In this paper we have presented a new method to compute the determinant of a \(5\times5\) matrix.
Definition 2.1. An \(n\times n\) matrix \(A_n=[a_{ij}]_{n\times n}\) is doubly nonsingular if and only if \(A_n\) is nonsingular and all \(2\times2\) matrices of adjacent terms within the \(A_n\) are nonsingular.
Example 2.2. Let \(A_3=\begin{bmatrix} 1&6&3\\ 3&2&2\\ 6&1&3 \end{bmatrix}_{3\times3}\). We have \(det(A_3)=-5\), consequently \(A_3\) is nonsingular. Clearly, all \(2\times2\) determinants of adjacent terms are nonzero. Hence, the matrix \(A_3\) is doubly nonsingular.
Now, we introduce a new function, which we call the \textit{star fraction}:Definition 2.3. Given two \(3\times3\) matrices \(A_3=\begin{bmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{bmatrix}_{3\times3}\) and \(B_3=\begin{bmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\\ b_{31}&b_{32}&b_{33} \end{bmatrix}_{3\times3}\) such that \(b_{ij}\neq0 (\forall i,j=1, 2, 3)\) and \(B_3\) is doubly nonsingular. The star fraction of \(A_3\) on \(B_3\) is defined as: \begin{equation*} \left(\frac{A_3}{B_3}\right)^*= \left( \frac{\begin{bmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{bmatrix}_{3\times3}}{\begin{bmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\\ b_{31}&b_{32}&b_{33} \end{bmatrix}_{3\times3}}\right)^*= \frac{\begin{vmatrix} \frac{\begin{vmatrix} \frac{a_{11}}{b_{11}}&\frac{a_{12}}{b_{12}}\\ \frac{a_{21}}{b_{21}}&\frac{a_{22}}{b_{22}} \end{vmatrix}}{\begin{vmatrix} b_{11}&b_{12}\\ b_{21}&b_{22} \end{vmatrix}}& \frac{\begin{vmatrix} \frac{a_{12}}{b_{12}}&\frac{a_{13}}{b_{13}}\\ \frac{a_{22}}{b_{22}}&\frac{a_{23}}{b_{23}} \end{vmatrix}}{\begin{vmatrix} b_{12}&b_{13}\\ b_{22}&b_{23} \end{vmatrix}}\\\\ \frac{\begin{vmatrix} \frac{a_{21}}{b_{21}}&\frac{a_{22}}{b_{22}}\\ \frac{a_{31}}{b_{31}}&\frac{a_{32}}{b_{32}} \end{vmatrix}}{\begin{vmatrix} b_{21}&b_{22}\\ b_{31}&b_{32} \end{vmatrix}} & \frac{\begin{vmatrix} \frac{a_{22}}{b_{22}}&\frac{a_{23}}{b_{23}}\\ \frac{a_{32}}{b_{32}}&\frac{a_{33}}{b_{33}} \end{vmatrix}}{\begin{vmatrix} b_{22}&b_{23}\\ b_{32}&b_{33} \end{vmatrix}} \end{vmatrix}}{\begin{vmatrix} b_{11}&b_{12}&b_{13}\\ b_{21}&b_{22}&b_{23}\\ b_{31}&b_{32}&b_{33} \end{vmatrix}}. \end{equation*}
In the next section, we will show that the star fraction is a useful function for calculating the determinant of a \(5\times5\) matrix. Now, we shall know about the Dodgson’s condensation of a matrix that was introduced by Charles Lutwidge Dodgson in 1866 [1]:Definition 2.4. The Dodgson’s condensation of an \(n\times n\) matrix \(A_n=[a_{ij}]_{n\times n}\) is an \((n-1)\times (n-1)\) matrix such as \([m_{ij}]_{(n-1)\times(n-1)}\) such that $$m_{ij}=\begin{vmatrix} a_{ij}& a_{i(j+1)}\\ a_{(i+1)j}& a_{(i+1)(j+1)} \end{vmatrix}.$$
Henceforth the notation \(DC(A_n)\) is denote the first Dodgson’s condensation of a matrix \(A_n\), and the second condensation is \(DC(DC(A_n))\) and so on. Clearly a square matrix \(A_n\) is doubly nonsingular if and only if all elements of \(DC(A_n)\) are nonzero.Lemma 2.5.[3] We have $$\begin{vmatrix} a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\ a_{21}&a_{22}&a_{23}&a_{24}&a_{25}\\ a_{31}&a_{32}&a_{33}&a_{34}&a_{35}\\ a_{41}&a_{42}&a_{43}&a_{44}&a_{45}\\ a_{51}&a_{52}&a_{53}&a_{54}&a_{55} \end{vmatrix}=\frac{\begin{vmatrix} \begin{vmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44} \end{vmatrix}&\begin{vmatrix} a_{12}&a_{13}&a_{14}&a_{15}\\ a_{22}&a_{23}&a_{24}&a_{25}\\ a_{32}&a_{33}&a_{34}&a_{35}\\ a_{42}&a_{43}&a_{44}&a_{45} \end{vmatrix}\\\\ \begin{vmatrix} a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44}\\ a_{51}&a_{52}&a_{53}&a_{54} \end{vmatrix}& \begin{vmatrix} a_{22}&a_{23}&a_{24}&a_{25}\\ a_{32}&a_{33}&a_{34}&a_{35}\\ a_{42}&a_{43}&a_{44}&a_{45}\\ a_{52}&a_{53}&a_{54}&a_{55} \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}},$$ where \(\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}\neq0\).
Lemma 2.6. [2, Theorem 1] We have $$\begin{vmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44} \end{vmatrix}=\frac{\begin{vmatrix} \frac{\begin{vmatrix} \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{vmatrix}&\begin{vmatrix} a_{12}&a_{13}\\ a_{22}&a_{23} \end{vmatrix}\\\\ \begin{vmatrix} a_{21}&a_{22}\\ a_{31}&a_{32} \end{vmatrix}& \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix} \end{vmatrix}}{a_{22}}& \frac{\begin{vmatrix} \begin{vmatrix} a_{12}&a_{13}\\ a_{22}&a_{23} \end{vmatrix}&\begin{vmatrix} a_{13}&a_{14}\\ a_{23}&a_{24} \end{vmatrix}\\\\ \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}& \begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix} \end{vmatrix}}{a_{23}}\\\\ \frac{\begin{vmatrix} \begin{vmatrix} a_{21}&a_{22}\\ a_{31}&a_{32} \end{vmatrix}&\begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}\\\\ \begin{vmatrix} a_{31}&a_{32}\\ a_{41}&a_{42} \end{vmatrix}& \begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix} \end{vmatrix}}{a_{32}}& \frac{\begin{vmatrix} \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}&\begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix}\\\\ \begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix}& \begin{vmatrix} a_{33}&a_{34}\\ a_{43}&a_{44} \end{vmatrix} \end{vmatrix}}{a_{33}} \end{vmatrix} }{\begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}},$$ where \(a_{22}, a_{23}, a_{32}, a_{33}\) are nonzero numbers and \(\begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}\neq0\).
Theorem 3.1. Given a \(5\times5\) matrix $$A_5=\begin{bmatrix} a_{11}&a_{12}&a_{13}&a_{14}&a_{15}\\ a_{21}&a_{22}&a_{23}&a_{24}&a_{25}\\ a_{31}&a_{32}&a_{33}&a_{34}&a_{35}\\ a_{41}&a_{42}&a_{43}&a_{44}&a_{45}\\ a_{51}&a_{52}&a_{53}&a_{54}&a_{55} \end{bmatrix}_{5\times5},$$ where \(\begin{bmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{bmatrix}\) is a doubly nonsingular matrix with all nonzero elements. Then $$det(A_5)= \begin{pmatrix} \frac{DC(DC(A_5))}{\begin{bmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{bmatrix}_{3\times3}} \end{pmatrix}^\ast.$$
Proof. Since \(\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}\neq0\), using Lemma 2.5 we have \begin{equation}\label{1} det(A_5)=\frac{\begin{vmatrix} \begin{vmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44} \end{vmatrix}&\begin{vmatrix} a_{12}&a_{13}&a_{14}&a_{15}\\ a_{22}&a_{23}&a_{24}&a_{25}\\ a_{32}&a_{33}&a_{34}&a_{35}\\ a_{42}&a_{43}&a_{44}&a_{45} \end{vmatrix}\\\\ \begin{vmatrix} a_{21}&a_{22}&a_{23}&a_{24}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ a_{41}&a_{42}&a_{43}&a_{44}\\ a_{51}&a_{52}&a_{53}&a_{54} \end{vmatrix}& \begin{vmatrix} a_{22}&a_{23}&a_{24}&a_{25}\\ a_{32}&a_{33}&a_{34}&a_{35}\\ a_{42}&a_{43}&a_{44}&a_{45}\\ a_{52}&a_{53}&a_{54}&a_{55} \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}}. \end{equation} Besides, we know that all \(a_{22}, a_{23}, a_{24}, a_{32}, a_{33}, a_{34}, a_{42}, a_{43}, a_{44}\) are nonzero numbers. So, using Lemma 2.6 for all \(4\times4\) within (1), we have \begin{equation}\label{2} det(A_5)=\frac{\begin{vmatrix} S_{11}&S_{12}\\ S_{21}&S_{22} \end{vmatrix}}{\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}}, \end{equation} where \(S_{ij} (\forall i, j=1, 2)\) is equal to $$\frac{ \begin{vmatrix} \frac{\begin{vmatrix} \begin{vmatrix} a_{ij}&a_{i(j+1)}\\ a_{(i+1)j}&a_{(i+1)(j+1)} \end{vmatrix}& \begin{vmatrix} a_{i(j+1)}&a_{i(j+2)}\\ a_{(i+1)(j+1)}&a_{(i+1)(j+2)} \end{vmatrix}\\\\ \begin{vmatrix} a_{(i+1)j}&a_{(i+1)(j+1)}\\ a_{(i+2)j}&a_{(i+2)(j+1)} \end{vmatrix}& \begin{vmatrix} a_{(i+1)(j+1)}&a_{(i+1)(j+2)}\\ a_{(i+2)(j+1)}&a_{(i+2)(j+2)} \end{vmatrix} \end{vmatrix}}{a_{(i+1)(j+1)}}& \frac{\begin{vmatrix} \begin{vmatrix} a_{i(j+1)}&a_{i(j+2)}\\ a_{(i+1)(j+1)}&a_{(i+1)(j+2)} \end{vmatrix}& \begin{vmatrix} a_{i(j+2)}&a_{i(j+3)}\\ a_{(i+1)(j+2)}&a_{(i+1)(j+3)} \end{vmatrix}\\\\ \begin{vmatrix} a_{(i+1)(j+1)}&a_{(i+1)(j+2)}\\ a_{(i+2)(j+1)}&a_{(i+2)(j+2)} \end{vmatrix}& \begin{vmatrix} a_{(i+1)(j+2)}&a_{(i+1)(j+3)}\\ a_{(i+2)(j+2)}&a_{(i+2)(j+3)} \end{vmatrix} \end{vmatrix}}{a_{(i+1)(j+2)}}\\\\ \frac{\begin{vmatrix} \begin{vmatrix} a_{(i+1)j}&a_{(i+1)(j+1)}\\ a_{(i+2)j}&a_{(i+2)(j+1)} \end{vmatrix}& \begin{vmatrix} a_{(i+1)(j+1)}&a_{(i+1)(j+2)}\\ a_{(i+2)(j+1)}&a_{(2+1)(j+2)} \end{vmatrix}\\\\ \begin{vmatrix} a_{(i+2)j}&a_{(i+2)(j+1)}\\ a_{(i+3)j}&a_{(i+3)(j+1)} \end{vmatrix}& \begin{vmatrix} a_{(i+2)(j+1)}&a_{(i+2)(j+2)}\\ a_{(i+3)(j+1)}&a_{(i+3)(j+2)} \end{vmatrix} \end{vmatrix}}{a_{(i+2)(j+1)}}& \frac{\begin{vmatrix} \begin{vmatrix} a_{(i+1)(j+1)}&a_{(i+1)(j+2)}\\ a_{(i+2)(j+1)}&a_{(i+2)(j+2)} \end{vmatrix}& \begin{vmatrix} a_{(i+1)(j+2)}&a_{(i+1)(j+3)}\\ a_{(i+2)(j+2)}&a_{(2+1)(j+3)} \end{vmatrix}\\\\ \begin{vmatrix} a_{(i+2)(j+1)}&a_{(i+2)(j+2)}\\ a_{(i+3)(j+1)}&a_{(i+3)(j+2)} \end{vmatrix}& \begin{vmatrix} a_{(i+2)(j+2)}&a_{(i+2)(j+3)}\\ a_{(i+3)(j+2)}&a_{(i+3)(j+3)} \end{vmatrix} \end{vmatrix}}{a_{(i+2)(j+2)}} \end{vmatrix}}{\begin{vmatrix} a_{(i+1)(j+1)}& a_{(i+1)(j+2)}\\ a_{(i+2)(j+1)}&a_{(i+2)(j+2)} \end{vmatrix}}.$$ Using Definition 2.3, we obtain $$\frac{\begin{vmatrix} S_{11}&S_{12}\\ S_{21}&S_{22} \end{vmatrix}}{\begin{vmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{vmatrix}}$$ \begin{equation}\label{3} = \begin{pmatrix}\frac{\begin{bmatrix} \begin{vmatrix} \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{vmatrix}&\begin{vmatrix} a_{12}&a_{13}\\ a_{22}&a_{23} \end{vmatrix}\\\\ \begin{vmatrix} a_{21}&a_{22}\\ a_{31}&a_{32} \end{vmatrix}& \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{12}&a_{13}\\ a_{22}&a_{23} \end{vmatrix}&\begin{vmatrix} a_{13}&a_{14}\\ a_{23}&a_{24} \end{vmatrix}\\\\ \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}& \begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{13}&a_{14}\\ a_{23}&a_{24} \end{vmatrix}&\begin{vmatrix} a_{14}&a_{15}\\ a_{24}&a_{25} \end{vmatrix}\\\\ \begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix}& \begin{vmatrix} a_{24}&a_{25}\\ a_{34}&a_{35} \end{vmatrix} \end{vmatrix}\\\\ \begin{vmatrix} \begin{vmatrix} a_{21}&a_{22}\\ a_{31}&a_{32} \end{vmatrix}&\begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}\\\\ \begin{vmatrix} a_{31}&a_{32}\\ a_{41}&a_{42} \end{vmatrix}& \begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{22}&a_{23}\\ a_{32}&a_{33} \end{vmatrix}&\begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix}\\\\ \begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix}& \begin{vmatrix} a_{33}&a_{34}\\ a_{43}&a_{44} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{23}&a_{24}\\ a_{33}&a_{34} \end{vmatrix}&\begin{vmatrix} a_{24}&a_{25}\\ a_{34}&a_{35} \end{vmatrix}\\\\ \begin{vmatrix} a_{33}&a_{34}\\ a_{43}&a_{44} \end{vmatrix}& \begin{vmatrix} a_{34}&a_{35}\\ a_{44}&a_{45} \end{vmatrix} \end{vmatrix}\\\\ \begin{vmatrix} \begin{vmatrix} a_{31}&a_{32}\\ a_{41}&a_{42} \end{vmatrix}&\begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix}\\\\ \begin{vmatrix} a_{41}&a_{42}\\ a_{51}&a_{52} \end{vmatrix}& \begin{vmatrix} a_{42}&a_{43}\\ a_{52}&a_{53} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{32}&a_{33}\\ a_{42}&a_{43} \end{vmatrix}&\begin{vmatrix} a_{33}&a_{34}\\ a_{43}&a_{44} \end{vmatrix}\\\\ \begin{vmatrix} a_{42}&a_{43}\\ a_{52}&a_{53} \end{vmatrix}& \begin{vmatrix} a_{43}&a_{44}\\ a_{53}&a_{54} \end{vmatrix} \end{vmatrix}& \begin{vmatrix} \begin{vmatrix} a_{33}&a_{34}\\ a_{43}&a_{44} \end{vmatrix}&\begin{vmatrix} a_{34}&a_{35}\\ a_{44}&a_{45} \end{vmatrix}\\\\ \begin{vmatrix} a_{43}&a_{44}\\ a_{53}&a_{54} \end{vmatrix}& \begin{vmatrix} a_{44}&a_{45}\\ a_{54}&a_{55} \end{vmatrix} \end{vmatrix} \end{bmatrix}_{3\times3}}{\begin{bmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{bmatrix}_{3\times3}} \end{pmatrix}^*. \end{equation} Clearly using Definition 2.4, the top part of fraction (3) is equal to \(DC(DC(A_5))\), consequently (2) and (3) give $$det(A_5)=\begin{pmatrix}\frac{DC(DC(A_5))}{\begin{bmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{bmatrix}_{3\times3}}\end{pmatrix}^*.$$ The theorem is proved.
Note that in the Theorem 3.1, if the matrix \(\begin{bmatrix} a_{22}&a_{23}&a_{24}\\ a_{32}&a_{33}&a_{34}\\ a_{42}&a_{43}&a_{44} \end{bmatrix}\) is not doublynonsingular or if some elements of it are zero, then by adding a multiple of one row to another row, or a multiple of one column to another column of the main matrix \(A_5\), these problems can be resolved (since the determinant of the main matrix does not change). \newpageExample 3.2. Let \(A_5=\begin{bmatrix} 3&5&1&0&4\\ 2&1&6&3&2\\ 4&3&2&2&5\\ 1&6&1&3&4\\ 7&5&4&4&3 \end{bmatrix}_{5\times5}\). To obtain the \(det(A_5)\), we have $$\xrightarrow{DC(A_5)}\begin{bmatrix} -7&29&3&-12\\ 2&-16&6&11\\ 21&-9&4&-7\\ -37&19&-8&-7 \end{bmatrix}_{4\times4}\xrightarrow{DC(DC(A_5))}\begin{bmatrix} 54&222&105\\ 318&-10&-86\\ 66&-4&-84 \end{bmatrix}_{3\times3}.$$ $$det(A_5)=\begin{pmatrix} \frac{\begin{bmatrix} 54&222&105\\ 318&-10&-86\\ 66&-4&-84 \end{bmatrix}_{3\times3}}{\begin{bmatrix} 1&6&3\\ 3&2&2\\ 6&1&3 \end{bmatrix}_{3\times3}} \end{pmatrix}^*= \frac{\begin{vmatrix} \frac{\begin{vmatrix} \frac{54}{1}&\frac{222}{6}\\ \frac{318}{3}&\frac{-10}{2} \end{vmatrix}}{\begin{vmatrix} 1&6\\ 3&2 \end{vmatrix}}& \frac{\begin{vmatrix} \frac{222}{6}&\frac{105}{3}\\ \frac{-10}{2}&\frac{-86}{2} \end{vmatrix}}{\begin{vmatrix} 6&3\\ 2&2 \end{vmatrix}}\\\\ \frac{\begin{vmatrix} \frac{318}{3}&\frac{-10}{2}\\ \frac{66}{6}&\frac{-4}{1} \end{vmatrix}}{\begin{vmatrix} 3&2\\ 6&1 \end{vmatrix}}& \frac{\begin{vmatrix} \frac{-10}{2}&\frac{-86}{2}\\ \frac{-4}{1}&\frac{-84}{3} \end{vmatrix}}{\begin{vmatrix} 2&2\\ 1&3 \end{vmatrix}} \end{vmatrix}}{\begin{vmatrix} 1&6&3\\ 3&2&2\\ 6&1&3 \end{vmatrix}}$$ $$= \frac{ \begin{vmatrix} 262& -236\\ 41& -8 \end{vmatrix} }{\begin{vmatrix} 1&6&3\\ 3&2&2\\ 6&1&3 \end{vmatrix}}=\frac{7580}{-5}=-1516.$$