Note that \(S(\phi )=S_{\sigma }(0,\phi ).\) For functions in the class \(S_{\sigma }(\alpha ,\phi ),\) the following coefficient estimates are obtained,

Theorem 2.10 Let \(\psi (z)\in S_{\sigma }(\alpha ,\phi )\) be of the form (5). Then

\begin{equation} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert B_{1}^{2}(1+4\alpha )+(B_{1}-B_{2})(1+2\alpha )^{2}\right\vert }},\ \ \ \label{2.15} \end{equation}
(20)
and
\begin{equation} \left\vert a_{2}\right\vert \leq \frac{B_{1}}{1+3\alpha }. \label{2.16} \end{equation}
(21)

Proof. Let \(\psi \in S_{\sigma }(\alpha ,\phi ),\) there are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that

\begin{equation} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}=\phi (u(z))\ \ \ \text{and }\frac{wg^{\prime }(w)}{g(w)}+ \frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)}=\phi (v(w)),\ \ \ \left( g=\psi ^{-1}\right) . \label{2.17} \end{equation}
(22)
Since \begin{equation*} \frac{z\psi ^{\prime }(z)}{\psi (z)}+\frac{\alpha z^{2}\psi ^{\prime \prime }(z)}{\psi (z)}=1-\left( 1+2\alpha \right) a_{1}z+\left[ \left( 1+4\alpha \right) a_{1}^{2}-2\left( 1+3\alpha \right) a_{2}\right] z^{2}+… \end{equation*} and \begin{equation*} \frac{wg^{\prime }(w)}{g(w)}+\frac{\alpha w^{2}g^{\prime \prime }(w)}{g(w)} =1+\left( 1+2\alpha \right) a_{1}w+\left[ \left( 1+4\alpha \right) a_{1}^{2}+2\left( 1+3\alpha \right) a_{2}\right] w^{2}+…, \end{equation*} then (11), (12) and (22) yields
\begin{equation} -(1+2\alpha )a_{1}=\frac{1}{2}B_{1}c_{1} \label{2.18} \end{equation}
(23)
\begin{equation} (1+4\alpha )a_{1}^{2}-2(1+3\alpha )a_{2}=\frac{1}{2}B_{1}(c_{2}-\frac{c_{1}^{2}}{2})+\frac{1}{4}B_{2}c_{1}^{2}, \label{2.19} \end{equation}
(24)
\begin{equation} (1+2\alpha )a_{1}=\frac{1}{2}B_{1}b_{1} \label{2.20} \end{equation}
(25)
and
\begin{equation} (1+4\alpha )a_{1}^{2}+2(1+3\alpha )a_{2}=\frac{1}{2}B_{1}(b_{2}-\frac{b_{1}^{2}}{2})+\frac{1}{4}B_{2}b_{1}^{2}. \label{2.21} \end{equation}
(26)
From (23) and (25), we get
\begin{equation} c_{1}=-b_{1}, \label{2.22} \end{equation}
(27)
and after some further calculations using (24)-(27) we find \begin{equation*} a_{1}^{2}=\frac{B_{1}^{3}(c_{2}+b_{2})}{4\left[ B_{1}^{2}(1+4\alpha )+(B_{1}-B_{2})(1+2\alpha )^{2}\right] }, \end{equation*} and \begin{equation*} a_{2}=\frac{B_{1}(b_{2}-c_{2})}{4(1+3\alpha )}. \end{equation*} Applying Lemma 1.1, the estimates in (20) and (21) follow. For \(\alpha =0,\) Theorem 2.2 readily yields the following coefficient estimates for Ma-Minda bi-starlike functions.

Corollary 2.11. Let \(\psi\) given by (7) be in the class \(S(\phi ).\) Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert B_{1}^{2}+B_{1}-B_{2}\right\vert }},\ \ \ and\ \ \ \left\vert a_{2}\right\vert \leq B_{1}. \end{equation*}

Using the parameter setting of Definition 2.8 in Theorem 2.10, we get the following corollary.

Corollary 2.12. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) let the function \(\psi \in S_{\sigma }(\alpha ,\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{2\gamma }{\sqrt{\left( 1+2\alpha \right) ^{2}+\gamma \left[ 1+4\alpha -4\alpha ^{2}\right] }}\ \ \ \text{and} \ ~\ \left\vert a_{2}\right\vert \leq \frac{2\gamma }{1+3\alpha }. \end{equation*}

Using the parameter setting of Definition 2.9 in Theorem 2.10 we get the following corollary.

Corollary 2.13. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) let the function \(\psi \in S_{\sigma }(\alpha ,\nu )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2\left( 1-\nu \right) }{ 1+4\alpha }}\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{2\left( 1-\nu \right) }{1+3\alpha }. \end{equation*}

Definition 2.14. A function \(\psi \in \sigma\) given by (5) belongs to the class \(M_{\sigma }(\alpha ,\phi )\) \(\left( 0\leq \alpha \leq 1\right),\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})\prec \phi (w),\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

If we set \begin{equation*} \phi (z)=\left( \frac{1+z}{1-z}\right) ^{\gamma }=1+2\gamma z+2\gamma ^{2}z^{2}+…\left( 0< \gamma \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.14 of the bi-univalent function class \( M_{\sigma }(\alpha ,\phi ),\) we obtain a new class \(M_{\sigma }(\alpha ,\gamma )\) given by Definition 2.15 below.

Definition 2.15. For \( 0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( M_{\sigma }(\alpha ,\gamma )\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \left( \frac{1+z}{1-z} \right) ^{\gamma }\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})\prec \left( \frac{1+w}{1-w}\right) ^{\gamma }\left( w\in \Delta \right) , \end{equation*} \(g(w):=\psi ^{-1}(w).\)

Corollary 2.16. If we set \begin{equation*} \phi (z)=\frac{1+(1-2\nu )z}{1-z}=1+2(1-\nu )z+2(1-\nu )z^{2}+…\left( 0< \nu \leq 1,\ z\in \Delta \right) \end{equation*} in Definition 2.14 of the bi-univalent function class \( M_{\sigma }(\alpha ,\phi )\) we obtain a new class \(M_{\sigma }(\alpha ,\nu)\) given by Definition 2.17 below.

Definition 2.17. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) a function \( \psi \in \sigma \) given by (5) is said to be in the class \( M_{\sigma }(\alpha ,\nu )\) if the following subordinations hold: \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})\prec \frac{1+(1-2\nu )z}{1-z} \left( z\in \Delta \right) , \end{equation*}

and \begin{equation*} (1-\alpha )\frac{w\psi ^{\prime }(w)}{\psi (w)}+\alpha (1+\frac{w\psi ^{\prime \prime }(w)}{\psi ^{\prime }(w)})\prec \frac{1+(1-2\nu )w}{1-w} \left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\) A function in the class \(M_{\sigma }(\alpha ,\phi )\) is called bi-Mocanu-convex function of Ma-Minda type. This class unifies the classes \( S(\alpha )\) and \(C(\alpha ).\) For functions in the class \(M_{\sigma }(\alpha ,\phi ),\) the following coefficients estimates hold.

Theorem 2.18 Let \(\psi (z)\in M_{\sigma }(\alpha ,\phi )\) be of the form (5). Then

\begin{equation} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{(1+\alpha )\left\vert B_{1}^{2}+(1+\alpha )(B_{1}-B_{2})\right\vert }}, \label{2.23} \end{equation}
(28)
and
\begin{equation} \left\vert a_{2}\right\vert \leq \frac{B_{1}}{2(1+2\alpha )}. \label{2.24} \end{equation}
(29)

Proof. If \(\psi \in M_{\sigma }(\alpha ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that

\begin{equation} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})=\phi (u(z)), \label{2.25} \end{equation}
(30)
and
\begin{equation} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})=\phi (v(w)). \label{2.26} \end{equation}
(31)
Since \begin{equation*} (1-\alpha )\frac{z\psi ^{\prime }(z)}{\psi (z)}+\alpha (1+\frac{z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)})=1-\left( 1+\alpha \right) a_{1}z+ \left[ \left( 1+\alpha \right) a_{1}^{2}-2\left( 1+2\alpha \right) a_{2} \right] z^{2}+… \end{equation*} and \begin{equation*} (1-\alpha )\frac{wg^{\prime }(w)}{g(w)}+\alpha (1+\frac{wg^{\prime \prime }(w)}{g^{\prime }(w)})=1+\left( 1+\alpha \right) a_{1}w+\left[ \left( 1+\alpha \right) a_{1}^{2}+2\left( 1+2\alpha \right) a_{2}\right] w^{2}+…, \end{equation*} from (11), (12), (30) and (31), it follows that
\begin{equation} -(1+\alpha )a_{1}=\frac{1}{2}B_{1}c_{1}, \label{2.27} \end{equation}
(32)
\begin{equation} (1+\alpha )a_{1}^{2}-2(1+2\alpha )a_{2}=\frac{1}{2}B_{1}(c_{2}-\frac{ c_{1}^{2}}{2})+\frac{1}{4}B_{2}c_{1}^{2}, \label{2.28} \end{equation}
(33)
\begin{equation} (1+\alpha )a_{1}=\frac{1}{2}B_{1}b_{1}, \label{2.29} \end{equation}
(34)
and
\begin{equation} (1+\alpha )a_{1}^{2}+2(1+2\alpha )a_{2}=\frac{1}{2}B_{1}(b_{2}-\frac{ b_{1}^{2}}{2})+\frac{1}{4}B_{2}b_{1}^{2}, \label{2.30} \end{equation}
(35)
Equations (32) and (34) yields
\begin{equation} c_{1}=-b_{1}, \label{2.31} \end{equation}
(36)
and after some further calculations using (33)-(35) we find \begin{equation*} a_{1}^{2}=\frac{B_{1}^{3}(c_{2}+b_{2})}{4(1+\alpha )\left[ B_{1}^{2}+(1+\alpha )(B_{1}-B_{2})\right] }, \end{equation*} and \begin{equation*} a_{2}=\frac{B_{1}\left( b_{2}-c_{2}\right) }{8(1+2\alpha )}, \end{equation*} Applying Lemma 1.1, the estimates in (28) and (29) follow. For \(\alpha =0,\) Theorem 2.18 gives the coefficient estimates for Ma-Minda bi-starlike functions, while for \(\alpha =1,\) it gives the following estimates for Ma-Minda bi-convex functions.

Corollary 2.19 Let \(\psi \) given by (5) be in the class \(C(\phi ).\) Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{2\left\vert B_{1}^{2}+2(B_{1}-B_{2})\right\vert },\ \ \ \text{and}\ \ \ \left\vert a_{2}\right\vert \leq \frac{B_{1}}{6}. \end{equation*}

Using the parameter setting of Definition 15 in Theorem 18 we get the following corollary.

Corollary 2.20. For \(0\leq \alpha \leq 1\) and \(0< \gamma \leq 1,\) let the function \(\psi \in M_{\sigma }(\alpha ,\gamma )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \frac{2\gamma }{\sqrt{\left( 1+\alpha \right) \left[ \left( 1+\alpha \right) +\gamma \left( 1-\alpha \right) \right] }}\ \ \ \text{and \ \ }\left\vert a_{2}\right\vert \leq \frac{\gamma }{1+2\alpha }. \end{equation*}

Using the parameter setting of Definition 17 in Theorem 18 we get the following corollary.

Corollary 2.21. For \(0\leq \alpha \leq 1\) and \(0< \nu \leq 1,\) let the function \(\psi \in M_{\sigma }(\alpha ,\nu )\) be of the form (5). Then \begin{equation*} \left\vert a_{1}\right\vert \leq \sqrt{\frac{2\left( 1-\nu \right) }{ 1+\alpha }}\ \ \ \text{and }\left\vert a_{2}\right\vert \leq \frac{\left( 1-\nu \right) }{1+2\alpha }. \end{equation*}

Definition 2.22. A function \(\psi \in \sigma \) given by (5) is said to be in the class \(\Im _{\alpha }(\alpha ,\phi )\left( 0\leq \alpha \leq 1\right) ,\) if the following subordinations hold: \begin{equation*} \left( \frac{z\psi ^{\prime }(z)}{\psi (z)}\right) ^{\alpha }\left( 1+\frac{ z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)}\right) ^{1-\alpha }\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \left( \frac{wg^{\prime }(w)}{g(w)}\right) ^{\alpha }\left( 1+\frac{ wg^{\prime \prime }(w}{g^{\prime }(w)}\right) ^{1-\alpha }\prec \phi (w)\left( w\in \Delta \right) , \end{equation*} \(g(w):=\psi ^{-1}(w).\) This class also reduces to classes of Ma-Minda bi-starlike and bi-convex functions. For functions in this class, the following coefficient estimates are obtained.

Theorem 2.23 Let \(\psi (z)\in \Im _{\alpha }(\alpha ,\phi )\) be of the form(5). Then

\begin{equation} \left\vert a_{1}\right\vert \leq \frac{2B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert 2\left( \alpha ^{2}-3\alpha +4\right) B_{1}^{2}+4(\alpha -2)^{2}(B_{1}-B_{2})\right\vert }}, \label{2.32} \end{equation}
(37)
and
\begin{equation} \left\vert a_{2}\right\vert \leq \frac{B_{1}}{2\left\vert 3-2\alpha \right\vert }. \label{2.33} \end{equation}
(38)

Proof. Let \(\psi \in \Im _{\alpha }(\alpha ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that

\begin{equation} \left( \frac{z\psi ^{\prime }(z)}{\psi (z)}\right) ^{\alpha }\left( 1+\frac{ z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)}\right) ^{1-\alpha }=\phi (u(z)) \label{2.34} \end{equation}
(39)
and
\begin{equation} \left( \frac{wg^{\prime }(w)}{g(w)}\right) ^{\alpha }\left( 1+\frac{ wg^{\prime \prime }(w}{g^{\prime }(w)}\right) ^{1-\alpha }=\phi (v(w)). \label{2.35} \end{equation}
(40)
Since \begin{equation*} \left( \frac{z\psi ^{\prime }(z)}{\psi (z)}\right) ^{\alpha }\left( 1+\frac{ z\psi ^{\prime \prime }(z)}{\psi ^{\prime }(z)}\right) ^{1-\alpha }=1-\left( 2-\alpha \right) a_{1}z \end{equation*} \begin{equation*} +\left[ \frac{\alpha ^{2}-3\alpha +4}{2}a_{1}^{2}-2\left( 3-2\alpha \right) a_{2}\right] z^{2}+…\ \ . \end{equation*} Also \begin{equation*} \left( \frac{wg^{\prime }(w)}{g(w)}\right) ^{\alpha }\left( 1+\frac{ wg^{\prime \prime }(w}{g^{\prime }(w)}\right) ^{1-\alpha }=1+\left( 2-\alpha \right) a_{1}w \end{equation*} \begin{equation*} +\left[ \frac{\alpha ^{2}-3\alpha +4}{2}a_{1}^{2}+2\left( 3-2\alpha \right) a_{2}\right] w^{2}+…, \end{equation*} from (11), (12), (39) and (40), it follows that
\begin{equation} -(2-\alpha )a_{1}=\frac{1}{2}B_{1}c_{1}, \label{2.36} \end{equation}
(41)
\begin{equation} \frac{\alpha ^{2}-3\alpha +4}{2}a_{1}^{2}-2\left( 3-2\alpha \right) a_{2}= \frac{1}{2}B_{1}(c_{2}-\frac{c_{1}^{2}}{2})+\frac{1}{4}B_{2}c_{1}^{2}, \label{2.37} \end{equation}
(42)
\begin{equation} (2-\alpha )a_{1}=\frac{1}{2}B_{1}b_{1} \label{2.38} \end{equation} and
\begin{equation} \frac{\alpha ^{2}-3\alpha +4}{2}a_{1}^{2}+2\left( 3-2\alpha \right) a_{2}= \frac{1}{2}B_{1}(b_{2}-\frac{b_{1}^{2}}{2})+\frac{1}{4}B_{2}b_{1}^{2}. \label{2.39} \end{equation}
(43)
Equations (41) and (43) obviously yield
\begin{equation} c_{1}=-b_{1}. \label{2.40} \end{equation}
(44)
Eqs. (42)-(44) and (45) lead to \begin{equation*} a_{1}^{2}=\frac{B_{1}^{3}(c_{2}+b_{2})}{2\left( \alpha ^{2}-3\alpha +4\right) B_{1}^{2}+4(\alpha -2)^{2}(B_{1}-B_{2})}. \end{equation*} By applying Lemma 1.1, we get the desired estimate of \( \left\vert a_{1}\right\vert \) as asserted in (37). Proceeding similarly as in the earlier proof, using (42)-(45), it follows that \begin{equation*} a_{2}=\frac{B_{1}(b_{2}-c_{2})}{8(3-2\alpha )}, \end{equation*} which, in view of Lemma 1.1, yields the estimate (38).

Definition 2.24. A function \(\psi \in \sigma\) given by (5) is said to be in the class \(\beta _{\alpha }(\lambda ,\phi ),\ \lambda \geq 0,\) if the following subordinations hold: \begin{equation*} \left( 1-\lambda \right) \frac{\psi (z)}{z}+\lambda \psi ^{\prime }(z)\prec \phi (z)\left( z\in \Delta \right) , \end{equation*} and \begin{equation*} \left( 1-\lambda \right) \frac{g(w)}{w}+\lambda g^{\prime }(w)\prec \phi (w)\left( w\in \Delta \right) , \end{equation*} where \(g(w):=\psi ^{-1}(w).\)

Theorem 2.25. Let \(\psi (z)\in \beta _{\alpha }(\lambda ,\phi ),\ \lambda \geq 0\) be of the form (5). Then

\begin{equation} \left\vert a_{1}\right\vert \leq \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left\vert \left( 1+2\lambda \right) B_{1}^{2}+(1+\lambda )^{2}(B_{1}-B_{2})\right\vert }}, \label{2.41} \end{equation}
(46)
and
\begin{equation} \left\vert a_{2}\right\vert \leq \frac{B_{1}}{1+2\lambda }. \label{2.42} \end{equation}
(47)

Proof. Let \(\psi \in \beta _{\alpha }(\lambda ,\phi ),\) then there exist are two Schwarz functions \(u\) and \(v\) defined by (9) and (10) respectively, such that

\begin{equation} \left( 1-\lambda \right) \frac{\psi (z)}{z}+\lambda \psi ^{\prime }(z)=\phi (u(z)) \label{2.43} \end{equation}
(48)
and
\begin{equation} \left( 1-\lambda \right) \frac{g(w)}{w}+\lambda g^{\prime }(w)=\phi (v(w)). \label{2.44} \end{equation}
(49)
Since \begin{equation*} \left( 1-\lambda \right) \frac{\psi (z)}{z}+\lambda \psi ^{\prime }(z)=1-\left( 1+\lambda \right) a_{1}z+\left[ \left( 1+2\lambda \right) \left( a_{1}^{2}-a_{2}\right) \right] z^{2}+…, \end{equation*} and \begin{equation*} \left( 1-\lambda \right) \frac{g(w)}{w}+\lambda g^{\prime }(w)=1+\left( 1+\lambda \right) a_{1}w+\left[ \left( 1+2\lambda \right) \left( a_{1}^{2}+a_{2}\right) \right] w^{2}+…, \end{equation*} from (11), (12), (48) and (49), it follows that
\begin{equation} -(1+\lambda )a_{1}=\frac{1}{2}B_{1}c_{1}, \label{2.45} \end{equation}
(50)
\begin{equation} (1+2\lambda )(a_{1}^{2}-a_{2})=\frac{1}{2}B_{1}(c_{2}-\frac{c_{1}^{2}}{2})+ \frac{1}{4}B_{2}c_{1}^{2}, \label{2.46} \end{equation}
(51)
\begin{equation} (1+\lambda )a_{1}=\frac{1}{2}B_{1}b_{1} \label{2.47} \end{equation}
(52)
and
\begin{equation} (1+2\lambda )(a_{1}^{2}+a_{2})=\frac{1}{2}B_{1}(b_{2}-\frac{b_{1}^{2}}{2})+ \frac{1}{4}B_{2}b_{1}^{2}. \label{2.48} \end{equation}
(53)
Now (50) and (52) clearly yield
\begin{equation} c_{1}=-b_{1}. \label{2.49} \end{equation}
(54)
Equations (51), (53) and (54) lead to \begin{equation*} a_{1}^{2}=\frac{B_{1}^{3}(c_{2}+b_{2})}{4\left[ \left( 1+2\lambda \right) B_{1}^{2}+\left( 1+\lambda \right) ^{2}(B_{1}-B_{2})\right] }, \end{equation*} By applying Lemma 1.1, we get the desired estimate of \(\left\vert a_{1}\right\vert\) as asserted in (46). Proceeding similarly as in the earlier proof, using (51)-(54), it follows that \begin{equation*} a_{2}=\frac{B_{1}(b_{2}-c_{2})}{4(1+2\lambda )}, \end{equation*} which, in view of Lemma 1.1, yields the estimate (47).

Competing Interests

The authors declares that he has no competing interests.

References

  1. Miller, S. S., & Mocanu, P. T. (2000). Differential subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 225 Marcel Dekker. Inc., New York.[Google Scholor]
  2. Bulboaca, T. (2005). Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publishers, ClujNapoca. Romania. [Google Scholor]
  3. Darwish1, H.E., Lashin A.Y., Soileh, S.M. (2013). An application of multiplier transformation for certain subclasses of meromorphic p-valent functions. Int. J. Pure. Appl. Math., 85(2), 415-433.
  4. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2013). Certain Subclass of Meromorphic p-Valent Functions With Alternating Coefficients. Int. J. Basic. Appl. Sci., 13(2), 108-119. [Google Scholor]
  5. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2014). On a certain subclass of analytic functions defined by a generalized differential operator and multiplier transformation, J. Frac. Cal. Appl., 5(2), 16-27.
  6. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2015). Some subordination and Superordination results with an integral operator, Le Matematiche, 70(1), 39-51. [Google Scholor]
  7. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2015). Differential subordinations and superordinations of certain meromorphic functions associated with an integral operator, Kyungpook Math. J., 55(3), 625-639.
  8. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2016). Fekete-Szegö type coefficient inequalities for certain subclasses of analytic functions involving Salagean operator, Punjab Univ. J. Math., 48(2), 65-80.
  9. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2016). On certain subclasses of starlike \(p-\)valent functions, Kyungpook Math. J., 56(3), 867-876.
  10. Darwish, H. E., Lashin, A. Y., & Soileh, S. M. (2017). Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order, Ann. Univ. Marie Curie-Sklodowska, Sect. A., 71(1), 1-9.
  11. Darwish, H. E., Lashin, A. Y., \& Soileh, S. M. (2018). Convolution properties for certain subclasses of meromorphic bounded functions, \emph{J. Comput. Anal. Appl.}, 2(24), 258-265. [Google Scholor]
  12. Darwish, H. E., Lashin, A. Y., \& Soileh, S. M. (2018). Some differential subordination and superordination results associated with the generalized Bessel functions, J. Mod. Sci. Engin., 2(2), 25-35.
  13. Duren, P. L. (1983). Univalent functions, A Series of comprehensive studies in mathematics, Vol. 259. Grundlehren der Mathematischen Wissenschaften. [Google Scholor]
  14. Ma, W., & Minda, D. (1994). A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press (pp. 157-169).[Google Scholor]
  15. Deniz, E. (2013). Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal, 2(1), 49-60.[Google Scholor]
  16. [Google Scholor]
  17. Brannan, D. A., & Clunie, J. G. (1980). Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1–20, 1979). [Google Scholor]
  18. Netanyahu, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in \(\left\vert z\right\vert <1\). Archive for Rational Mechanics and Analysis, 32(2), 100-112. [Google Scholor]
  19. Brannan, D. A., & Taha, T. S. (1988). On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications, 31(2), 70-77. [Google Scholor]
  20. Taha, T. S. (1981). Topics in univalent function theory. University of London, Phd thesis.[Google Scholor]
  21. Ali, R. M., Lee, S. K., Ravichandran, V., & Supramaniam, S. (2012). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351. [Google Scholor]
  22. Aouf, M. K., El-Ashwah, R. M., & Abd-Eltawab, A. M. (2013). New subclasses of biunivalent functions involving Dziok-Srivastava operator. International Scholarly Research Notices, 2013, Article ID 387178. [Google Scholor]
  23. Bulut, S. (2013). Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math, 43(2), 59-65. [Google Scholor]
  24. El-Ashwah, R. M. (2014). Subclasses of bi-univalent functions defined by convolution. Journal of the Egyptian Mathematical Society, 22(3), 348-351. [Google Scholor]
  25. Frasin, B. A., & Aouf, M. K. (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters, 24(9), 1569-1573.[Google Scholor]
  26. Lashin, A. Y. (2016). On certain subclasses of analytic and bi-univalent functions. Journal of the Egyptian Mathematical Society, 24(2), 220-225.[Google Scholor]
  27. Magesh, N., & Yamini, J. (2013). Coefficient bounds for certain subclasses of bi-univalent functions. In International Mathematical Forum 8, 1337-1344. [Google Scholor]
  28. Murugusundaramoorthy, G., Magesh, N., & Prameela, V. (2013). Coefficient bounds for certain subclasses of bi-univalent function. In Abstract and Applied Analysis (Vol. 2013), Article ID 573017. [Google Scholor]
  29. Porwal, S., & Darus, M. (2013). On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society, 21(3), 190-193.[Google Scholor]
  30. Srivastava, H. M., & Bansal, D. (2015). Coefficient estimates for a subclass of analytic and bi-univalent functions. Porwal, S., & Darus, M. (2013). On a new subclass of bi-univalent functions. Journal of the Egyptian Mathematical Society, 21(3), 190-193., 23, 242-246. [Google Scholor]
  31. Srivastava, H. M., Murugusundaramoorthy, G., & Magesh, N. (2013). Certain subclasses of bi-univalent functions associated with the Hohlov operator. Global J. Math. Anal., 1(2), 67-73. [Google Scholor]
  32. Xu, Q. H., Gui, Y. C., & Srivastava, H. M. (2012). Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6), 990-994. [Google Scholor]
  33. Xu, Q. H., Xiao, H. G., & Srivastava, H. M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218(23), 11461-11465. [Google Scholor]
  34. Mitrinović, D. S. (1979). On the univalence of rational functions. Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, (634/677), 221-227. [Google Scholor]
  35. Reade, M. O., Silverman, H., & Todorov, P. G. (1984). On the starlikeness and convexity of a class of analytic functions. Rendiconti del Circolo Matematico di Palermo, 33(2), 265-272. [Google Scholor]
  36. Obradović, M., Ponnusamy, S., Singh, V., & Vasundhra, P. (2002). Univalency, starlikeness and convexity applied to certain classes of rational functions. Analysis, 22(3), 225-242. [Google Scholor]
  37. Pommerenke, C. (1975). Univalent functions. Vandenhoeck and Ruprecht.