On a class of p-valent functions with negative coefficients defined by opoola differential operator

Author(s): Bitrus Sambo1, Timothy Oloyede Opoola2
1Department of Mathematics, Gombe State University, P.M.B. 127, Gombe, Nigeria.
2Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.
Copyright © Bitrus Sambo, Timothy Oloyede Opoola. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Using opoola differential operator, we defined a subclass Spn(λ,α,γ,δ) of the class of multivalent or p-valent functions. Several properties of the class were studied, such as coefficient inequalities, hadamard product, radii of close-to-convex, star-likeness, convexity, extreme points, the integral mean inequalities for the fractional derivatives, and further growth and distortion theorem are given using fractional calculus techniques.

Keywords: Multivalent functions; Opoola differential operator; Coefficient inequalities; Closure property.

1. Introduction

Let A denote the class of all functions, f(z) normalized by
(1)f(z)=z+k=2akzk,
which are analytic in the unit disc U={z:|z|<1}.

Definition 3. [1] For f(z)A , Opoola introduced the following operator:

D0(μ,β,t)f(z)=f(z),D1(μ,β,t)f(z)=zDtf(z)=tzf(z)z(βμ)t+[1+(βμ1)t]f(z),Dn(μ,β,t)f(z)=zDt(Dn1(μ,β,t)f(z)),nN.
If f(z) is given by (1), then from (2), we see that
(3)Dn(μ,β,t)f(z)=z+k=2[1+(k+βμ1)t]nakzk,
(0μβ, t0 and nN0=N0).

Remark 1.

  1. When β=μ, t=1,Dn(μ,β,t)f(z)=Dnf(z) by Salagean [2],
  2. When β=μ,Dn(μ,β,t)f(z)=Dλnf(z) by Al-Oboudi [3].

Definition 1. Let Ap denote the class of functions of the form:

(4)f(z)=zp+k=p+1akzk,(p=1,2,),
which are analytic and multivalent in the open unit disc U=(zC:|z|<1). We define the following differential operator for the functions f(z)Ap
D0(μ,β,t,p)f(z)=f(z),D1(μ,β,t,p)f(z)=zDt,pf(z)=tpzf(z)zp(βμ)t+[1+(βμ1)t]f(z),Dn(μ,β,t,p)f(z)=zDt,p(Dn1(μ,β,t,p)f(z)),nN.
If f(z) is given by (4), then from (5), we see that
(6)Dn(μ,β,t,p)f(z)=zp+k=p+1[1+(kp+βμ1)t]nakzk,
(0μβ, t0 and nN0=N0). Let Tp denote the subclass of Ap consisting of functions of the form
(7)f(z)=zpk=p+1akzk,(ak0,p=1,2,).
If f(z) is given by Eq. (7), then from Eq. (5), we get
(8)Dn(μ,β,t,p)f(z)=zpk=p+1[1+(kp+βμ1)t]nakzk,
(nN0,ak0,p=1,2,..,0μβ,t0,nN0=N0).

Remark 2. When β=μ in (8),Dn(μ,β,t,p)f(z)=Dδ,pnf(z) defined by Bulut in [4]. Now, from (8), it follows that Dn(μ,β,t,p)f(z) can be written in terms of Convolution as Dn(μ,β,t,p)f(z)=(fg)(z), where f(z) is as in (7), while g(z)=zpk=p+1[1+(kp+βμ1)t]nzk.

Definition 2. A function f(z)Tp is in the class Spn(λ,α,γ,δ) if

(9)|(Dn(μ,β,t,p)f(z))pzp1λ(Dn(μ,β,t,p)f(z))+(αγ)|<δ,(zU,nN0),
for some 0λ<1, 0γ<1,0<α1,0<δ<1, Dn(μ,β,t,p)f(z) as defined in (8).

Remark 3. When μ=β in (9),the class Spn(λ,α,γ,δ) reduces to the class Rpn(α,β,γ,μ) studied by Bulut in [4].

Definition 4. [5, 6] The fractional integral of order l is defined, for function f(z) by

(10)Dzlf(z)=1Γ(l)0zf(t)(zt)1ld(t),(l>0),
where f(z) is an analytic function in a simply connected region of z-plane containing the origin,and the multiplicity of (zt)l1 is removed by requiring log(zt) to be real when (zt)>0.

Definition 5. [5, 6] The fractional derivative of order l is defined, for function f(z) by

(11)Dzlf(z)=1Γ(1l)dd(z)0zf(t)(zt)ld(t),(0l<1),
where f is an analytic function in a simply connected region of z-plane containing the origin,and the multiplicity of (zt)l is removed by requiring log(zt) to be real when (zt)>0.

Definition 6. [5, 6] Under the hypothesis of Definition 4, the fractional derivative of order p+l is defined for functions f(z), by

(12)Dzp+lf(z)=dpd(z)pDzlf(z),(0l<1,pN0).
It readily follows from (9) and (10) that
(13)Dzlzk=Γ(k+1)Γ(k+l+1)zk+l,(l>0,kN),
and
(14)Dzlzk=Γ(k+1)Γ(kl+1)zkl,(0l<1,kN).

Lemma 1.[7] If f(z) and g(z) are analytic in U with f(z)g(z), then for σ>0 and z=reiθ, (0<r<1), then 02π|f(z)|σdθ02π|g(z)|σdθ.

In this work, several properties of the class Spn(λ,α,γ,δ) are studied, such as coefficient inequalities, hadamard product, radii of close-to-convex, star-likeness, convexity, extreme points, the integral mean inequalities for the fractional derivatives, and further growth and distortion theorem are given using fractional calculus techniques. For more research on classes of multivalent or p-valent functions, see [7, 8, 9, 10, 11, 12, 13,14, 15, 16, 17, 18]

2. Main results

Theorem 1. A function f(z)Tp is in the class Spn(λ,α,γ,δ) if and only if

(15)k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ),
for some 0λ<1, 0γ<1,0<α1,0<δ<1. The result is sharp for the function f(z) given by f(z)=zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk,(kp+1).

Proof Suppose that f(z)Spn(λ,α,γ,δ), then we have from (9) that |(Dn(μ,β,t,p)f(z))pzp1λ(Dn(μ,β,t,p)f(z))+(αγ)|<δ. By substitution, we have |pzp1k=p+1k[1+(kp+βμ1)t]nakzk1pzp1λ(pzp1k=p+1k[1+(kp+βμ1)t]nakzk1)+(αγ)|<δ, |k=p+1k[1+(kp+βμ1)t]nakzk1λ(pzp1k=p+1k[1+(kp+βμ1)t]nakzk1)+(αγ)|<δ. Since z|z|, then {k=p+1k[1+(kp+βμ1)t]nakzk1λ(pzp1k=p+1k[1+(kp+βμ1)t]nakzk1)+(αγ)}<δ. If we choose z real and let z1, then we get k=p+1k[1+(kp+βμ1)t]nakδ[λ(pk=p+1k[1+(kp+βμ1)t]nak)+(αγ)],k=p+1k[1+(kp+βμ1)t]nakδλpδλk=p+1k[1+(kp+βμ1)t]nak+δ(αγ),k=p+1k[1+(kp+βμ1)t]nak+δλk=p+1k[1+(kp+βμ1)t]nakδ(λp+αγ),k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ). Conversely, suppose that the inequality (15) holds true and that zU:{zC:|z|=1} and suppose that |(Dn(μ,β,t,p)f(z))pzp1|δ|λ(Dn(μ,β,t,p)f(z))+(αγ)||(Dn(μ,β,t,p)f(z))pzp1δ(λ(Dn(μ,β,t,p)f(z))+(αγ))|=|k=p+1k[1+(kp+βμ1)t]nakzk1δλpzp1+δλk=p+1k[1+(kp+βμ1)t]nakzk1δ(αγ)|=|k=p+1(δλ1)k[1+(kp+βμ1)t]nakzk1δ(λpzp1+αγ)|k=p+1(δλ1)k[1+(kp+βμ1)t]nakδ(λp+αγ)k=p+1k[1+(kp+βμ1)t]n(δλ+1)akδ(λp+αγ)0. Since by maximum modulus theorem ,that the maximum modulus of an analytic function cannot be attained inside the domain but on the boundary, implies |(Dn(μ,β,t,p)f(z))pzp1|δ|λ(Dn(μ,β,t,p)f(z))+(αγ)|<0, i.e.,|(Dn(μ,β,t,p)f(z))pzp1|<δ|λ(Dn(μ,β,t,p)f(z))+(αγ)|. So, |(Dn(μ,β,t,p)f(z))pzp1||λ(Dn(μ,β,t,p)f(z))+(αγ)|<δ, implies |(Dn(μ,β,t,p)f(z))pzp1λ(Dn(μ,β,t,p)f(z))+(αγ)|<δ. Hence, we have that f(z)Spn(λ,α,γ,δ).

Corollary 1. If f(z)Spn(λ,α,γ,δ), then ap+1δ(λp+αγ)pn(p+1)[p+(p(βμ)+1)t]n(1+δλ).

Theorem 2. The class Spn(λ,α,γ,δ) is a class of convex functions.

Proof Let the functions

(16)f(z)=zpk=p+1akzk,(ak0,p=1,2,),
(17)g(z)=zpk=p+1bkzk,(bk0,p=1,2,),
be in the class Spn(λ,α,γ,δ), then for 0j1 h(z)=(1j)f(z)+jg(z)=zpk=p+1ckzk, where ck=(1j)ak+jbk0, then making use of (15), we see that k=p+1k[1+(kp+βμ1)t]n(1+δλ)ck=k=p+1k[1+(kp+βμ1)t]n(1+δλ)ak+k=p+1k[1+(kp+βμ1)t]n(1+δλ)bk<(1j)δ(λp+αγ)+jδ(λp+αγ)=δ(λp+αγ)jδ(λp+αγ)+jδ(λp+αγ)=δ(λp+αγ), implies h(z)Spn(λ,α,γ,δ), which completes the proof.

Theorem 3. If each of the functions f(z) and g(z) is in the class Spn(λ,α,γ,δ), then (fg)(z)Spn(λ,α,γ,Ω), where Ωδ2(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)2δ2λ(λp+αγ).

Proof From (15), we have

(18)k=p+1k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)ak1,
and
(19)k=p+1k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)bk1.
We need to find the smallest Ω such that
(20)k=p+1k[1+(kp+βμ1)t]n(1+Ωλ)Ω(λp+αγ)akbk1.
From (18) and (19), we find by means of Cauchy-Schwarz inequalities that
(21)k=p+1k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)akbk1.
Thus, it is enough to show that k[1+(kp+βμ1)t]n(1+Ωλ)Ω(λp+αγ)akbkk[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)akbk. That is
(22)akbkΩ(1+δλ)δ(1+Ωλ).
On the other hand, from (21), we have
(23)akbkδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ).
Therefore, in view of (22) and (23), it is enough to show that δ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)Ω(1+δλ)δ(1+Ωλ), i.e., δ(λp+αγ)δ(1+Ωλ)kM(1+δλ)Ω(1+δλ), where M=[1+(kp+βμ1)t]n. So, δ2[(λp+αγ)+Ωλ(λp+αγ)]kΩM(1+δλ)2, implies δ2(λp+αγ)+δ2Ωλ(λp+αγ)kΩM(1+δλ)2, implies δ2(λp+αγ)kΩM(1+δλ)2δ2Ωλ(λp+αγ). Also Ω[kM(1+δλ)2δ2λ(λp+αγ)]δ2(λp+αγ), implies Ωδ2(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)2δ2λ(λp+αγ).

Theorem 4. If f(z)Spn(λ,α,γ,δ), then f(z) is p-valently close-to-convex of order ρ in |z|<r1(λ,α,γ,δ,ρ), where r1(λ,α,γ,δ,ρ)=infk{[1+(kp+βμ1)t]n(1+δλ)(pρ)δ(λp+αγ)}1kp,(kp+1).

Proof Let f(z)Spn(λ,α,γ,δ), then |f(z)zp1p|<pρ, implies

(24)|pzp1k=p+1kakzk1pzp1zp1|=|k=p+1kakzkp|k=p+1kak|z|kp<pρ.
Since
(25)k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ),
hence, (24) is true if
(26)k|z|kppρ<k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ).
Solving (26) for |z|, we obtain |z|<{[1+(kp+βμ1)t]n(1+δλ)(pρ)δ(λp+αγ)}1kp,(kp+1). Hence, the proof.

Theorem 5. If f(z)Spn(λ,α,γ,δ),then f(z) is p-valently starlike of order ρ in |z|<r2(λ,α,γ,δ,ρ), where r2(λ,α,γ,δ,ρ)=infk{k[1+(kp+βμ1)t]n(1+δλ)(pρ)δ(λp+αγ)(kp)}1kp,(kp+1).

Proof Let f(z)Spn(λ,α,γ,δ), then |zf(z)f(z)p|<pρ. The inequality

|zf(z)f(z)p|=|z(pzp1k=p+1kakzk1)p(zpk=p+1akzk)zpk=p+1akzk|=|pzpk=p+1kakzkpzp+pk=p+1akzk)zpk=p+1akzk|.
Since
(28)|k=p+1(kp)kakzkzpk=p+1akzk|=|k=p+1(kp)akzkp1k=p+1akzkp|k=p+1(kp)ak|z|kp1k=p+1ak|z|kp<pρ,
i.e., k=p+1kak|z|kpk=p+1pak|z|kp<(pρ)(1k=p+1ak|z|kp)=k=p+1kak|z|kpk=p+1pak|z|kp <pk=p+1pak|z|kpρ+k=p+1ρak|z|kp=k=p+1kak|z|kpk=p+1ρak|z|kp<pρ=k=p+1(kρ)ak|z|kppρ<1. Since k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ). This holds true if (kρ)|z|kppρ<k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ), |z|<{k[1+(kp+βμ1)t]n(1+δλ)(pρ)(kp)δ(λp+αγ)}1kp,(kp+1), hence, the proof.

Theorem 6. If f(z)Spn(λ,α,γ,δ), then f(z) is p-valently convex of order ρ in |z|<r3(λ,α,γ,δ,ρ), where r3(λ,α,γ,δ,ρ)=infk{[1+(kp+βμ1)t]n(1+δλ)p(pρ)δ(λp+αγ)(kp)}1kp,(kp+1).

Proof Let f(z)Spn(λ,α,γ,δ), then |1+zf(z)f(z)p|<pρ. The inequality |1+zf(z)f(z)p|=|pzp1k=p+1kakzk1+z(p(p1)zp2k=p+1k(k1)akzk2)p(pzp1k=p+1kakzk1)pzp1k=p+1kakzk1|=|pzp1k=p+1kakzk1+p(p1)zp1k=p+1k(k1)akzk1)p2zp1+k=p+1pkakzk1)pzp1k=p+1kakzk1|=|k=p+1k(kp)akzkppk=p+1kakzkp|k=p+1k(kp)ak|z|kppk=p+1kak|z|kp<pρ. So, k=p+1k(kp)ak|z|kp<(pρ)(pk=p+1kak|z|kp), implies k=p+1k(kp)ak|z|kp<p(pρ)(pρ)k=p+1kak|z|kp), implies k=p+1k(kρ)ak|z|kp<p(pρ). Since k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ). This is true if k(kρ)|z|kpp(pρ)<k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ), |z|<{[1+(kp+βμ1)t]n(1+δλ)p(pρ)(kp)δ(λp+αγ)}1kp,(kp+1), hence, the proof.

Theorem 7. Let

(29)fp(z)=zp,fk(z)=zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk,(kp+1),
then, f(z)Spn(λ,α,γ,δ) if and only if it can be expressed in the form f(z)=λpfp(z)+k=p+1λkfk(z), where λp0 and λp=1k=p+1λk.

Proof Assume that f(z)=λpfp(z)+k=p+1λkfk(z), then

(30)f(z)=(1k=p+1λk)zp+k=p+1λk{zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk},
implies f(z)=zpk=p+1λk{δ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)}zk. Thus, k=p+1k[1+(kp+βμ1)t]n(1+δλ)λkδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)=δ(λp+αγ)k=p+1λk=δ(λp+αγ)(1λp)δ(λp+αγ), which shows that f(z) satisfies condition (15) and therefore, fSpn(λ,α,γ,δ). Conversely, suppose that f(z)Spn(λ,α,γ,δ), since akδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ),(kp+1), we may set λk=k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)ak,λp=1k=p+1λk, then we obtain from f(z)=zpk=p+1akzk, f(z)=(λp+k=p+1λk)zpk=p+1λkδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk, i.e., f(z)=λpzp+k=p+1λk(zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk), implies f(z)=λpzp+k=p+1λkfk(z). This completes the proof.

Corollary 2. The extreme points of Spn(λ,α,γ,δ) are given by; fp(z)=zp,fk(z)=zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk,(kp+1).

Theorem 8. Let f(z)Spn(λ,α,γ,δ) and suppose that

(31)j=p+1(jq)q+1ajδ(λp+αγ)Γ(k+1)Γ(2+plq)k[1+(kp+βμ1)t]n(1+δλ)Γ(k+1lq)Γ(p+1q),
for some 0qj, 0l<1, (jq)q+1 denotes the pochhammer symbol defined by (jq)q+1=(jq)(jq+1)j. Also, let the function
(32)fk(z)=zpδ(λp+αγ)k[1+(kp+βμ1)t]n(1+δλ)zk(kp+1).
If there exists an analytic function w(z) defined by
(33)(w(z))kp=k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1lq)Γ(k+1)j=p+1(jq)q+1ψ(j)ajzjp,
with (kq) \begin{align*}\Psi (j) =\frac{\Gamma (j-q)}{\Gamma (j+1-l-q)},& & (0\le l0\) and z=reiθ, (0<r<1),
(34)02π|Dzq+lf(z)|σdθ02π|Dzq+lfk(z)|σdθ.

Proof Let f(z)=zpj=p+1ajzj. By means of (12) and Definition 6, we have

Dzq+lf(z)=Γ(p+1)zplqΓ(p+1lq)j=p+1Γ(j+1)Γ(j+1lq)ajzjlq(35)=Γ(p+1)zplqΓ(p+1lq)[1j=p+1Γ(j+1)Γ(p+1lq)Γ(p+1)Γ(j+1lq)ajzjp](36)=Γ(p+1)zplqΓ(p+1lq)[1j=p+1Γ(p+1lq)Γ(p+1)(jq)q+1Ψ(j)ajzjp],
where Ψ(j)=Γ(jq)Γ(j+1lq),(0l<1,jp+1). Since ψ is a decreasing function of j, we get 0<Ψ(j)Ψ(p+1)=Γ(p+1q)Γ(2+plq). Similarly, from (32), (14), and Definition 6, we have
Dzq+lfk(z)=Γ(p+1)zplqΓ(p+1lq)δ(λp+αγ)Γ(k+1)k[1+(kp+βμ1)t]n(1+δλ)Γ(k+1lq)zklq(37)=Γ(p+1)zplqΓ(p+1lq)[1δ(λp+αγ)Γ(k+1)Γ(p+1lq)k[1+(kp+βμ1)t]n(1+δλ)Γ(p+1)Γ(k+1lq)zkp].
For some σ>0 and z=reiθ, (0<r<1), we show that
02π|1j=p+1Γ(p+1lq)Γ(p+1)(jq)q+1ψ(j)ajzjp|σd(θ)(38)02π|1δ(λp+αγ)Γ(k+1)Γ(p+1lq)k[1+(kp+βμ1)t]n(1+δλ)Γ(p+1)Γ(k+1lq)zkp|σd(θ),
so, by applying Lemma 1, it is enough to show that
1j=p+1Γ(p+1lq)Γ(p+1)(jq)q+1ψ(j)ajzjp(39)1δ(λp+αγ)Γ(k+1)Γ(p+1lq)k[1+(kp+βμ1)t]n(1+δλ)Γ(p+1)Γ(k+1lq)zkp.
If the above subordination holds true, then we have an analytic function w(z) with w(0)=0, |w(z)|<1, such that
1j=p+1Γ(p+1lq)Γ(p+1)(jq)q+1ψ(j)ajzjp(40)=1δ(λp+αγ)Γ(k+1)Γ(p+1lq)k[1+(kp+βμ1)t]n(1+δλ)Γ(p+1)Γ(k+1lq)w(z)kp.
By the condition of the Theorem, we define the function w(z) by
(41)(w(z))kp=k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1lq)Γ(k+1)j=p+1(jq)q+1ψ(j)ajzjp,
which readily yields w(0)=0. For such a function w(z), we have
|(w(z))|kpk[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1lq)Γ(k+1)j=p+1(jq)q+1ψ(j)aj|z|jp|z|k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1lq)Γ(k+1)ψ(p+1)j=p+1(jq)q+1aj=|z|k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1lq)Γ(p+1q)Γ(k+1)Γ(2+plq)j=p+1(jq)q+1aj|z|<1.
By means of the hypothesis of the theorem, the result is proved.

As a special case q=0, we have following results from Theorem 8.

Corollary 3. Let f(z)Spn(λ,α,γ,δ) and suppose that

(43)j=p+1jajδ(λp+αγ)Γ(k+1)Γ(2+pl)k[1+(kp+βμ1)t]n(1+δλ)Γ(k+1l)Γ(p+1),(jp+1),
if there exists an analytic function w(z) defined by
(44)(w(z))kp=k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(k+1l)Γ(k+1)j=p+1jΨ(j)ajzjp,
with \begin{align*}\psi(j)=\frac{\Gamma(j)}{\Gamma(j+1-l)},& & (0\le l0\) and z=reiθ,\;\;\; (0<r<1)
(45)02π|Dzlf(z)|σdθ02π|Dzlfk(z)|σdθ.

Letting q=1, we have the following from Theorem 8.

Corollary 4. Let f(z)Spn(λ,α,γ,δ) and suppose that

(46)j=p+1j(j1)ajδ(λp+αγ)Γ(k+1)Γ(p+1l)k[1+(kp+βμ1)t]n(1+δλ)Γ(kl)Γ(p),(jp+1),
if there exists an analytic function w(z) define by
(47)(w(z))kp=k[1+(kp+βμ1)t]n(1+δλ)δ(λp+αγ)Γ(kl)Γ(k+1)j=p+1j(j1)Ψ(j)ajzjp,
with \begin{align*} \psi(j)=\frac{\Gamma(j-1)}{\Gamma(j-l)},& & (0\le l0\) and z=reiθ, (0<r<1)
(48)02π|Dz1+lf(z)|σdθ02π|Dz1+lfk(z)|σdθ,(0l<1).

Theorem 9. If f(z)Spn(λ,α,γ,δ), then we have |Dzlf(z)|Γ(p+1)Γ(p+l+1)|z|p+l[1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+l+1)|z|], and

(49)|Dzlf(z)|Γ(p+1)Γ(p+l+1)|z|p+l[1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+l+1)|z|].

Proof Suppose that f(z)Spn(λ,α,γ,δ), using Theorem 1, we find that k=p+1k[1+(kp+βμ1)t]n(1+δλ)akδ(λp+αγ), implies

(50)(p+1)[p+(p(βμ)+1)t]n(1+δλ)pnk=p+1akδ(λp+αγ),
i.e.,
(51)k=p+1akδ(λp+αγ)pn(p+1)[p+(p(βμ)+1)t]n(1+δλ).
From (7), if f(z)=zpk=p+1akzk, Dzlf(z)=Γ(p+1)Γ(p+l+1)zp+lk=p+1Γ(k+1)Γ(k+l+1)akzk+l, implies
(52)Γ(p+l+1)Γ(p+1)zlDzlf(z)=zpk=p+1Γ(k+1)Γ(p+l+1)Γ(p+1)Γ(k+l+1)akzk=zpk=p+1Ψ(k)akzk,
where
(53)Ψ(k)=Γ(k+1)Γ(p+l+1)Γ(p+1)Γ(k+l+1).
Clearly, ψ is a decreasing function of k and we get 0<Ψ(k)Ψ(p+1)=p+1p+l+1. Using (51) and (53), we obtain, |Γ(p+l+1)Γ(p+1)zlDzlf(z)||z|p+ψ(p+1)|z|p+1k=p+1ak|z|p+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+l+1)|z|p+1, which is equivalent to assertion (49) and |Γ(p+l+1)Γ(p+1)zlDzlf(z)||z|pψ(p+1)|z|p+1k=p+1ak|z|pδ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+l+1)|z|p+1, which completes the proof.

Theorem 10. If f(z)Spn(λ,α,γ,δ), then we have |Dzlf(z)|Γ(p+1)Γ(pl+1)|z|pl[1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(pl+1)|z|], and

(54)|Dzlf(z)|Γ(p+1)Γ(pl+1)|z|pl[1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(pl+1)|z|].

Proof If f(z)=zpk=p+1akzk, then Dzlf(z)=Γ(p+1)Γ(pl+1)zplk=p+1Γ(k+1)Γ(kl+1)akzkl, implies

(55)Γ(pl+1)Γ(p+1)zlDzlf(z)=zpk=p+1Γ(k+1)Γ(pl+1)Γ(p+1)Γ(kl+1)akzk=zpk=p+1Ψ(k)akzk,
where
(56)Ψ(k)=Γ(pl+1)Γ(k+1)Γ(p+1)Γ(kl+1).
Clearly, Ψ is a decreasing function of k and we get 0<Ψ(k)Ψ(p+1)=p+1pl+1. Using (51) and (56), we obtain, |Γ(pl+1)Γ(p+1)zlDzlf(z)||z|p+ψ(p+1)|z|p+1k=p+1ak|z|p+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(pl+1)|z|p+1, which is equivalent to assertion (54). Similarly, |Γ(pl+1)Γ(p+1)zlDzlf(z)||z|pΨ(p+1)|z|p+1k=p+1ak|z|pδ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(pl+1)|z|p+1, which completes the proof.

Corollary 5. If f(z)Spn(λ,α,γ,δ), then we have

|z|pδ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+1)|z|p+1|f(z)||z|p+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+1)|z|p+1.

Proof From Definition 4, we have liml0Dzlf(z)=f(z). Therefore, setting l=0 in (49), we obtain |Dz0f(z)|Γ(p+1)Γ(p+0+1)|z|p+0[1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+0+1)|z|], and |Dz0f(z)|Γ(p+1)Γ(p+0+1)|z|p+0[1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+0+1)|z|], i.e., |z|pδ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+1)|z|p+1|f(z)||z|p+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p+1)|z|p+1, which is (57).

Corollary 6. If f(z)Spn(λ,α,γ,δ), then we have

(58)p|z|p1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)|z||f(z)|p|z|p1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)|z|p.

Proof From Definition 4, we have liml1Dzlf(z)=f(z). Therefore, setting l=1 in (54), we obtain |Dz1f(z)|Γ(p+1)Γ(p)|z|p1[1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p)|z|], and |Dz1f(z)|Γ(p+1)Γ(p)|z|p1[1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)(p)|z|], i.e., p|z|p1δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)|z|p|f(z)|p|z|p1+δ(λp+αγ)pn[p+(p(βμ)+1)t]n(1+δλ)|z|p, which is (58).

Acknowledgments :

The authors acknowledge the management of the University of Ilorin for providing us with a suitable research laboratory and library to enable us carried out this research.

Conflicts of Interest:

”The author declares no conflict of interest.”

Data Availability:

All data required for this research is included within this paper.

Funding Information:

No funding is available for this research.

References

  1. Timothy, O. O. (2017). On a subclass of Univalent Functions defined by a Generalized Differential operator. International Journal of Mathematical Analysis, 11(18), 869-876.[Google Scholor]
  2. Sàlxaxgean, G. S. (1981). Subclasses of Univalent Functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981). Lecture Notes in Math, 362-372.[Google Scholor]
  3. Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Salagean operator. International Journal of Mathematics and Mathematical Sciences, 2004(27), 1429-1436.[Google Scholor]
  4. Bulut, S. (2010). On a class of analytic and multivalent functions with negative coefficients defined by Al-Oboudi differential operator. Studia Universitatis Babes-Bolyai Mathematica, 55(4), 115-130.[Google Scholor]
  5. Owa, S. (1978). On the distortion theorems I. Kyungpook Mathematical Journal, 18(1), 53-59.[Google Scholor]
  6. Srivastava, H. M., & Owa, S. (Eds.). (1989). Univalent Functions, Fractional Calculus, and their Applications. Chichester: Ellis Horwood; New York; Toronto: Halsted Press.[Google Scholor]
  7. Littlewood, J. E. (1925). On inequalities in the theory of functions. Proceedings of the London Mathematical Society, 2(1), 481-519.[Google Scholor]
  8. Elumalai, M. (2016). On some coefficient estimates for certain subclass of analytic and multivalent functions. IOSR Journal of Maths, 12(6), 58-65.[Google Scholor]
  9. Eker, S. S., & Seker, B. (2007). On a class of multivalent functions defined by Salagean operator. General Mathematics, 15(2-3), 154-163.[Google Scholor]
  10. Deniz, E. (2012). On p-valently close-to-convex, starlike and convex functions. Hacettepe Journal of Mathematics and Statistics, 41(5), 635-642.[Google Scholor]
  11. Kareem Oleiwi, A., M Abdulkadhim, M., & J Alhamadany, F. (2017). subclass of multivalent functions defined by using differential operator. Journal of Kerbala University, 13(1), 11-20.[Google Scholor]
  12. Mahzoon, H., & Latha, S. (2010). On certain classes of p-valent functions defined by salagean. General Mathematics, 18(4),53-60.[Google Scholor]
  13. Mahzoon, H. (2012). New subclasses of multivalent functions defined by dif-ferential Subordination. Applied Mathematical Sciences, 6(95), 1501-1507.[Google Scholor]
  14. Mostafa, A. O., & Aouf, M. K. (2009). Neighborhoods of certain p-valent analytic functions with complex order. Computers & Mathematics with Applications, 58(6), 1183-1189.[Google Scholor]
  15. Salim, T. O. (2011). Certain classes of multivalent functions defined by a fractional differential operator. General Mathematics, 19(3), 75-84.[Google Scholor]
  16. Akbulut, S., Kadioglu, E., & Özdemir, M. (2004). On the subclass of p-valently functions. Applied Mathematics and Computation, 147(1), 89-96.[Google Scholor]
  17. Thirucheran, D. M., & Stalin, T. (2018A). New subclass of multivalent functions Defined by Al-Oboudi Differential operator. International Journal of Pure and Applied Mathematics, 119(16), 661-669.[Google Scholor]
  18. Thirucheran, D. M., & Stalin, T. (2018). On a New Subclass of Multivalent Functions Defined by Al-Oboudi Differential Operator. Global Journal of Pure and Applied Mathematics, 14(5), 733-741.[Google Scholor]