Well-posedness for a modified nonlinear Schrödinger equation modeling the formation of rogue waves

Author(s): Curtis Holliman1, Logan Hyslop1
1Department of Mathematics, The Catholic University of America, Washington, DC 20064, USA
Copyright © Curtis Holliman, Logan Hyslop. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The Cauchy problem for a higher order modification of the nonlinear Schrödinger equation (MNLS) on the line is shown to be well-posed in Sobolev spaces with exponent \(s > \frac{1}{4}\). This result is achieved by demonstrating that the associated integral operator is a contraction on a Bourgain space that has been adapted to the particular linear symbol present in the equation. The contraction is proved by using microlocal analysis and a trilinear estimate that is shown via the \([k; Z]\)-multiplier norm method developed by Terence Tao.

Keywords: Modified nonlinear Schrödinger equation; Well-posedness in Sobolev spaces; Rogue waves; Initial value problem; Dispersive equations.

1. Introduction

Let \(\Omega\) be a bounded domain in \(\mathbb{R}^{N}\) \((N\geq1)\) with smooth boundary \(\partial\Omega\). We consider the initial-boundary value problem:

\begin{equation} \label{1.1} \left\{ \begin{array}{ll} u_{tt}-\Delta u-\Delta u_{tt}+\Delta^{2}u-g\ast\Delta^{2}u-\Delta u_{t}=|u|^{p-2}u,& x\in\Omega,\ t>0,\\ u=0,\quad \frac{\partial u}{\partial\nu}=0,& x\in\partial\Omega,\ t>0,\\ u(x,0)=u_{0}(x),\quad u_{t}(x,0)=u_{1}(x),& x\in\Omega, \end{array} \right. \end{equation}
(1)
where \(p>2\) and \(\nu\) represents the unit outward normal to \(\partial\Omega\). Here, \(g(t)\) is a positive function that represents the kernel of the memory term, which will be specified in Section 2 and \begin{equation*} g\ast\Delta^{2}u(t)=\int_{0}^{t}g(t-\tau)\Delta^{2}u(\tau)d\tau. \end{equation*} The motivation of our work is due to the initial boundary problem of the double dispersive-dissipative wave equation with nonlinear damping and source terms
\begin{equation} \label{1.2} \left\{ \begin{array}{ll} u_{tt}-\Delta u-\Delta u_{tt}+\Delta^{2}u-\Delta u_{t}+a|u_{t}|^{m-2}u_{t}=b|u|^{p-2}u,& x\in\Omega,\ t>0,\\ u=0,\quad \frac{\partial u}{\partial\nu}=0,& x\in\partial\Omega,\ t>0,\\ u(x,0)=u_{0}(x),\quad u_{t}(x,0)=u_{1}(x),& x\in\Omega,\\ a,b>0, & \end{array} \right. \end{equation}
(2)
which has been discussed by Di and Shang [1] by considering the existence of global solutions and the asymptotic behavior of global solutions with \(m\geq p\).

In the absence of the dispersive term and the nonlinear damping term, model \(2\) reduces to the following wave equation

\begin{equation} \label{1.3} u_{tt}-\Delta u-\Delta u_{tt}-\Delta u_{t}=f(u). \end{equation}
(3)
Shang [2] studied the well-posedness, asymptotic behavior, and the finite time blow-up of the solutions under some suitable conditions on \(f\) and for \(N=1,2,3\). Zhang and Hu [3] showed the existence and the stability of global weak solutions. Xie and Zhong [4] obtained the existence of global attractors in \(H^{1}_{0}(\Omega)\times H^{1}_{0}(\Omega)\), where the nonlinear term \(f\) satisfies a critical exponential growth assumption. Xu et al., [5] used the multiplier method to investigate the asymptotic behavior of solutions for (3).

Mellah [6] considered the following initial-boundary value problem

\begin{equation*}\label{W} \left\{ \begin{array}{ll} u_{tt}-\Delta u+\Delta^{2}u-g\ast\Delta^{2}u+u_{t}=|u|^{p-1}u,& x\in\Omega,\ t>0,\\ u=0,\quad \frac{\partial u}{\partial\nu}=0,& x\in\partial\Omega,\ t>0,\\ u(x,0)=u_{0}(x),\quad u_{t}(x,0)=u_{1}(x),& x\in\Omega, \end{array} \right. \end{equation*} in a bounded domain and \(p>1\). He investigated the small data global weak solutions and general decay of solutions, respectively.

Motivated by previous works, it is interesting to prove that problem (1) has a global weak solution assuming small initial data. In addition, we show the general decay of solutions. The global solutions are constructed by means of the Galerkin approximations and the general decay is obtained by employing the technique used in [7].

2. Preliminaries

In this section, we present some materials needed in the proof of our main result. We use the following abbreviations; \(\|\cdot\|_{p}=\|\cdot\|_{L^{p}(\Omega)}\) \((1\leq p\leq+\infty)\) denotes usual \(L^{p}\) norm, \((\cdot,\cdot)\) denotes the \(L^{2}\)-inner product, and consider the Sobolev spaces \(H^{1}_{0}(\Omega)\) and \(H^{2}_{0}(\Omega)\) with their usual scalar products and norms. We also use the embedding \(H^{1}_{0}(\Omega)\hookrightarrow L^{p}(\Omega)\) for \(2< p\leq\frac{2N}{N-2}\) if \(N\geq3\) or \(2< p< \infty\) if \(N=1,2\). In this case, the embedding constant is denoted by \(C_{*}\), that is \( \|u\|_{p}\leq C_{*}\|\nabla u\|_{2}. \) We define \begin{equation*} Q(z)=\frac{1}{2}z^{2}-\frac{C_{*}^{p}}{p}z^{p}. \end{equation*} By the direct computation, we deduce that \(Q\) is increasing in \([0,z_{0}]\), where \( z_{0}=C_{*}^{\frac{p}{2-p}} \) is its unique local maximum.

Next, we give the assumptions for problem (1).

  • (G1) The relaxation function \(g:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\) is a bounded \(C^{1}\) function such that \begin{equation*} g(0)>0,\quad 0< \eta=1-\int_{0}^{\infty}g(\tau)d\tau\leq1-\int_{0}^{t}g(\tau)d\tau=\eta(t). \end{equation*}
  • (G2) There exist positive constants \(\xi_{1}\) and \(\xi_{2}\) such that \begin{equation*} -\xi_{1}g(t)\leq g'(t)\leq-\xi_{2}g(t)\quad \forall t\geq0. \end{equation*}
  • (G3) We also assume that \begin{equation*} 2

    2 \ \ \ \mbox {if} \ \ N=1,2, \end{equation*}

where \(\lambda_{1}\) is the first eigenvalue of the following problem
\begin{equation} \label{2.4} \Delta^{2}u=\lambda_{1}u \quad \text{in} \ \Omega,\quad u=\frac{\partial u}{\partial\nu}=0 \quad \text{in} \ \partial\Omega. \end{equation}
(4)

Remark 1. [8] Assuming \(\lambda_{1}\) is the first eigenvalue of the problem (4), we have

\begin{equation} \label{2.5} \|\Delta u\|_{2}^{2}\geq\lambda_{1}\|\nabla u\|_{2}^{2}. \end{equation}
(5)
The energy associated with problem (1) is given by
\begin{eqnarray} \label{2.6} E(t)&=&\frac{1}{2}\|u_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u_{t}\|^{2}_{2}+\frac{1}{2}\left(1-\int_{0}^{t}g(\tau)d\tau\right)\|\Delta u\|^{2}_{2}+\frac{1}{2}\|\nabla u\|^{2}_{2} +\frac{1}{2}(g\circ \Delta u)(t)-\frac{1}{p}\|u\|_{p}^{p}, \end{eqnarray}
(6)
for \(u\in H^{2}_{0}(\Omega)\), where \begin{equation*} (g\circ\Delta u)(t)=\int_{0}^{t}g(t-\tau)\|\Delta u(\tau)-\Delta u(t)\|_{2}^{2}d\tau. \end{equation*} Now, we are in a position to state our main results.

3. Main results

In this section, we are going to obtain the existence of global weak solutions for problem (1) with the initial conditions \(\|\nabla u_{0}\|_{2}< z_{0}\) and \(E(0)< Q(z_{0})\).

Theorem 1. Assume that \((G1)-(G3)\) hold, and that \(\left\{u_{0},u_{1}\right\}\) belong to \(H^{2}_{0}(\Omega)\times H^{1}_{0}(\Omega)\). Further assume that \(\|\nabla u_{0}\|_{2}< z_{0}\) and \(E(0)< Q(z_{0})\). Then, problem (1) admits a global weak solution, which satisfies \[u\in L^{\infty}(0,\infty;H^{2}_{0}(\Omega)),\quad u_{t}\in L^{\infty}(0,\infty;H^{1}_{0}(\Omega)).\] Moreover, the identity

\begin{eqnarray} \label{3.7} E(t)+\int_{0}^{t}\|\nabla u_{t}(\tau)\|_{2}^{2}d\tau-\frac{1}{2}\int_{0}^{t}(g’\circ \Delta u)(\tau)d\tau+\frac{1}{2}\int_{0}^{t}g(\tau)\|\Delta u(\tau)\|_{2}^{2}d\tau=E(0), \end{eqnarray}
(7)
holds for \(0\leq t< \infty\). Also, for an increasing \(C^{2}\) function \(\zeta:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}\) satisfying
\begin{equation} \label{3.8} \zeta(0)=0,\quad \zeta_{t}(0)>0,\quad \lim_{t\rightarrow+\infty}\zeta(t)=+\infty,\quad \zeta_{tt}(t)< 0\quad \forall t\geq0, \end{equation}
(8)
and, if \(\|g\|_{L^{1}(0,\infty)}\) is sufficiently small, we have for \(\kappa>0\) \begin{equation*} E(t)\leq E(0)e^{-\kappa \zeta(t)},\quad \forall t\geq0. \end{equation*}

Remark 2. From (8) and \((G2)\), we obtain

\begin{eqnarray} \label{3.9} \frac{d}{dt}E(t)&=&-\|\nabla u_{t}(t)\|_{2}^{2}+\frac{1}{2}(g’\circ\Delta u)(t) -\frac{1}{2}g(t)\|\Delta u(t)\|_{2}^{2}\nonumber\\ &\leq&-\|\nabla u_{t}(t)\|_{2}^{2}-\frac{1}{2}\xi_{2}(g\circ\Delta u)(t) -\frac{1}{2}g(t)\|\Delta u(t)\|_{2}^{2}\leq0. \end{eqnarray}
(9)

Proof of Theorem 1 (Main result)

We divide the proof into two steps. In step 1, we prove the small data global existence of weak solutions by using the Faedo-Galerkin approximation and in step 2, we establish the general decay of energy employing the method used in [7].

Step 1: Global existence of weak solutions

Let \(\left\{\omega_{j}\right\}_{j=1}^{\infty}\) be an orthogonal basis of \(H^{2}_{0}(\Omega)\) with \(\omega_{j}\) being the eigenfunction of the following problem: \begin{equation*} -\Delta \omega_{j}=\lambda_{j}\omega_{j},\quad x\in\Omega,\quad \omega_{j}=0,\quad x\in\partial\Omega. \end{equation*} Let \(V^{n}=\text{Span}\left\{\omega_{1},\omega_{2},\cdot\cdot\cdot,\omega_{n}\right\}\). By the standard method of ODE, we know that there exists only one local solution \begin{equation*} u^{n}(t)=\sum_{j=1}^{n}b^{n}_{j}(t)\omega_{j} \end{equation*} of the Cauchy problem as follows:
\begin{eqnarray} \label{4.10} &&\int_{\Omega}u^{n}_{tt}\omega dx+\int_{\Omega}\nabla u^{n}\cdot\nabla \omega dx+\int_{\Omega}\nabla u^{n}_{tt}\cdot\nabla \omega dx+\int_{\Omega}\Delta u^{n}\cdot\Delta \omega dx\nonumber\\ &&-\int_{0}^{t}g(t-\tau)\int_{\Omega}\Delta u^{n}(\tau)\cdot\Delta \omega dxd\tau+\int_{\Omega}\nabla u^{n}_{t}\cdot\nabla \omega dx-\int_{\Omega}|u^{n}|^{p-2}u^{n}\omega dx=0, \end{eqnarray}
(10)
\begin{equation} \label{4.11} u^{n}(0)=u^{n}_{0}\rightarrow u_{0},\ \ \mbox {in} \ \ H^{2}_{0}(\Omega),\quad u^{n}_{t}(0)=u^{n}_{1}\rightarrow u_{1}\ \ \mbox {in} \ \ \ H^{1}_{0}(\Omega). \end{equation}
(11)
By the standard theory of ODE system, we prove the existence of solutions of problem (10)-(11) on some interval \([0, t_{n})\), \(0< t_{n}0\), then, this solution can be extended to the whole interval \([0,T]\) using the first estimate given below.

A Priori Estimates

Setting \(\omega=u^{n}_{t}(t)\) in (10), we have
\begin{eqnarray} \label{4.12} &&\frac{1}{2}\frac{d}{dt}\|u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\frac{d}{dt}\|\nabla u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\frac{d}{dt}\|\nabla u^{n}\|^{2}_{2}+\frac{1}{2}\frac{d}{dt}\|\Delta u^{n}\|^{2}_{2}-\frac{1}{p}\frac{d}{dt}\|u^{n}\|_{p}^{p}+\|\nabla u^{n}_{t}\|^{2}_{2}\nonumber\\ &&-\int_{0}^{t}g(t-\tau)\int_{\Omega}\Delta u^{n}(\tau)\cdot\Delta u^{n}_{t}(t)dxd\tau=0. \end{eqnarray}
(12)
A direct computation shows that
\begin{eqnarray} \label{4.13} &&-\int_{0}^{t}g(t-\tau)\int_{\Omega}\Delta u^{n}(\tau)\cdot\Delta u^{n}_{t}(t)dxd\tau \nonumber\\ &&=\frac{1}{2}\frac{d}{dt}(g\circ\Delta u^{n})(t)-\frac{1}{2}\frac{d}{dt}\left(\int_{0}^{t}g(\tau)d\tau\right)\|\Delta u^{n}(t)\|^{2}_{2}-\frac{1}{2}(g’\circ\Delta u^{n})(t)+\frac{1}{2}g(t)\|\Delta u^{n}(t)\|^{2}_{2}. \end{eqnarray}
(13)
Inserting (13) into (12) and integrating over \([0,t]\subset[0, T]\), we obtain
\begin{eqnarray} \label{4.14} &&\frac{1}{2}\|u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}_{t}\|^{2}_{2}+\frac{\eta(t)}{2}\|\Delta u^{n}(t)\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}\|^{2}_{2}-\frac{1}{p}\|u^{n}\|_{p}^{p} +\int_{0}^{t}\|\nabla u^{n}_{t}(\tau)\|^{2}_{2}d\tau+\frac{1}{2}(g\circ\Delta u^{n})(t)\nonumber\\ &&-\frac{1}{2}\int_{0}^{t}(g’\circ\Delta u^{n})(\tau)d\tau+\frac{1}{2}\int_{0}^{t}g(\tau)\|\Delta u^{n}(\tau)\|^{2}_{2}d\tau=E^{n}(0). \end{eqnarray}
(14)
From assumption \((G3)\) and the Sobolev embedding, we have \begin{equation*} \|u^{n}\|^{p}_{p}\leq C_{*}^{p}\|\nabla u^{n}\|^{p}_{2}, \end{equation*} and then we have
\begin{eqnarray} \label{4.15} &&\frac{1}{2}\|u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}_{t}\|^{2}_{2}+\frac{\eta(t)}{2}\|\Delta u^{n}(t)\|^{2}_{2}+\mathcal{Q}(\|\nabla u^{n}\|^{2}_{2})+\int_{0}^{t}\|\triangle u^{n}_{t}(\tau)\|^{2}_{2}d\tau+\frac{1}{2}(g\circ\Delta u^{n})(t)\nonumber\\ &&-\frac{1}{2}\int_{0}^{t}(g’\circ\Delta u^{n})(\tau)d\tau+\frac{1}{2}\int_{0}^{t}g(\tau)\|\Delta u^{n}(\tau)\|^{2}_{2}d\tau\leq E^{n}(0). \end{eqnarray}
(15)
By using the fact that \begin{equation*} -\int_{0}^{t}(g’\circ\Delta u^{n})(\tau)d\tau+\int_{0}^{t}g(\tau)\|\Delta u^{n}(\tau)\|^{2}_{2}d\tau\geq0, \end{equation*} estimate (15) yields
\begin{equation} \label{4.16} \frac{1}{2}\|u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}_{t}\|^{2}_{2}+\frac{\eta(t)}{2}\|\Delta u^{n}(t)\|^{2}_{2}+\frac{1}{2}(g\circ\Delta u^{n})(t)+\mathcal{Q}(\|\nabla u^{n}\|^{2}_{2})+\int_{0}^{t}\|\nabla u^{n}_{t}(\tau)\|^{2}_{2}d\tau\leq E^{n}(0). \end{equation}
(16)
From \(E(0)< \mathcal{Q}(z_{0})\) and (11), it follows that
\begin{equation} \label{4.17} E^{n}(0)< \mathcal{Q}(z_{0}) \end{equation}
(17)
for sufficiently large \(n\). We claim that there exists an integer \(N\) such that
\begin{equation} \label{4.18} \|\nabla u^{n}(t)\|^{2}_{2}N. \end{equation}
(18)
Suppose the claim is proved, then \(\mathcal{Q}(\|\nabla u^{n}\|^{2}_{2})\geq0\) and from (16) and (17),
\begin{equation} \label{4.19} \frac{1}{2}\|u^{n}_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}_{t}\|^{2}_{2}+\frac{\eta(t)}{2}\|\Delta u^{n}(t)\|^{2}_{2}+\frac{1}{2}(g\circ\Delta u^{n})(t)+\int_{0}^{t}\|\nabla u^{n}_{t}(\tau)\|^{2}_{2}d\tau\leq E^{n}(0)< \mathcal{Q}(z_{0}), \end{equation}
(19)
for sufficiently large \(n\) and \(0\leq t< \infty\).

Proof of the claim

Suppose that (18) false, then for each \(n>N\), there exists \(t\in[0,t_{n})\) such that \(\|\nabla u^{n}(t)\|_{2}\geq z_{0}\). Note that from \(\|\nabla u_{0}\|_{2}< z_{0}\) and (11) there exists \(N_{0}\) such that \begin{equation*} \|\nabla u^{n}(0)\|_{2}N_{0}. \end{equation*} Then by continuity there exits a first \(\widetilde{t_{n}}\in[0,t_{n})\) such that
\begin{equation} \label{4.20} \|\nabla u^{n}(\widetilde{t_{n}})\|_{2}=z_{0}, \end{equation}
(20)
from where \begin{equation*} \mathcal{Q}(\|\nabla u^{n}(t)\|_{2})\geq0 \quad \forall t\in[0,\widetilde{t_{n}}]. \end{equation*} From \(E(0)N_{0}\) and \(\gamma\in(0,z_{0})\) such that \begin{eqnarray*} 0&\leq&\frac{1}{2}\|u^{n}_{t}(t)\|^{2}_{2}+\frac{1}{2}\|\nabla u^{n}_{t}(t)\|^{2}_{2}+\frac{\eta(t)}{2}\|\Delta u^{n}(t)\|^{2}_{2}+\frac{1}{2}(g\circ\Delta u^{n})(t)+\mathcal{Q}(\|\nabla u^{n}(t)\|^{2}_{2})\nonumber\\ &\leq&\mathcal{Q}(\gamma)\quad \forall\;\;\; t\in[0,\widetilde{t_{n}}]\quad \forall n>N. \end{eqnarray*} The monotonicity of \(\mathcal{Q}\) in \([0,z_{0}]\) implies that \begin{equation*} 0\leq\|\nabla u^{n}(t)\|^{2}_{2}\leq\gamma< z_{0}\quad \forall t\in[0,\widetilde{t_{n}}], \end{equation*} in particular, \(\|\nabla u^{n}(t)\|^{2}_{2}< z_{0}\), which is a contradiction to (20). From (19), we have
\begin{align} \label{4.21} \|\Delta u^{n}\|^{2}_{2}&< \frac{2\mathcal{Q}(z_{0})}{\eta},& 0\leq t< \infty,\\ \end{align}
(21)
\begin{align} \label{4.22} \| u^{n}_{t}\|^{2}_{2}&< 2\mathcal{Q}(z_{0}),& 0\leq t< \infty,\\ \end{align}
(22)
\begin{align} \label{4.23} \|\nabla u^{n}_{t}\|^{2}_{2}&< 2\mathcal{Q}(z_{0}),& 0\leq t< \infty,\\ \end{align}
(23)
\begin{align} \label{4.24} \int_{0}^{t}\|\nabla u^{n}_{t}(\tau)\|^{2}_{2}d\tau&<\mathcal{Q}(z_{0}),& 0\leq t< \infty. \end{align}
(24)
Using Sobolev inequality, (5) and (21), it follows that
\begin{eqnarray} \label{4.25} \|u^{n}\|^{2}_{p}&\leq& C_{*}^{2}\|\nabla u^{n}\|^{2}_{2}\leq C_{*}^{2}\lambda_{1}^{-1}\|\Delta u^{n}\|^{2}_{2}< \frac{2C_{*}^{2}\lambda_{1}^{-1}\mathcal{Q}(z_{0})}{\eta},\quad 0\leq t< \infty. \end{eqnarray}
(25)
Moreover, by (25), we get
\begin{eqnarray} |(|u^{n}|^{p-2}u^{n},u^{n})|&\leq& \|u^{n}\|^{p}_{p}< C_{*}^{p}\left(\frac{2C_{*}^{2}\lambda_{1}^{-1}\mathcal{Q}(z_{0})}{\eta}\right)^{\frac{p}{2}},\quad 0\leq t< \infty. \end{eqnarray}
(26)
Therefore, there exist \(u\), \(\chi\) and a subsequence still denotes \(\left\{u_{n}\right\}\) such that
\begin{equation} u_{n}\rightarrow u \ \ \mbox {weak star in} \ \ \ L^{\infty}(0,\infty;H_{0}^{2}(\Omega)),\quad n\rightarrow+\infty, \end{equation}
(27)
\begin{equation} u^{n}_{t}\rightarrow u_{t} \ \ \mbox {weak star in} \ \ \ L^{\infty}(0,\infty;H_{0}^{1}(\Omega)),\quad n\rightarrow+\infty, \end{equation}
(28)
\begin{equation} |u^{n}|^{p-2}u^{n}\rightarrow \chi \ \ \mbox {weak star in} \ \ \ L^{\infty}(0,\infty;L^{\frac{p}{p-1}}(\Omega)),\quad n\rightarrow+\infty, \end{equation}
(29)
Besides, from Lions-Aubin Lemma we also have
\begin{equation} u^{n}\rightarrow u \ \ \mbox {strongly in} \ \ \ L^{2}(0,\infty;L^{2}(\Omega)),\quad n\rightarrow+\infty, \end{equation}
(30)
and consequently, making use of the Lemma 1.3 in [9], we deduce
\begin{equation} |u^{n}|^{p-2}u^{n}\rightarrow \chi=|u|^{p-2}u \ \ \mbox {weak star in} \ \ \ L^{\infty}(0,\infty;L^{\frac{p}{p-1}}(\Omega)),\quad n\rightarrow+\infty. \end{equation}
(31)
Thus, we obtain that \(u\) is a global weak of problem (1). In order to prove (7), we use the mean value theorem, we see that there exists \(0< \theta_{n}0\), we obtain \begin{eqnarray*} |(g\circ\Delta u)(t)-(g\circ\Delta u^{n})(t)|&=&\left|\int_{0}^{t}g(t-\tau)\|\Delta u(\tau)-\Delta u(t)\|^{2}_{2}d\tau-\int_{0}^{t}g(t-\tau)\|\Delta u^{n}(\tau)-\Delta u^{n}(t)\|^{2}_{2}d\tau\right|\nonumber\\ &\leq& \int_{0}^{t}g(t-\tau)\|\Delta u(\tau)-\Delta u^{n}(\tau)\|_{2}\|\Delta u(\tau)+\Delta u^{n}(\tau)\|_{2}d\tau\nonumber\\ &&+\int_{0}^{t}g(t-\tau)\|\Delta u(\tau)-\Delta u^{n}(\tau)\|_{2}d\tau\|\Delta u(t)+\Delta u^{n}(t)\|_{2}\nonumber\\ &&+\int_{0}^{t}g(t-\tau)\|\Delta u(\tau)+\Delta u^{n}(\tau)\|_{2}d\tau\|\Delta u(t)-\Delta u^{n}(t)\|_{2}\nonumber\\ &&+\int_{0}^{t}g(\tau)d\tau\|\Delta u(t)+\Delta u^{n}(t)\|_{2}\|\Delta u(t)-\Delta u^{n}(t)\|_{2}\nonumber\\ &\leq&c\int_{0}^{t}g(t-\tau)\|\Delta u(\tau)-\Delta u^{n}(\tau)\|_{2}d\tau\\ &&+c\int_{0}^{t}g(\tau)d\tau\|\Delta u(t)-\Delta u^{n}(t)\|_{2}\rightarrow 0 \ \ \mbox {as} \ \ \ n\rightarrow +\infty. \end{eqnarray*} Thus, we have \begin{equation*} \lim_{n\rightarrow +\infty}\|u^{n}\|_{p}^{p}=\|u\|_{p}^{p},\quad \lim_{n\rightarrow +\infty}(g\circ\Delta u^{n})(t)=(g\circ\Delta u)(t). \end{equation*} From (11), it follows that \(E^{n}(0)\rightarrow E(0)\) as \(n\rightarrow+\infty\). Finally, taking \(n\rightarrow +\infty\) in (14), we deduce that the energy identity (7) holds for \(0\leq t< \infty \).

Step 2: General decay of the energy

Here, we prove the energy decay estimate of the global solutions obtained in the previous section. To obtain the decay result, we use the following lemmas which are of crucial importance in the proof.

Lemma 1. Let \(u\in L^{\infty}(0,\infty;H^{2}_{0}(\Omega))\) with \(u_{t}\in L^{\infty}(0,\infty;H^{1}_{0}(\Omega))\) be the solution of (1) and \(E(0)< \mathcal{Q}(z_{0})\), \(\|\nabla u_{0}\|_{2}< z_{0}\), then we have

\begin{eqnarray} \label{4.32} 0\leq E(t)\leq C_{1}\|\nabla u_{t}\|_{2}^{2}+C_{2}\|\Delta u\|^{2}_{2}+\frac{1}{2}(g\circ \Delta u)(t), \end{eqnarray}
(32)
where \(C_{1}=\frac{1}{2}(1+B^{2})\), \(C_{2}=\frac{1}{2}(1+\lambda_{1}^{-1})\) and \(B\) is the optimal constant satisfying the Poincare inequality \(\|u_{t}\|_{2}\leq B\|\nabla u_{t}\|_{2}\).

Proof. From \(E(0)< \mathcal{Q}(z_{0})\) and \(\|\nabla u_{0}\|_{2}< z_{0}\), we can obtain \(\mathcal{Q}(\|\nabla u(t)\|_{2})\geq0\) for \(0\leq t< \infty\). Thus we have \begin{eqnarray*} E(t)&=&\frac{1}{2}\|u_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u\|^{2}_{2}+\frac{1}{2}(g\circ \Delta u)(t)+\frac{1}{2}\left(1-\int_{0}^{t}g(\tau)d\tau\right)\|\Delta u\|^{2}_{2}-\frac{1}{p}\|u\|_{p}^{p}\nonumber\\ &\geq&\frac{1}{2}\|u_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u_{t}\|^{2}_{2}+\frac{\eta}{2}\|\Delta u\|^{2}_{2}+\frac{1}{2}(g\circ \Delta u)(t)+\mathcal{Q}(\|\nabla u(t)\|_{2})\\&\geq&0, \end{eqnarray*} and \begin{eqnarray*} E(t)&\leq&\frac{1}{2}\|u_{t}\|^{2}_{2}+\frac{1}{2}\|\nabla u_{t}\|^{2}_{2}+\frac{1}{2}\|\Delta u\|^{2}_{2}+\frac{1}{2}(g\circ \Delta u)(t)+\frac{1}{2}\|\nabla u\|^{2}_{2}\nonumber\\ &\leq& \frac{1}{2}B^{2}\|\nabla u_{t}\|_{2}^{2}+\frac{1}{2}\|\nabla u_{t}\|_{2}^{2}+\frac{1}{2}\lambda_{1}^{-1}\|\Delta u\|^{2}_{2}+\frac{1}{2}\|\Delta u\|^{2}_{2}+\frac{1}{2}(g\circ \Delta u)(t). \end{eqnarray*} Let \(C_{1}=\frac{1}{2}(1+B^{2})\) and \(C_{2}=\frac{1}{2}(1+\lambda_{1}^{-1})\), then we have (32).

Lemma 2. The energy \(E(t)\) satisfies

\begin{eqnarray} \label{4.33} \frac{d E(t)}{dt}&\leq&-\|\nabla u_{t}(t)\|^{2}_{2}-\frac{1}{2}\xi_{2}(g\circ\Delta u)(t)-\frac{1}{2}\left[g(0)-\xi_{1}\|g\|_{L^{1}(0,\infty)}\right]\|\Delta u(t)\|^{2}_{2}\quad \forall \;\;\; t\geq0. \end{eqnarray}
(33)

Proof. From (9), we have

\begin{eqnarray} \label{4.34} \frac{d E(t)}{dt}&\leq&-\|\nabla u_{t}(t)\|^{2}_{2}-\frac{\xi_{2}}{2}(g\circ \Delta u)(t)-\frac{1}{2}g(t)\|\Delta u(t)\|^{2}_{2}. \end{eqnarray}
(34)
From assumptions \((G2)\) and since \(\int_{0}^{t}g'(\tau)d\tau=g(t)-g(0)\), we obtain
\begin{eqnarray} \label{4.35} -\frac{1}{2}g(t)\|\Delta u(t)\|^{2}_{2}&=&-\frac{1}{2}g(0)\|\Delta u(t)\|^{2}_{2}-\frac{1}{2}\left(\int_{0}^{t}g'(\tau)d\tau\right)\|\Delta u(t)\|^{2}_{2}\nonumber\\ &\leq&-\frac{1}{2}g(0)\|\Delta u(t)\|^{2}_{2}+\frac{\xi_{1}}{2}\|g\|_{L^{1}(0,\infty)}\|\Delta u(t)\|^{2}_{2}\nonumber\\ &=&-\frac{1}{2}\left[g(0)-\xi_{1}\|g\|_{L^{1}(0,\infty)}\right]\|\Delta u(t)\|^{2}_{2}. \end{eqnarray}
(35)
Then, Combining (34) and (35) our conclusion holds. Multiplying (33) by \(e^{\kappa\zeta(t)}\) \((\kappa>0)\) and using (32), we have
\begin{eqnarray} \label{4.36} \frac{d}{dt}\left(e^{\kappa\zeta(t)}E(t)\right)&\leq&-\|\nabla u_{t}(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t) -\frac{1}{2}\xi_{2}(g\circ\Delta u)(t)e^{\kappa\zeta(t)}E(t)\nonumber\\ &&-\frac{1}{2}\left[g(0)-\xi_{1}\|g\|_{L^{1}(0,\infty)}\right]\|\Delta u(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t)+\kappa\zeta_{t}(t)e^{\kappa\zeta(t)}E(t)\nonumber\\ &\leq&-\left[1-\kappa C_{1}\zeta_{t}(t)\right]\|\nabla u_{t}(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t)-\frac{1}{2}\left[\xi_{2}-\kappa\zeta_{t}(t)\right](g\circ\Delta u)(t)e^{\kappa\zeta(t)}E(t)\nonumber\\ &&-\frac{1}{2}\left[g(0)-\xi_{1}\|g\|_{L^{1}}-2C_{2}\kappa\zeta_{t}(t)\right]\|\Delta u(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t). \end{eqnarray}
(36)
Using the fact that \(\zeta_{t}\) is decreasing by (8), we conclude that
\begin{eqnarray} \label{4.37} \frac{d}{dt}\left(e^{\kappa\zeta(t)}E(t)\right)&\leq&-\left[1-\kappa C_{1}\zeta_{t}(0)\right] \|\nabla u_{t}(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t)-\frac{1}{2}\left[\xi_{2}-\kappa\zeta_{t}(0)\right](g\circ\Delta u)(t)e^{\kappa\zeta(t)}E(t)\nonumber\\ &&-\frac{1}{2}\left[g(0)-\xi_{1}\|g\|_{L^{1}(0,\infty)}-2C_{2}\kappa\zeta_{t}(0)\right]\|\Delta u(t)\|^{2}_{2}e^{\kappa\zeta(t)}E(t). \end{eqnarray}
(37)
Choosing \(\|g\|_{L^{1}(0,\infty)}\) sufficiently small so that \[g(0)-\xi_{1}\|g\|_{L^{1}(0,\infty)}=K>0\] and defining \[\kappa_{0}=\min\left\{\frac{1}{C_{1}\zeta_{t}(0)},\frac{\xi_{2}}{\zeta_{t}(0)},\frac{K}{2C_{2}\zeta_{t}(0)}\right\},\] we conclude by taking \(\kappa\in(0, \kappa_{0}]\) in (37) that
\begin{equation} \label{4.38} \frac{d}{dt}\left(e^{\kappa\zeta(t)}E(t)\right)\leq0,\quad t>0. \end{equation}
(38)
Integrating (38) over \((0,t)\), it follows that
\begin{equation} E(t)\leq E(0)e^{-\kappa\zeta(t)},\quad t>0. \end{equation}
(39)

Example 1. For \(\zeta(t)=t+\frac{t}{t+1}\), we can get the exponential decay rate \( E(t)\leq E(0)e^{-\kappa t},\quad \forall t\geq0. \) For \(\zeta(t)=ln(1+t)\), we can get polynomial decay rate \( E(t)\leq E(0)(1+t)^{-\kappa },\quad \forall t\geq0. \)

Conflicts of Interests

”The author declares no conflict of interest.”

References:

  1. Di, H., & Shang, Y. (2015). Global existence and asymptotic behavior of solutions for the double dispersive-dissipative wave equation with nonlinear damping and source terms. Boundary Value Problems, 2015, Article no. 29. [Google Scholor]
  2. Shang, Y. D. (2000). Initial boundary value problem of equation \(u_{tt}-\Delta u-\Delta u_{t}-\Delta u_{tt}=f(u)\). Acta Mathematicae Applicatae Sinica, 23(3), 385-393. [Google Scholor]
  3. Zhang, H. W., & Hu, Q. Y. (2004). Existence of global weak solution and stability of a class nonlinear evolution equation. Acta Mathematicae Applicatae Sinica, 24A(3), 329-336. [Google Scholor]
  4. Xie, Y., & Zhong, C. (2007). The existence of global attractors for a class nonlinear evolution equation. Journal of Mathematical Analysis and Applications, 336(1), 54-69. [Google Scholor]
  5. Xu, R. Z., Zhao, X. R., & Shen, J. H. (2008). Asymptotic behaviour of solution for fourth order wave equation with dispersive and dissipative terms. Applied Mathematics and Mechanics, 29(2), 259-262.[Google Scholor]
  6. Mellah, M. (2020). Global solutions and general decay for the dispersive wave equation with memory and source terms. Open Journal of Mathematical Analysis, 4(2), 116-122. [Google Scholor]
  7. Mellah, M., & Hakem, A. (2019). Global existence, uniqueness, and asymptotic behavior of solution for the Euler-Bernoulli viscoelastic equation. Open Journal of Mathematical Analysis, 3(1), 42-51. [Google Scholor]
  8. Park, J. Y., & Kang, J. R. (2010). Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Acta Applicandae Mathematicae, 110(3), 1393-1406.[Google Scholor]
  9. Lions, J. L. (1969). Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod Gauthier-Villars, Paris. [Google Scholor]