Analytic Functions of Complex Order Defined by New Differential Operator

Author(s): Abdussalam Eghbiq1, Maslina Darus1
1School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, DE, Bangi UKM 43600, Malaysia.
Copyright © Abdussalam Eghbiq, Maslina Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we introduce and study the classes \(S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) of functions \(f\in A(n)\) with \((\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} \) \(+(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}\neq0\), where \(\nu>0,\varrho,\omega,\lambda,\alpha,\mu \geq0, \mho\in N_{0}, z\in U\) and \(D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z):A(n)\longrightarrow A(n),\) is the linear differential operator, newly defined as
\( D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho} a_{k+1}z^{k+1}. \)
Several properties such as coefficient estimates, growth and distortion theorems, extreme points, integral means inequalities and inclusion relation for the functions included in the classes \(S_{n,\mu} (\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) are given.

Keywords: analytic functions, differential operator, neighbourhood, complex order, negative coefficients.

1. Introduction

Let \(H\) be the class of functions analytic in \(U=\{z:\lvert z\rvert< 1\}\) and let H[a,n] be the subclasses of \(H\) consisting of functions of the form \(f(z)=a+a_{n}z^{n}+a_{n+1}z^{n+1}+a_{n+2}z^{n+2}+…\, \). Let \(A\) be the subclasses of \(H\) consisting of functions of the form \(f(z)=z+a_{2}z^{2}+a_{3}z^{3}+… \) or
\begin{equation}\label{1.1} f(z)=z+\sum_{k=2}^{\infty}a_{k}z^{k}. \end{equation}
(1)
Let \(A(n)\) denote the class of functions \(f(z)\) of the form
\begin{equation}\label{1.2} f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}, \end{equation}
(2)
\begin{align} a_{k+1}\geq0, n\in \{1,2,3,…\} \nonumber \end{align} which are analytic in the open unit disk \(U=\{z:\lvert z\rvert< 1\}\).
Next, we define \((n,\delta)\)-neighbourhood for the functions belonging to class \(A(n)\) and also for identity function.

Definition 1.1. [\((n,\delta)\)-neighbourhood] By following the earlier investigations by Goodman [1] and Ruscheweyh [2], for any \(f(z)\in A(n)\) and \(\delta \geq0\), we define the \((n,\delta)\)-neighbourhood of \(f\) by

\begin{equation}\label{1.3} N_{n,\delta}(f)=\{g\in A(n):g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\quad and\quad \sum_{k=n}^{\infty}(k+1)\lvert a_{k+1}-b_{k+1}\rvert \leq\delta\}. \end{equation}
(3)

In particular for the identity function \(e(z)=z\) we have
\begin{equation}\label{1.4} N_{n,\delta}(e)=\{g\in A(n):g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\quad and\quad \sum_{k=n}^{\infty}(k+1)\lvert b_{k+1}\rvert \leq\delta\}. \end{equation}
(4)
We say that the function \(f(z)\in A(n)\) is said to be starlike functions of complex order \(\gamma\) or \(f(z)\in S_{n}^{\ast}(\gamma)\) if it satisfies the inequality
\begin{equation}\label{1.5} \Re \left(1+ \dfrac{1}{\gamma} \left( \dfrac{z(f'(z)) }{f(z)}-1\right)\right) >0,z\in U, \gamma\in C\setminus\{0\}. \end{equation}
(5)
Furthermore, a function \(f(z)\in A(n)\) is said to be convex functions of complex order \(\gamma\) or \(f(z)\in C_{n}^{\ast}(\gamma)\) if it satisfies the inequality
\begin{equation}\label{1.6} \Re \left(1+ \dfrac{1}{\gamma} \left( \dfrac{z(f”(z)) }{f'(z)}\right)\right) >0,z\in U, \gamma\in C\setminus\{0\}. \end{equation}
(6)
The classes \(S_{n}^{\ast}(\gamma)\) and \(C_{n}^{\ast}(\gamma)\) are essentially from the classes of starlike and convex functions of complex order, which were considered by Nasr and Aouf [3] and Wiatrowsky [4] respectively (Refer also [5]). Let \(S_{n}(\gamma,\lambda,\beta)\) denote the subclass of \(A(n)\) consisting of functions \(f(z)\) which satisfy the following inequality: \begin{equation} \left \rvert \dfrac{1}{\gamma} \left( \dfrac{\lambda z^{3}f”'(z)+(1+2\lambda)z^{2}f”(z)+zf'(z) }{\lambda z^{2}f”(z)+zf'(z)}-1\right) \right\lvert < \beta, \nonumber \end{equation} where \(z\in U, \gamma\in C\setminus\{0\}, 0\leq\lambda \leq1, 0< \beta \leq1.\) Let \(R_{n}(\gamma,\lambda,\beta)\) denote the subclass of \(A(n)\) consisting of functions \(f(z)\) which satisfy the following inequality \begin{equation} \left \rvert \dfrac{1}{\gamma} \left( \lambda z^{2}f'''(z)+(1+2\lambda)zf''(z)+f'(z)-1\right) \right\lvert < \beta, \nonumber \end{equation} where \(z\in U, \gamma\in C\setminus\{0\}, 0\leq\lambda \leq1, 0< \beta \leq1.\) The class \(S_{n}(\gamma,\lambda,\beta)\) was studied by Kamali and Akbulut [6]. Since \(A\) is the class of functions \(f(z)\) of the form \(f(z)=z+\sum_{k=2}^{\infty}a_{k}z^{k}\) which are analytic in the open unit disk \(U=\{z:\lvert z\rvert< 1\}\). For a function \(f\) in \(A\) we define the following differential operator: \begin{align} D^{0}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=f(z), \nonumber \end{align}
\begin{align}\label{1.7} D^{1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=\left( \dfrac{\nu-(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)f(z) +\left( \dfrac{(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)zf'(z), \end{align}
(7)
\begin{align} D^{2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=D(D^{1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)), \nonumber \end{align} \begin{align} D^{m}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=D(D^{m-1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)). \nonumber \end{align} If \(f\) given by (1), then from (7) we define the following differential operator
\begin{equation}\label{1.8} D^{m}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=z+\sum_{k=2}^{\infty}\left( \dfrac{\nu+(k-1)(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) ^{m} a_{k}z^{k} \end{equation}
(8)
where \(f(z)\in A, \nu>0,\varrho,\omega,\lambda,\alpha\geq0, m\in N_{0}.\) This operator generalizes certain differential operators such as:
  1. \(\nu=1, \varrho=0\) we get $$D^{m}_{\lambda,1,0}(\alpha,\omega)f(z)=z+\sum_{k=2}^{\infty}\left( 1+(k-1)\lambda\omega^{\alpha} \right)^{m} a_{k}z^{k}$$ of Darus and Faisal (2012) (see [7]);
  2. \(I\alpha=\omega=\nu=1, \varrho=0\) we get $$D^{m}_{\lambda,1,0}(1,1)f(z)=z+\sum_{k=2}^{\infty}\left( 1+\lambda(k-1) \right)^{m} a_{k}z^{k}$$ of Al-Oboudi (2004) (see [8]);
  3. \(\alpha=\omega=\nu=\lambda=1, \varrho=0\) we get $$D^{m}_{1,1,0}(1,1)f(z)=z+\sum_{k=2}^{\infty}\left( k \right)^{m} a_{k}z^{k}$$ of Salagean (1983) (see [9]);
  4. \(\alpha=\omega=\nu=1, \lambda=2, \varrho=0\), we get $$D^{m}_{2,1,0}(1,1)f(z)=z+\sum_{k=2}^{\infty}\left( \dfrac{k+1}{2} \right)^{m} a_{k}z^{k}$$ of Uralegaddi and Somanatha (1992) (see [10]).
By using the same processs, we can write the following equalities for the function \(f(z)\) belonging to the class \(A(n)\), \begin{equation} D^{0}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=f(z) \nonumber \end{equation}
\begin{equation}\label{1.9} D^{1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=\left( \dfrac{\nu-(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)f(z) +\left( \dfrac{(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)zf'(z) \end{equation}
(9)
\begin{equation} D^{2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=D(D^{1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)) \nonumber \end{equation} \begin{equation} D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=D(D^{\mho-1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)). \nonumber \end{equation} If \(f\) given by (2), then from (9) we define the following new differential operator:
\begin{equation}\label{1.10} D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) ^{\mho} a_{k+1}z^{k+1} \end{equation}
(10)
where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) Finally, in the term of the generalized S\u{a}l\u{a}gean differential operator, let \(S_{n,\mu}(\gamma,\alpha,\) \(\beta,\lambda,\nu,\varrho,\mho)\) denote the subclass of \(A(n)\) consisting of the functions \( f(z)\) which satisfy the inequality
\begin{equation}\label{1.11} \left \rvert \dfrac{1}{\gamma} \left( \dfrac{(\mu)z(D^{\mho+3}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}-1\right) \right\lvert < \beta, \end{equation}
(11)
where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha,\mu\geq0, \mho\in N_{0}, z\in U.\) Also, let \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) denote the subclass of \(A(n)\) consisting of the functions \(f(z)\) which satisfy the inequality
\begin{equation}\label{1.12} \left \rvert \dfrac{1}{\gamma} \left( {\mu z(D^{\mho+3}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}-1\right) \right\lvert < \beta, \end{equation}
(12)
where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha,\mu\geq0, \mho\in N_{0}, z\in U.\)
Our main work here is to investigate the \((n,\delta)\)-neighborhood of the above said classes i.e. \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\). Similar work has been seen for different subclasses done by other authors (see for example ([11, 12, 13]) and of course many others.

2. Inclusion relations involving \((n,\delta)\)-neighbourhood

In this section we proved the class relation as well as inclusion relation involving \((n,\delta)\)-neighborhood for the subclasses \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and \(R_{n,\mu}(\gamma,\) \(\alpha,\beta,\lambda,\nu,\varrho,\mho)\) which depends on the following lemmas.

Lemma 2.1. Let the function \(f(z)\in A(n)\) be defined by (2), then \(f(z)\) is in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if

\begin{eqnarray}\label{2.1} \nonumber&&\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho+1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leqslant \beta \lvert\gamma \rvert, \end{eqnarray}
(13)
where \(f\in A(n),\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \)

Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), then from (11) we have \[\begin{equation} \left \rvert \dfrac{1}{\gamma} \left( \dfrac{(\mu)z(D^{\mho+3}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}-1\right) \right\lvert < \beta, \end{equation}\] where \(f\in A(n),\nu>0,\varrho,\omega,\lambda,\alpha\geq 0, \mho\in N_{0},\)

or

\[\begin{equation} \Re\left( \dfrac{(\mu)z(D^{\mho+3}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}-1\right) >-\beta \lvert\gamma \rvert, \end{equation}\] where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) This implies that \begin{equation} \Re\left( \dfrac{-\sum_{k=n}^{\infty}{k(\varrho+\lambda)\omega^{\alpha}}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}{z-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right) >-\beta \lvert\gamma \rvert, \nonumber \end{equation} where \(f\in A(n), \gamma\in C\setminus\{0\} ,\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) after taking the limit when \(z\longrightarrow 1^{-}\) and simplifying, we get \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U).\) Conversely, by applying the hypothesis (13) and letting \(\lvert z\rvert=1\) we get \begin{equation} \left \rvert \dfrac{(\mu)z(D^{\mho+3}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}-1 \right\lvert \nonumber \end{equation} \begin{equation} =\left| \dfrac{-\sum_{k=n}^{\infty}{k(\varrho+\lambda)\omega^{\alpha}}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}{z-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right| \nonumber \end{equation} \begin{equation} \leq \left|\dfrac{\beta\lvert \gamma\rvert\left[ 1-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}\right]}{1-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right|=\beta\lvert \gamma\rvert. \nonumber \end{equation} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0},z\in U.\) This implies that \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).

Corollary 2.2. Let the function \(f\) which is defined by (2) be in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\). Then we have \begin{equation} a_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}, k\geq n \nonumber \end{equation} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\)

Lemma 2.3. Let the function \(f(z)\in A(n)\) be defined by (2), then \(f(z)\) is in the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if

\begin{equation}\label{2.2} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho+2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1) a_{k+1}\leqslant \beta \lvert\gamma \rvert. \end{equation}
(14)
where \((f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Proof. Same as Lemma 2.1.

Theorem 2.4. Let \(f(z)\in A(n)\), then \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\subset N_{n,\delta} (e)\) if

\begin{equation} \delta=\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \end{equation}
(15)
where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), then from (13) we get \begin{eqnarray*} && \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\\&&\times\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\sum_{k=n}^{\infty}\rvert a_{k+1}\lvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) This implies that

\begin{eqnarray} \nonumber&&\sum_{k=n}^{\infty}a_{k+1}\\ \nonumber&& \leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\\ && \end{eqnarray}
(16)
where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) By using (13) we have \begin{eqnarray*} && \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+1-1+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0},\) therefore \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\nu+ n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\sum_{k=n}^{\infty}a_{k+1}\\ &&\leq\beta \lvert\gamma \rvert+(1-\beta \lvert\gamma \rvert)\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\sum_{k=n}^{\infty}a_{k+1}\\ &&\leq\beta \lvert\gamma \rvert+(1-\beta \lvert\gamma \rvert)\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\\ &&\times\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\\ &&\leq\dfrac{\beta \lvert\gamma \rvert \left(\dfrac{\nu+ n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu \beta \lvert\gamma \rvert+ n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}, \end{eqnarray*} where \(f\in A(n), \nu\neq0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) Hence \(\sum_{k=n}^{\infty}(k+1)a_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}=\delta. \) Hence by using (4), we conclude that \( f(z)\in N_{n,\delta}(e) \), this implies that \begin{equation} S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\in N_{n,\delta} (e) \nonumber \end{equation}

Using the same technique of the proof of the Theorem 2.4, we proved the following theorem.

Theorem 2.5. Let \(f(z)\in A(n)\) ,then \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\subset N_{n,\delta} (e)\) if

\begin{equation}\label{2.5} \delta=\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \end{equation}
(17)
where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \)

Proof. The proof for this theorem similar to that given above and we omit it.

3. Neighbourhood properties for \({ S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho))}\) and \({ R^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)}\)

In this section, we determine the neighbourhood for each of the classes \(S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho)\) and \( R^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\). A function \(f(z)\in A(n)\) is said to be in the class \(S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) if there exists a function \(g(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) such that
\begin{equation}\label{3.1} \left| \dfrac{f(z)}{g(z)}-1\right|< 1-\tau, z\in U, \tau\geq0. \end{equation}
(18)
Similarly, a function \(f(z)\in A(n)\) is said to be in the class \(R^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) if there exists a function \(g(z)\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) satisfying the same inequality \begin{equation} \left| \dfrac{f(z)}{g(z)}-1\right|< 1-\tau, z\in U, \tau\geq0. \nonumber \end{equation}

Theorem 3.1. Let \(g(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and

\begin{equation}\label{3.2} \tau=1-\dfrac{\delta\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right){\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)-\beta\lvert \gamma\rvert}} \end{equation}
(19)
where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) then \begin{equation} N_{n,\delta}(g)\subset S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho). \nonumber \end{equation}

Proof. Let \(f\in N_{n,\delta}(g)\), then from (3) we can write that\begin{equation} \sum_{k=n}^{\infty}(k+1)\rvert a_{k+1}-b_{k+1}\lvert\leq\delta. \nonumber \end{equation} This implies that \begin{equation} \sum_{k=n}^{\infty}\rvert a_{k+1}-b_{k+1}\lvert\leq\dfrac{\delta}{n+1}. \nonumber \end{equation} Since it is given that \(g(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), so from (13) we can write that \begin{equation*} \sum_{k=n}^{\infty}b_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}. \nonumber \end{equation*} Now \begin{eqnarray*} &&\left| \dfrac{f(z)}{g(z)}-1\right|< \dfrac{\sum_{k=n}^{\infty}\rvert a_{k+1}-b_{k+1}\lvert}{1-\sum_{k=n}^{\infty}b_{k+1}}\\ &&\leq\dfrac{\delta}{n+1}.\dfrac{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1){\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)-\beta\lvert \gamma\rvert}}\\ &&=\dfrac{\delta\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right){\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)-\beta\lvert \gamma\rvert}}\\ &&=1-\tau, \end{eqnarray*} this implies that \(f\in S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), therefore \begin{equation} N_{n,\delta}(g)\subset S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho). \nonumber \end{equation}

Similarly, by using the same technique of Theorem 3.1 we proved the following theorem.

Theorem 3.2. Let \(g(z)\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and

\begin{equation}\label{3.3} \tau=1-\dfrac{\delta\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right){(n+1)-\beta\lvert \gamma\rvert}} \end{equation}
(20)
where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) then \begin{equation} N_{n,\delta}(g)\subset R^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho). \nonumber \end{equation}

Our next work is to investigate several new results like growth and distortion theorems, Hadamard product, extreme points, integral means inequalities and inclusion properties for the function included in the classes \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \( R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\). Similar work has been seen for different subclasses done by other authors (see for example [14,15, 16, 17, 18, 19, 20, 21]).

4. Growth and distortion theorems

A growth and distortion property of function \(f\) in the respective classes \(S_{n,\mu}(\gamma,\alpha,\) \(\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \( R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) are given as follows:

Theorem 4.1. If the function \(f\) defined by (2) belong to the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\) and then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) The extremal functions are \begin{equation} f(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}, k\geq n.\nonumber \end{equation}

Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then from (13) we get \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \) This implies that \begin{eqnarray*} \sum_{k=n}^{\infty}a_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) From (13) we have \begin{equation} \lvert f(z)\rvert=\lvert z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert, \nonumber \end{equation} or \begin{equation} \lvert f(z)\rvert\geq\lvert z\rvert-\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k+1}\rvert. \nonumber \end{equation} This implies that \begin{equation} \lvert f(z)\rvert\geq\lvert z\rvert-\dfrac{\beta\lvert \gamma\rvert }{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{n+1}\rvert. \nonumber \end{equation} Similarly \begin{equation} \lvert f(z)\rvert=\lvert z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert\leq\lvert z+\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert, \nonumber \end{equation} or \begin{equation} \lvert f(z)\rvert\leq\lvert z\rvert+\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k+1}\rvert, \nonumber \end{equation} \begin{equation} \lvert f(z)\rvert\leq\lvert z\rvert+\dfrac{\beta\lvert \gamma\rvert }{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{n+1}\rvert. \nonumber \end{equation}

Theorem 4.2. If the function \(f\) defined by (2) belongs to the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert< 1\), we have: \[ \lvert f(z)\rvert\leq\lvert z\rvert+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n+1}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)} \] \[ \lvert f(z)\rvert\geq\lvert z\rvert-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n+1}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)} \] \[ (f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U). \] The extremal functions are: \[ f(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)}z^{k+1}, k\geq n. \]

Proof. The proof for this theorem is similar to that given above, and we omit it.

Theorem 4.3. If the function \(f\) defined by (2) belong to the class \(S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then from (11) we get \begin{eqnarray*} && \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) \sum_{k=n}^{\infty}\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha,\mu\geq0, \mho\in N_{0}.\) This implies that \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) \sum_{k=n}^{\infty}\lvert a_{k+1}\rvert\\&&\leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\lvert a_{k+1}\rvert\\&&\leq\beta \lvert\gamma \rvert \nonumber \end{eqnarray*} or \begin{eqnarray*} &&\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho }\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0},\) implies that \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho }\lvert a_{k+1}\rvert\\&&\leq\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right).} \nonumber \end{eqnarray*} From (10) we have \begin{equation} \rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert=\left|z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+(k+1-1)(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) ^{\mho} a_{k+1}z^{k+1}\right|. \nonumber \end{equation} \begin{equation} \rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\geq\rvert z\rvert-\sum_{k=n}^{\infty}\left( \dfrac{\nu+(k+1-1)(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho}\lvert a_{k+1}\rvert \lvert z^{k+1}\lvert. \nonumber \end{equation} \begin{eqnarray*} &&\rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\\&&\geq\rvert z\rvert-\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{k+1}\lvert. \nonumber \end{eqnarray*} Similarly we can show that \begin{eqnarray*} &&\rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\\&&\leq\rvert z\rvert+\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{k+1}\lvert. \nonumber \end{eqnarray*}

Theorem 4.4. If the function \(f\) defined by (2) belong to the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Theorem 4.5. Let the hypotheses of Theorem 4.1 be satisfied, then \begin{equation} \lvert f'(z)\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} \begin{equation} \lvert f'(z)\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Theorem 4.6. Let the hypotheses of Theorem 4.2 be satisfied, then \begin{equation} \lvert f'(z)\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} \begin{equation} \lvert f'(z)\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Theorem 4.7. Let the hypotheses of Theorem 4.3 be satisfied, then \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z\rvert^{n} \nonumber \end{equation} \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z\rvert^{n} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)

Theorem 4.8. Let the hypotheses of Theorem 4.4 be satisfied, then \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\rvert z\rvert^{n} \nonumber \end{equation} \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\rvert z\rvert^{n} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \)

5. Extreme points

In this section we discussed extreme points for functions belonging to the classes \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \( R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).

Theorem 5.1. (a). Let \(f_{1}(z)=z\) and \begin{equation} f_{i}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}, k\geq n. \nonumber \end{equation} then \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if it can be expressed in the form \(f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) where \(\lambda_{i}\geq0\) and \(\sum_{i=1}^{\infty}\lambda_{i}=1.\)
(b). Let \(f_{1}(z)=z\) and \begin{equation} f_{i}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}z^{i+1}, k\geq n. \nonumber \end{equation} then \(f\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if it can be expressed in the form \(f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) where \(\lambda_{i}\geq0\) and \(\sum_{i=1}^{\infty}\lambda_{i}=1.\)

Proof. Let \(f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z), i=1,2,3,… \lambda_{i}\geq0\) with \(\sum_{i=1}^{\infty}\lambda_{i}=1.\) This implies that \begin{equation} f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z), \nonumber \end{equation} or \begin{eqnarray*} && f(z)=\lambda_{1}(z)+\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left(z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right), \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=\lambda_{1}(z)+\sum_{i=2}^{\infty}\lambda_{i}(z)-\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1} , \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=\sum_{i=1}^{\infty} \lambda_{i}(z)-\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left( \dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right), \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=(z) -\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left( \dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu}\right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right). \nonumber \end{eqnarray*} Since \begin{equation} \sum_{i=2}^{\infty}\left( \dfrac{\lambda_{i}\beta\lvert \gamma\rvert\left[ \left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\right] }{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right) \nonumber \end{equation} \begin{equation} =\sum_{i=2}^{\infty}\lambda_{i}\beta\lvert \gamma\rvert=\beta\lvert \gamma\rvert\sum_{i=2}^{\infty}\lambda_{i}=\beta\lvert \gamma\rvert(1-\lambda_{1})< \beta\lvert \gamma\rvert. \nonumber \end{equation} The condition (13) for \(f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) is satisfied. Thus \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\). Conversely, we suppose that \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) since \begin{eqnarray*} \lvert a_{k+1}\rvert\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}, k\geq n \nonumber \end{eqnarray*} where \(\nu\neq0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) We put \begin{equation} \lambda_{i}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}a_{i}, k\geq n \nonumber \end{equation} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}\) and \( \lambda \nonumber_{1}=1-\sum_{i=2}^{\infty}\lambda_{i},\) then \begin{equation} f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z).\nonumber \end{equation}

The proof of the second part of Theorem 5.1 is similar to the first part.

6. Integral means inequalities

For any two functions \(f\) and \(g\) analytic in \(U\), \(f\) is said to be subordinate to \(g\) in \(U\) denoted by \(f\prec g\) if there exists an analytic function \(w\) defined \(U\) satisfying \(w(0)=0\) and \(\lvert w(z)\rvert< 1\) such that \(f(z)=g(w(z)), z\in U\).

In particular, if the function \(g\) is univalent in \(U\), the above subordination is equivalent to \(f(0)=g(0)\) and \(f(U)\subset g(U)\). In 1925, Littlewood [22] proved the following subordination theorem.

Theorem 6.1. If \(f\) and \(g\) are any two functions, analytic in \(U\) with \(f\prec g\) then for \(\mu>0\) and \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(z)\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert g(z)\rvert^{\mu}d\theta .\nonumber \end{equation}

Theorem 6.2. (a). Let \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(f_{k}\) be defined by \begin{equation} f_{k}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}, k\geq n. \nonumber \end{equation} if there exists an analytic function \(w(z)\) given by \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}, \nonumber \end{equation} then for \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation} (b). Let \(f\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(f_{k}\) be defined by \begin{equation} f_{k}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}z^{k+1}, k\geq n. \nonumber \end{equation} If there exists an analytic function \(w(z)\) given by \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}, \nonumber \end{equation} then for \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation}

Proof. (a) We have to show that \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation} or \(\int^{2\pi}_{0}\lvert z-\sum_{k=n}^{\infty} a_{k+1}z^{k+1})\rvert^{\mu}d\theta\) \begin{equation} \leq \int^{2\pi}_{0}\lvert z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}\rvert ^{\mu}d\theta \nonumber \end{equation} or \(\int^{2\pi}_{0}\lvert 1-\sum_{k=n}^{\infty} a_{k+1}z^{k})\rvert^{\mu}d\theta\) \begin{equation} \leq \int^{2\pi}_{0}\lvert 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k}\rvert^{\mu}d\theta \nonumber \end{equation} By using Theorem 6.1 it is enough to show that \( 1-\sum_{k=n}^{\infty} a_{k+1}z^{k}\) \begin{equation} < 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k}. \nonumber \end{equation} Now by taking \( 1-\sum_{k=n}^{\infty} a_{k+1}z^{k}\) \begin{equation} = 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}(w(z))^{k} \nonumber \end{equation} and after simplification we get \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}. \nonumber \end{equation} This implies that \(w(0)=0\) and \begin{equation} \lvert[w(z)]^{k}\rvert=\left| \dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}\right| , \nonumber \end{equation} or \begin{equation} \lvert[w(z)]^{k}\rvert= \dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k}\rvert. \nonumber \end{equation} By using (13) we get \begin{equation} \lvert[w(z)]^{k}\rvert\leq\lvert z\rvert < 1. \nonumber \end{equation}

The proof of the second part of the Theorem 6.2 is similar to the first part.

7. Inclusion properties

Here we discussed the inclusion properties of the subclasses of analytic functions of complex order denoted by \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \( R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\) \(\omega)\).

Theorem 7.1. (a) Let \(0\leq\alpha_{1}\leq\alpha_{2}\leq1,0\leq\beta_{1}\leq\beta_{2}\leq1,0\leq\lambda_{1}\leq\lambda_{2}\leq1\) and \(0\leq\omega_{1}\leq\omega_{2}\leq1\). Let a function \(f\) be in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) satisfying \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert \nonumber \end{equation} then
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{2})\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{1})\).
\(\bullet\) \(S_{n,\mu_{2}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu_{1}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).
(b) Let \(0\leq\alpha_{1}\leq\alpha_{2}\leq1,0\leq\beta_{1}\leq\beta_{2}\leq1,0\leq\lambda_{1}\leq\lambda_{2}\leq1\) and \(0\leq\omega_{1}\leq\omega_{2}\leq1\). Let a function \(f\) be in the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) satisfying \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1) a_{k+1}\leq\beta \lvert\gamma \rvert \nonumber \end{equation} then
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{2})\subseteq R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{1})\).
\(\bullet\) \(R_{n,\mu_{2}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu_{1}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).

Proof. (a) To prove \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\). Since it is given that \(0\leq\alpha_{1}\leq\alpha_{2}\leq1\), implies \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right) a_{k+1} \nonumber \end{equation} \begin{equation} \leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right) a_{k+1} \nonumber \end{equation} therefore if \(f(z)\in S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\) implies \(f(z)\in S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\). This show that \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
Similarly, to prove that \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\). Since it is given that \(0\leq\lambda_{1}\leq\lambda_{2}\leq1\) thus \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right) a_{k+1} \nonumber \end{equation} \begin{equation} \leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right) a_{k+1} \nonumber \end{equation} Therefore, if \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\) implies \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\) \(\varrho,\mho,\omega)\). This show that \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).

The proof of the remaining parts of the theorem is similar.

8. Hadamard Product

Theorem 8.1. Let \(f,g\in A(n)\) where \(f(z)\) is given in (2) and \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\), then the modified Hadamard product \(f\ast g\) is defined by \((f\ast g)(z)=z-\sum_{k=n}^{\infty}a_{k+1}b_{k+1}z^{k+1}\). (a) If \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho,\omega)\) and \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) then \((f\ast g)(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).
(b) If \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then \((f\ast g)(z)\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\).

Proof. (a) Since it is given that \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\), implies \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert. \nonumber \end{equation} Similarly \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), implies \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) b_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{equation} because \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) b_{k+1} \nonumber \end{equation} \begin{equation} \leq \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert. \nonumber \end{equation}

Other work regarding differential operators for various problems can be found in [6, 7, 23, 24, 25, 26, 27, 28, 29].

Acknowledgment

The work here is supported by GUP-2017-064.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References:

  1. Goodman, A. W. (1957). Univalent functions and nonanalytic curves. Proceedings of the American Mathematical Society, 8, 598-601. [Google Scholor]
  2. Ruscheweyh, S. (1981). Neighbourhoods of univalent functions. Proc. Amer. Math. Soc., 81, 521-527. [Google Scholor]
  3. Nasr, M. A., & Aouf, M. K. (1985). Starlike function of complex order. J. Natur. Sci. Math. and Stat., 25, 1-12. [Google Scholor]
  4. Wiatrowski, P. (1970). On the coefficients of a some family of holomorphic functions. Zeszyty Nauk, Uniw. Ldz. Nauk. Mat-Przyrod., 2(39), 75-85. [Google Scholor]
  5. Duren, P. L. (1983). Univalent functions in: A series of comprehensive studies in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo.[Google Scholor]
  6. Kamali, M., & Akbulut, S. (2002). On a subclass of certain convex functions with negative coefficients. J. Math. Comput., 145, 341-350. [Google Scholor]
  7. Darus, M., & Faisal, I. (2012). Some subclasses of analytic functions of complex order defined by new differential operator. Tamkang Journal of Mathematics, 43, 223-242. [Google Scholor]
  8. Al-Oboudi,`F. M. (2004). On univalent functions defined by a generalized Salagean operator. Int.J. Math. Math. Sci.,2004(27), 1429-1436. [Google Scholor]
  9. Salagean, G. S. (1983). Subclasses of univalent Functions. Lecture Notes in Mathematics 1013, Spriger-Verlag, 362-372. [Google Scholor]
  10. Uralegaddi, B. A., & Somanatha, C. (1992). Certain classes of univalent functions. In: Current Topics in Analytic Function Theory. Eds. H.M. Srivastava and S. Owa. World Scientific Publishing Company, Singapore, 371-374. [Google Scholor]
  11. Altintas, O., & Owa, S. (1996). Neighbourhoods of certain analytic functions with negative coefficents. Internat. J. Math. Math. Sci., 19, 797-800. [Google Scholor]
  12. Altintas, O., Ozkan, S., & Srivastava, H. M. (2000). Neighbourhoods of a class of analytic functions with negative coefficients. Appl. Math. Lett. , 13(3), 63-67. [Google Scholor]
  13. Altintas, O., Ozkan, S., & Srivastava, H. M. (2004). Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl., 1(10), 1667-1672. [Google Scholor]
  14. Joshi, S.S. (2008). A certain class of analytic functions associated with fractional derivative operators. Tamsui Oxford Journal of Mathematical Sciences, 24, 201-214. [Google Scholor]
  15. Al Attiya, A. A., & Aouf, M. K. (2007). A study on certain class of analytic functions defined by Ruscheweyh derivative. Soochow Journal of Mathematics, 33, 273-289. [Google Scholor]
  16. Raducanu, D., & Orhan, H. (2010). Subclasses of analytic Functions defined by a generalized differential operator. Int. Jour. Math. Anal., 4, 1-15. [Google Scholor]
  17. Mahzoon, H. & Latha, S. (2007). Certain subclass of analytic functions with negative coffecient defined by a generalized Salagean operator. General Mathematics, 15, 69-82. [Google Scholor]
  18. Mahzoon, H. & Latha, S. (2010). On the classes of analytic functions involving Al-Oboudi operator. Int. Jour. Math. Anal., 4, 193-199.[Google Scholor]
  19. Aouf, M.K., & Darwish, H. E. (1994). On new class of analytic functions with negative coefficients. II. Bull. Korean Math. Sci., 31, 269-287. [Google Scholor]
  20. Al-Refai, O., & Darus, M. (2009). On new bijective convolution operator acting for analytic functions. Journal of Mathematics and statistics, 5(1), 77-87. [Google Scholor]
  21. Halim, S. A., Janteng, A., & Darus, M. (2007). Classes with negative coefficients and starlike with respect to other points. International Mathematical Forum, 2(46), 2261-2268. [Google Scholor]
  22. Littlewood, J. E. (1925). On inequalities in the theory of functions. Proc. Lond. Math. Soc., 23, 481-519. [Google Scholor]
  23. Ghanim, F. & Darus, M. (2008). On certain class of analytic function with fixed second positive coefficient. Int. Jour. Math. Anal., 2, 55-66. [Google Scholor]
  24. Al-Shaqsi, K. & Darus, M. (2008). An operator defined by convolution involving the polylogarithmics functions. Journal of Mathematics and Statistics, 4(1), 46-50. [Google Scholor]
  25. Darus, M., & Ibrahim, R. W. (2009). New classes containing generalization of differential operator. Appl. Math. Sci., 3, 2507-2515. [Google Scholor]
  26. Al-Abbadi, M. H., & Darus, M. (2010). Differential subordination defined by generalised derivative operator for analytic functions. Inter. Jour. Math. Math. Sci., 2010, Article ID 369078, 15 pages.[Google Scholor]
  27. Al-Refai, O., & Darus, M. (2009). Main differential sandwich theorem with some applications. Lobachevskii J. Math., 30(1), 1-11. [Google Scholor]
  28. Ibrahim, R. W., & Darus, M. (2010). Differential Subordination for classes of normalized analytic functions. General Mathematics, 18(3), 41-50. [Google Scholor]
  29. Ibrahim, R. W., & Darus, M. (2010). On Certain classes of multivalent analytic functions. Journal of Mathematics and Statistics, 6(3), 271-275. [Google Scholor]