Contents

Hussein–Jassim method for solving fractional ordinary delay differential equations

Author(s): Abubker Ahmed1,2
1University of Science and Technology, College of Engineering (Sudan)
2Al Mughtaribeen University, College of Engineering, Department of General Sciences (Sudan)
Copyright © Abubker Ahmed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The current study focuses on the investigation and develop of a new approach called Hussein–Jassim method (HJM), suggested lately by Hassan et al.; specifically, we investigate its applicability to fractional ordinary delay differential equations in the Caputo fractional sense. Several examples are offered to demonstrate the method’s reliability. The results of this study demonstrate that the proposed method is highly effective and convenient for solving fractional delay differential equations.

Keywords: delay differential equation, Hussein–Jassim method, Caputo fractional derivative

1. Introduction

The delay differential equations (DDEs) are a sort of ordinary differential equations in which the derivative of an unknown function at a specific time is expressed in terms of the of the function’s prior values. Which are widely used in mathematical modeling, including population dynamics, chemical kinetics, physiological and pharmaceutical kinetics, and infectious diseases kinetics. A simplest form of time-delay differential equations for \(y(t)\) is

\[\label{eq1} y'\left(t\right)=f\left(t,y\left(t\right),y\left(qt\right)\right), \tag{1}\] where \(q\) is a constant delay and \(f\) is well-defined function.

Fractional calculus is employed in many disciplines of applied mathematics because to may be used to simulate diverse physical processes in engineering and science. This has many uses in serval sectors of sciences. Example include, the dynamics of viscoelastic materials [1], electromagnetism [2], fluid mechanics [3], propagation of spherical flames [4], and viscoelastic materials [5].

In the literature, the authors discussed the solutions for nonlinear fractional delay differential equations with different analytical and numerical methods [617]. Recently the authors in [18] have successfully implemented the Chebyshev pseudo-spectral method to solve fractional pantograph delay differential equations (FPDDEs). The fractional Taylor’s series (FTS) and the reproducing kernel method (RKs) are successfully used to solve a class of PDDEs by Du in [19]. Saeed et al. [20] established a technique by combining both the method of steps and the Hermite wavelet method for solving the fractional delay differential equations. Yang et al. [21] suggested the Jacobi collocation method (JCM) to solve FPDDEs. Dehestani et al. [22] followed the fractional-order hybrid Bessel functions (FHBFs) to obtain a numerical solution for fractional generalized pantograph-delay differential equations. Hashemia et al. [23] engaged the generalized squared remainder minimization method (GSRM) to find the solution for the FPDDEs. Yuttanan et al. [24] proposed a numerical technique called the fractional-order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear fractional pantograph differential equations. More recently, Jassim & Abdulshareef [25] proposed a new iterative method for solving linear and nonlinear problems of ordinary fractional differential equations, namely the Hussein–Jassim method (HJM). The concept of this method is based on a power series of fractional order. In this study, we solve a class of time-delay differential equations with the Caputo fractional-order by using the Hussein–Jassim method.

The remainder of this paper is structured as follows: A few basic definitions related to fractional calculus are given in Section 2. Section 3 presents the procedures to use the HJM for solving differential equation. Some examples are discussed in Section 4. Furthermore, a conclusion is provided in the last section.

2. Fundamental ideas

In this section, we mention several concepts and definitions which are needed later in this paper.

Definition 1. [25, 26] The Riemann–Liouville fractional integral of order \(v>0,\) is defined as: \[\label{eq2} J^vy\left(t\right) {=}\frac{v}{ {\Gamma}\left(v+1\right)}\int^t_0{\frac{y\left(\tau \right)}{{\left(t {-}\tau \right)}^{1-v}}}d\tau , \tag{2}\] where \(\Gamma\) is the well-known Gamma function.

Useful properties of the Riemann–Liouville fractional integral are as follows:

  1. \(J^0y\left(t\right)=y\left(t\right),\)

  2. \(J^v\left[y\left(t\right)+x(t)\right]=J^v\left[y\left(t\right)\right]+J^v\left[x(t)\right],\)

  3. \(J^vJ^uy\left(t\right)=J^{v+u}y\left(t\right)=J^uJ^vy\left(t\right),\)

  4. \(J^vt^{\alpha }=\frac{ {\Gamma}\left(\alpha +1\right)}{ {\Gamma}\left(v+\alpha +1\right)}t^{v+\alpha }.\)

Definition 2. [25, 26] The formula for the Caputo fractional derivative of \(y\left(t\right),\) is defined as:

\[\label{eq3} {}^c_a{{\mathcal{D}}^v_t}y\left(t\right)=\frac{1}{ {\Gamma}\left(m-v\right)}\int^t_0{{\left(t-\tau \right)}^{m-v\ -\ 1}y^{\left(m\right)}\left(\tau \right)}d\tau ,\quad \quad m-1< {\ }v\le m. \tag{3}\]

The properties of the Caputo fractional operator are as follows:

  1. \({}^c_a{{\mathcal{D}}^v_t}K=0,\) where \(K\) is constant.

  2. \({}^c_a{{\mathcal{D}}^v_t}\left[y\left(t\right)+x(t)\right]={}^c_a{{\mathcal{D}}^v_t}\left[y\left(t\right)\right]+{}^c_a{{\mathcal{D}}^v_t}\left[x(t)\right],\)

  3. \({}^c_a{{\mathcal{D}}^v_t}J^vy\left(t\right)=y\left(t\right),\)

  4. \({}^c_a{{\mathcal{D}}^v_t}t^{\alpha }=\frac{ {\Gamma}\left(\alpha +1\right)}{ {\Gamma}\left(\alpha -v+1\right)}t^{v+\alpha }.\)

Definition 3. [25, 26] The Special function called Mittag–Leffler function denoted as \(E_v\left(t\right),\) is defined as: \[\label{eq4} E_v\left(t\right)=\sum^{\infty }_{n=0}{\frac{t^n}{ {\Gamma }\left(vn+1\right)}}. \tag{4}\]

Specifically, for different values of \(v\) we have the following functions:

  1. \(E_0\left(t\right)=\frac{1}{1-t},\)

  2. \(E_1\left(t\right)=e^t,\)

  3. \(E_2\left(t^2\right)={ {cosh} t\ }.\)

3. Analysis of the HJM

Consider the following fractional differential equation

\[\label{eq5} {}^c{{\mathcal{D}}^v_t}y\left(t\right)=f\left(t\right)+\mathcal{M}\left[y\left(t\right)\right],\quad \quad 0< {\ }v\le 1, \tag{5}\] with initial condition \[\label{eq6} y\left(0\right)=\omega , \tag{6}\] where \({}^c{{\mathcal{D}}^v_t} {(.)}\) is the Caputo fractional derivative, \(\mathcal{M}\) is a nonlinear operator, \(y\) is an analytical function, and \(f\left(t\right)\) is a known function.

Applying the integral operator \(J^v\) to (5) gives an algebraic equation as \[y\label{eq7} \left(t\right)=\omega +J^vf\left(t\right)+J^v\left[\mathcal{M}\left[y\left(t\right)\right]\right]. \tag{7}\]

We consider the RHS of (7) as an infinite series representation of the Mittag-Leffler function, we have \[\label{eq8} \omega {+}J^vf\left(t\right)+J^v\left[\mathcal{M}(\left(y\left(t\right)\right)\right]=a_0+\frac{a_1}{ {\Gamma }\left(v+1\right)}t^v+\frac{a_2}{ {\Gamma }\left(2v+1\right)}t^{2v}+\dots =\sum^{\infty }_{j=0}{\frac{a_jt^{jv}}{ {\Gamma }\left(jv+1\right)}}, \tag{8}\] where \(a_{ {j}} {,\ j} {\ge } {0,}\) are constants.

The constants coefficients \(a_{ {j}},\) can be attained by taking the differential operator \({}^c{{\mathcal{D}}^{jv}_t},\ j\ge 0,\) into (8) at \(t=0,\) which gives

\[\label{eq9} \begin{cases} a_0=\omega , \\ a_1=f\left(t\right){\left.+\mathcal{M}\left[y\left(t\right)\right]\right|}_{t=0}, \\ a_2={\left.{}^c{{\mathcal{D}}^v_t}\left(f\left(t\right)+\mathcal{M}\left[y\left(t\right)\right]\right)\right|}_{t=0}, \\ a_3={\left.{}^c{{\mathcal{D}}^{2v}_t}\left(f\left(t\right)+\mathcal{M}\left[y\left(t\right)\right]\right)\right|}_{t=0}, \\ \vdots \end{cases} \tag{9}\]

Substituting (9) into (8) we have \[\label{e10} y\left(t\right)=\sum^{\infty }_{j=0}{\frac{{\left.{}^c{{\mathcal{D}}^{(j-1)v}_t}\left(f\left(t\right)+\mathcal{M}\left[y\left(t\right)\right]\right)\right|}_{t=0}}{ {\Gamma }\left(jv+1\right)}t^{jv}}. \tag{10}\]

Assume that the solution of (10), given by \[\label{eq11} y\left(t\right)=\sum^{\infty }_{j=0}{y_j\left(t\right)}. \tag{11}\]

Substituting (11) into (10) we obtain \[\label{eq12} \sum^{\infty }_{j=0}{y_j\left(t\right)}=\sum^{\infty }_{j=0}{\frac{{\left.\left[{}^c{{\mathcal{D}}^{\left(j-1\right)v}_t}\left(f(t)+\mathcal{M}\left(\sum^{\infty }_{j=0}{y_j\left(t\right)}\right)\right)\right]\right|}_{t=0}}{ {\Gamma }\left(jv+1\right)}t^{jv}}. \tag{12}\]

Replace \(j\) by \(j+1\) in the left side of (12), we get \[\label{eq13} y_0\left(t\right)+\sum^{\infty }_{j=0}{y_{j+1}\left(t\right)}=\omega +\sum^{\infty }_{j=0}{\frac{{\left.{}^c{{\mathcal{D}}^{\left(j-1\right)v}_t}\left(f(t)+\mathcal{M}\left(\sum^{\infty }_{j=0}{y_j\left(t\right)}\right)\right)\right|}_{t=0}}{ {\Gamma }\left(jv+1\right)}t^{jv}}. \tag{13}\]

Thus, the following relation is obtained by compare the two sides of (13) \[\label{eq14} \begin{cases} y_0(t)=\omega , \\ y_1(t)=\frac{{\left.\left(f\left(t\right)+\mathcal{M}(y_0\left(t\right))\right)\right|}_{t=0}}{ {\Gamma }\left(v+1\right)}t^v, \\ y_2(t)=\frac{{\left.{}^c{{\mathcal{D}}^v_t}\left(f\left(t\right)+\mathcal{M}\left(y_0\left(t\right)+y_1\left(t\right)\right)\right)\right|}_{t=0}}{ {\Gamma }\left(2v+1\right)}t^{2v}, \\ y_3(t)=\frac{{\left.{}^c{{\mathcal{D}}^{2v}_t}\left(f\left(t\right)+\mathcal{M}\left(y_0\left(t\right)+y_1\left(t\right)+y_2\left(t\right)\right)\right)\right|}_{t=0}}{ {\Gamma }\left(3v+1\right)}t^{3v}, \\ \vdots \\ y_{j+1}(t)=\frac{{\left.{}^c{{\mathcal{D}}^{jv}_t}\left(f(t)+\mathcal{M}\left(y_0\left(t\right)+y_1\left(t\right)+y_2\left(t\right)+\dots +y_j\left(t\right)\right)\right)\right|}_{t=0}}{ {\Gamma }\left((j+1)v+1\right)}t^{(j+1)v}. \end{cases} \tag{14}\]

Consequently, the approximate solution is given by: \[\label{eq15} y_{HJM}\left(t\right)=y_0\left(t\right)+y_1\left(t\right)+y_2\left(t\right)+\dots =\sum^{\infty }_{j=0}{y_j\left(t\right)}. \tag{15}\]

4. Numerical applications

Example 1. Frist, we consider the nonlinear fractional delay differential equations [27] \[\label{eq16} {}^c{{\mathcal{D}}^v_t}y\left(t\right)=1-2y^2\left(\frac{t}{2}\right),\ \ y\left(0\right)=0. \tag{16}\]

For \(v=1\) the exact solution is given by \(y\left(t\right)={ {sin} t\ }.\)

According to (14), we get \[\label{17} \begin{cases} y_0\left(t\right)=0,\\ y_1\left(t\right)=\frac{t^v}{ {\Gamma }\left(v+1\right)}, \\ y_2\left(t\right)=0,\\ y_3\left(t\right)=-\frac{ {2} {\Gamma }\left(2v+1\right)t^{3v}}{2^{2v}{ {\Gamma }}^2\left(v+1\right) {\Gamma }\left(3v+1\right)},\\ y_4\left(t\right)=0,\\ y_5\left(t\right)=\frac{8 {\Gamma }\left(2v+1\right) {\Gamma }\left(4v+1\right)}{2^{6v}{ {\Gamma }}^3\left(v+1\right) {\Gamma }\left(3v+1\right) {\Gamma }\left(5v+1\right)}t^{5v}.\end{cases} \tag{17}\]

Therefore, According to these approximations, the 5\({}^{th}\) approximation solution of (16) is given by \[\label{eq18} y_{HJM}\left(t\right)=\frac{t^v}{ {\Gamma }\left(v+1\right)}-\frac{ {2} {\Gamma }\left(2v+1\right)t^{3v}}{2^{2v}{ {\Gamma }}^2\left(v+1\right) {\Gamma }\left(3v+1\right)}+\frac{8 {\Gamma }\left(2v+1\right) {\Gamma }\left(4v+1\right)}{2^{6v}{ {\Gamma }}^3\left(v+1\right) {\Gamma }\left(3v+1\right) {\Gamma }\left(5v+1\right)}t^{5v}. \tag{18}\]

Obviously, at \(v=1\) the solution is tends to an exact solution\(\ y\left(t\right)={ {sin} t\ }\).

The absolute error between exact solution and 5\({}^{th}\) approximation solution obtained by HJM when \(v=1\) are shown in Table 1. The corresponding numerical values of approximation solutions for different values of\(\ v\) are present in Table 2. The graphs of exact and approximation solutions for some values of\(\ v\) are shown in Figure 1.

Table 1 The absolute error between exact and approximation solution of Example 1, when \(v=1\)
\(t\) exact solution approximation solution absolute error
0 0.0000000000 0.0000000000 0.0000000000
0.1 0.0998334166 0.0998334167 0.0000000000
0.2 0.1986693308 0.1986693333 0.0000000025
0.3 0.2955202067 0.2955202500 0.0000000433
0.4 0.3894183423 0.3894186667 0.0000003244
0.5 0.4794255386 0.4794270833 0.0000015447
0.6 0.5646424734 0.5646480000 0.0000055266
0.7 0.6442176872 0.6442339167 0.0000162294
0.8 0.7173560909 0.7173973333 0.0000412424
0.9 0.7833269096 0.7834207500 0.0000938404
1 0.8414709848 0.8416666667 0.0001956819
Table 2 The numerical values of example 1 approximation solutions for different values of\(\ v\)
\(t\) \(v=1\) \(v=0.9\) \(v=0.7\) \(v=0.5\)
0 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 0.0998334167 0.1306801502 0.2192461496 0.3563467372
0.2 0.1986693333 0.2425293257 0.3539955899 0.5008213286
0.3 0.2955202500 0.3460040116 0.4646485205 0.6053060105
0.4 0.3894186667 0.4420524933 0.5579779714 0.6838326272
0.5 0.4794270833 0.5304811159 0.6358657931 0.7405628248
0.6 0.5646480000 0.6107378048 0.6987050867 0.7769184826
0.7 0.6442339167 0.6821544353 0.7463647620 0.7934715508
0.8 0.7173973333 0.7440548921 0.7785881405 0.7906972457
0.9 0.7834207500 0.7958160730 0.7952021853 0.7693641881
1 0.8416666667 0.8369088357 0.7962488772 0.7307805928

Example 2. Finally, we consider the fractional nonlinear neutral delay differential equation \[\label{eq19} {}^c{{\mathcal{D}}^v_t}y\left(t\right)=y\left(t\right)+y^2\left(\frac{t}{2}\right),\ \ y\left(0\right)=1, \tag{19}\] where \(t\ge 0,\) and \(0<v\le 1.\)

For \(v=1\) the exact solution is given by \(y\left(t\right)=e^{2t}.\)

According to (14), we get \[\label{20} \begin{cases} y_0\left(t\right)=1,\\ y_1\left(t\right)=\frac{2}{ {\Gamma }\left(v+1\right)}t^v,\\ y_2\left(t\right)=\frac{(2+\frac{4}{2^v})}{ {\Gamma }\left(2v+1\right)}t^{2v},\\ y_3\left(t\right)=\left[\left(2+\frac{4}{2^v}\right)\left(1+\frac{2}{2^{2v}}\right)+\frac{ {4} {\Gamma }\left(2v+1\right)}{2^{2v}{ {\Gamma }}^2\left(v+1\right)}\right]\frac{t^{3v}}{ {\Gamma }\left(3v+1\right)}. \end{cases} \tag{20}\]

Therefore, According to these approximations, the 3\({}^{rd}\) approximation solution of (16) is given by \[\label{eq21} y_{HJM}\left(t\right)=1+\frac{2}{ {\Gamma }\left(v+1\right)}t^v+\frac{(2+\frac{4}{2^v})}{ {\Gamma }\left(2v+1\right)}t^{2v}+\left[\left(2+\frac{4}{2^v}\right)\left(1+\frac{2}{2^{2v}}\right)+\frac{ {4} {\Gamma }\left(2v+1\right)}{2^{2v}{ {\Gamma }}^2\left(v+1\right)}\right]\frac{t^{3v}}{ {\Gamma }\left(3v+1\right)}. \tag{21}\]

Obviously, at \(v=1\) the solution is tends to an exact solution\(\ y\left(t\right)=e^{2t}\).

The absolute error between exact solution and 3\({}^{rd}\) approximation solution obtained by HJM when \(v=1\) are shown in Table 3. The corresponding numerical values of approximation solutions for different values of\(\ v\) are present in Table 4. The graphs of exact and approximation solutions for some values of\(\ v\) are shown in Figure 2.

Table 3 The absolute error between exact and approximation solution of Example 2, when \(v=1\)
\(t\) exact solution approximation solution absolute error
0 1.0000000000 1.0000000000 0.0000000000
0.1 1.2214027582 1.2210833333 0.0003194248
0.2 1.4918246976 1.4886666667 0.0031580310
0.3 1.8221188004 1.8092500000 0.0128688004
0.4 2.2255409285 2.1893333333 0.0362075952
0.5 2.7182818285 2.6354166667 0.0828651618
0.6 3.3201169227 3.1540000000 0.1661169227
0.7 4.0551999668 3.7515833333 0.3036166335
0.8 4.9530324244 4.4346666667 0.5183657577
0.9 6.0496474644 5.2097500000 0.8398974644
1 7.3890560989 6.0833333333 1.3057227656
Table 4 The numerical values of Example 2 approximation solutions for different values of\(\ v\)
\(t\) \(v=1\) \(v=0.9\) \(v=0.8\) \(v=0.6\)
0 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0.1 1.2210833333 1.2854558493 1.3661657796 1.5900117352
0.2 1.4886666667 1.5888399665 1.7030390341 1.9732686863
0.3 1.8092500000 1.9421328113 2.0842775533 2.3818247874
0.4 2.1893333333 2.3582291374 2.5308358819 2.8559893471
0.5 2.6354166667 2.8476358555 3.0579201698 3.4209848531
0.6 3.1540000000 3.4200044222 3.6787526494 4.0972060393
0.7 3.7515833333 4.0845809237 4.4056392489 4.9029300305
0.8 4.4346666667 4.8503875430 5.2503897633 5.8553323142
0.9 5.2097500000 5.7263099115 6.2245163316 6.9709488220
1 6.0833333333 6.7211443497 7.3393391131 8.2659143790

5. Conclusion

In this paper, the Hussein–Jassim method is successfully applied to obtain analytical solution for delay differential equation with fractional order. The solutions obtained by HJM are compared with exact solutions. As a result, the proposed method gives excellent results and in good consistent with the exact solutions. In the future, we will suggest this method for the dynamical systems.

References

  1. Lederman, C., Roquejoffre, J. M., & Wolanski, N. (2004). Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Annali di Matematica Pura ed Applicata, 183, 173-239.

  2. Engheta, N. (1996). On fractional calculus and fractional multipoles in electromagnetism. IEEE Transactions on Antennas and Propagation, 44(4), 554-566.

  3. Kulish, V. V., & Lage, J. L. (2002). Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering, 124(3), 803-806.

  4. Naeem, M., Zidan, A. M., Nonlaopon, K., Syam, M. I., Al-Zhour, Z., & Shah, R. (2021). A new analysis of fractional-order equal-width equations via novel techniques. Symmetry, 13(5), 886.

  5. Bagley, R. L., & Torvik, P. J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA Journal, 23(6), 918-925.

  6. Alomari, A. K., Syam, M. I., Anakira, N. R., & Jameel, A. F. (2020). Homotopy Sumudu transform method for solving applications in physics. Results in Physics, 18, 103265.

  7. Chen, Y., & Moore, K. L. (2001, December). Analytical stability bound for a class of delayed fractional-order dynamic systems. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228) (Vol. 2, pp. 1421-1426). IEEE.

  8. Çağlar, H., Çağlar, N., & Özer, M. (2009). B-spline solution of non-linear singular boundary value problems arising in physiology. Chaos, Solitons & Fractals, 39(3), 1232-1237.

  9. Shahmorad, S., Ostadzad, M. H., & Baleanu, D. (2020). A Tau–like numerical method for solving fractional delay integro–differential equations. Applied Numerical Mathematics, 151, 322-336.

  10. Syam, M. I., & Al-Refai, M. (2020). A reliable method for first order delay equations based on the implicit hybrid method. Alexandria Engineering Journal, 59(4), 2677-2681.

  11. Tassaddiq, A., Yaseen, M., Yousaf, A., & Srivastava, R. (2021). A cubic B-spline collocation method with new approximation for the numerical treatment of the heat equation with classical and non-classical boundary conditions. Physica Scripta, 96(4), 045212.

  12. Zheng, W., Huang, R., Luo, Y., Chen, Y., Wang, X., & Chen, Y. (2022). A look-up table based fractional order composite controller synthesis method for the pmsm speed servo system. Fractal and Fractional, 6(1), 47.

  13. Agarwal, R. P., Al-Hutami, H., & Ahmad, B. (2022). A Langevin-type q-variant system of nonlinear fractional integro-difference equations with nonlocal boundary conditions. Fractal and Fractional, 6(1), 45.

  14. Reyaz, R., Mohamad, A. Q., Lim, Y. J., Saqib, M., & Shafie, S. (2022). Analytical solution for impact of Caputo-Fabrizio fractional derivative on MHD casson fluid with thermal radiation and chemical reaction effects. Fractal and Fractional, 6(1), 38.

  15. Sene, N. (2022). Analytical solutions of a class of fluids models with the Caputo fractional derivative. Fractal and Fractional, 6(1), 35.

  16. Aboodh, K. S., & baker Ahmed, A. (2020). On the application of homotopy analysis method to fractional differential equations. Journal of the Faculty of Science and Technology, (7), 1-18.

  17. Abdoon, M. A., Elbadri, M., Alzahrani, A. B., Berir, M., & Ahmed, A. (2024). Analyzing the inverted fractional rössler system through two approaches: numerical scheme and lham. Physica Scripta, 99(11), 115220.

  18. Masood, S., Naeem, M., Ullah, R., Mustafa, S., & Bariq, A. (2022). Analysis of the Fractional‐Order Delay Differential Equations by the Numerical Method. Complexity, 2022(1), 3218213.

  19. Du, M. J. (2022). A specific method for solving fractional delay differential equation via fraction Taylor’s series. Mathematical Problems in Engineering, 2022(1), 4044039.

  20. Saeed, U., & ur Rehman, M. (2014). Hermite wavelet method for fractional delay differential equations. Journal of Difference Equations, 2014(1), 359093.

  21. Yang, C., Hou, J., & Lv, X. (2022). Jacobi spectral collocation method for solving fractional pantograph delay differential equations. Engineering with Computers, 38(3), 1985-1994.

  22. Dehestani, H., Ordokhani, Y., & Razzaghi, M. (2020). Numerical technique for solving fractional generalized pantograph-delay differential equations by using fractional-order hybrid bessel functions. International Journal of Applied and Computational Mathematics, 6, 1-27.

  23. Hashemi, M. S., Atangana, A., & Hajikhah, S. (2020). Solving fractional pantograph delay equations by an effective computational method. Mathematics and Computers in Simulation, 177, 295-305.

  24. Yuttanan, B., Razzaghi, M., & Vo, T. N. (2021). A fractional‐order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear fractional pantograph differential equations. Mathematical Methods in the Applied Sciences, 44(5), 4156-4175.

  25. Jassim, H. K., & Abdulshareef Hussein, M. (2023). A new approach for solving nonlinear fractional ordinary differential equations. Mathematics, 11(7), 1565.

  26. Pamuk, S., & Soylu, N. (2020). Laplace transform method for logistic growth in a population and predator models. New Trends in Mathematical Sciences, 8(3), 9-17.

  27. Vilu, S., Ahmad, R. R., & Din, U. K. S. (2019). Variational iteration method and Sumudu transform for solving delay differential equation. International Journal of Differential Equations, 2019(1), 6306120.