In this paper, we introduce and study the classes \(S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) of functions \(f\in A(n)\) with \((\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} \) \(+(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}\neq0\), where \(\nu>0,\varrho,\omega,\lambda,\alpha,\mu \geq0, \mho\in N_{0}, z\in U\) and \(D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z):A(n)\longrightarrow A(n),\) is the linear differential operator, newly defined as
\( D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho} a_{k+1}z^{k+1}. \)
Several properties such as coefficient estimates, growth and distortion theorems, extreme points, integral means inequalities and inclusion relation for the functions included in the classes \(S_{n,\mu} (\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) are given.
Definition 1.1. [\((n,\delta)\)-neighbourhood] By following the earlier investigations by Goodman [1] and Ruscheweyh [2], for any \(f(z)\in A(n)\) and \(\delta \geq0\), we define the \((n,\delta)\)-neighbourhood of \(f\) by
Lemma 2.1. Let the function \(f(z)\in A(n)\) be defined by (2), then \(f(z)\) is in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if
Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), then from (11) we have \[\begin{equation} \left \rvert \dfrac{1}{\gamma} \left( \dfrac{(\mu)z(D^{\mho+3}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}-1\right) \right\lvert < \beta, \end{equation}\] where \(f\in A(n),\nu>0,\varrho,\omega,\lambda,\alpha\geq 0, \mho\in N_{0},\)
or
\[\begin{equation} \Re\left( \dfrac{(\mu)z(D^{\mho+3}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda}(\nu,\alpha,\omega)f(z))^{‘}}-1\right) >-\beta \lvert\gamma \rvert, \end{equation}\] where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) This implies that \begin{equation} \Re\left( \dfrac{-\sum_{k=n}^{\infty}{k(\varrho+\lambda)\omega^{\alpha}}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}{z-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right) >-\beta \lvert\gamma \rvert, \nonumber \end{equation} where \(f\in A(n), \gamma\in C\setminus\{0\} ,\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) after taking the limit when \(z\longrightarrow 1^{-}\) and simplifying, we get \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U).\) Conversely, by applying the hypothesis (13) and letting \(\lvert z\rvert=1\) we get \begin{equation} \left \rvert \dfrac{(\mu)z(D^{\mho+3}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}{(\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} +(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}}-1 \right\lvert \nonumber \end{equation} \begin{equation} =\left| \dfrac{-\sum_{k=n}^{\infty}{k(\varrho+\lambda)\omega^{\alpha}}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}{z-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right| \nonumber \end{equation} \begin{equation} \leq \left|\dfrac{\beta\lvert \gamma\rvert\left[ 1-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}\right]}{1-\sum_{k=n}^{\infty}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1} a_{k+1}z^{k+1}}\right|=\beta\lvert \gamma\rvert. \nonumber \end{equation} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0},z\in U.\) This implies that \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).Corollary 2.2. Let the function \(f\) which is defined by (2) be in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\). Then we have \begin{equation} a_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}, k\geq n \nonumber \end{equation} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\)
Lemma 2.3. Let the function \(f(z)\in A(n)\) be defined by (2), then \(f(z)\) is in the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if
Proof. Same as Lemma 2.1.
Theorem 2.4. Let \(f(z)\in A(n)\), then \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\subset N_{n,\delta} (e)\) if
Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), then from (13) we get \begin{eqnarray*} && \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\\&&\times\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\sum_{k=n}^{\infty}\rvert a_{k+1}\lvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) This implies that
Theorem 2.5. Let \(f(z)\in A(n)\) ,then \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\subset N_{n,\delta} (e)\) if
Proof. The proof for this theorem similar to that given above and we omit it.
Theorem 3.1. Let \(g(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and
Proof. Let \(f\in N_{n,\delta}(g)\), then from (3) we can write that\begin{equation} \sum_{k=n}^{\infty}(k+1)\rvert a_{k+1}-b_{k+1}\lvert\leq\delta. \nonumber \end{equation} This implies that \begin{equation} \sum_{k=n}^{\infty}\rvert a_{k+1}-b_{k+1}\lvert\leq\dfrac{\delta}{n+1}. \nonumber \end{equation} Since it is given that \(g(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), so from (13) we can write that \begin{equation*} \sum_{k=n}^{\infty}b_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}. \nonumber \end{equation*} Now \begin{eqnarray*} &&\left| \dfrac{f(z)}{g(z)}-1\right|< \dfrac{\sum_{k=n}^{\infty}\rvert a_{k+1}-b_{k+1}\lvert}{1-\sum_{k=n}^{\infty}b_{k+1}}\\ &&\leq\dfrac{\delta}{n+1}.\dfrac{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1){\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)-\beta\lvert \gamma\rvert}}\\ &&=\dfrac{\delta\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right){\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)-\beta\lvert \gamma\rvert}}\\ &&=1-\tau, \end{eqnarray*} this implies that \(f\in S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\), therefore \begin{equation} N_{n,\delta}(g)\subset S^{\tau}_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho). \nonumber \end{equation}
Similarly, by using the same technique of Theorem 3.1 we proved the following theorem.Theorem 3.2. Let \(g(z)\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) and
Theorem 4.1. If the function \(f\) defined by (2) belong to the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\) and then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\) The extremal functions are \begin{equation} f(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}, k\geq n.\nonumber \end{equation}
Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then from (13) we get \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \gamma\in C\setminus\{0\},\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \) This implies that \begin{eqnarray*} \sum_{k=n}^{\infty}a_{k+1}\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) From (13) we have \begin{equation} \lvert f(z)\rvert=\lvert z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert, \nonumber \end{equation} or \begin{equation} \lvert f(z)\rvert\geq\lvert z\rvert-\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k+1}\rvert. \nonumber \end{equation} This implies that \begin{equation} \lvert f(z)\rvert\geq\lvert z\rvert-\dfrac{\beta\lvert \gamma\rvert }{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{n+1}\rvert. \nonumber \end{equation} Similarly \begin{equation} \lvert f(z)\rvert=\lvert z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert\leq\lvert z+\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\rvert, \nonumber \end{equation} or \begin{equation} \lvert f(z)\rvert\leq\lvert z\rvert+\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k+1}\rvert, \nonumber \end{equation} \begin{equation} \lvert f(z)\rvert\leq\lvert z\rvert+\dfrac{\beta\lvert \gamma\rvert }{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{n+1}\rvert. \nonumber \end{equation}
Theorem 4.2. If the function \(f\) defined by (2) belongs to the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert< 1\), we have: \[ \lvert f(z)\rvert\leq\lvert z\rvert+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n+1}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)} \] \[ \lvert f(z)\rvert\geq\lvert z\rvert-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n+1}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)} \] \[ (f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U). \] The extremal functions are: \[ f(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)}z^{k+1}, k\geq n. \]
Proof. The proof for this theorem is similar to that given above, and we omit it.
Theorem 4.3. If the function \(f\) defined by (2) belong to the class \(S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)
Proof. Let \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then from (11) we get \begin{eqnarray*} && \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(f\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U,\) or \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) \sum_{k=n}^{\infty}\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert, \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha,\mu\geq0, \mho\in N_{0}.\) This implies that \begin{eqnarray*} &&\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) \sum_{k=n}^{\infty}\lvert a_{k+1}\rvert\\&&\leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\lvert a_{k+1}\rvert\\&&\leq\beta \lvert\gamma \rvert \nonumber \end{eqnarray*} or \begin{eqnarray*} &&\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\\&&\times\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho }\lvert a_{k+1}\rvert\leq\beta \lvert\gamma \rvert \nonumber \end{eqnarray*} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0},\) implies that \begin{eqnarray*} &&\sum_{k=n}^{\infty}\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho }\lvert a_{k+1}\rvert\\&&\leq\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right).} \nonumber \end{eqnarray*} From (10) we have \begin{equation} \rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert=\left|z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+(k+1-1)(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) ^{\mho} a_{k+1}z^{k+1}\right|. \nonumber \end{equation} \begin{equation} \rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\geq\rvert z\rvert-\sum_{k=n}^{\infty}\left( \dfrac{\nu+(k+1-1)(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho}\lvert a_{k+1}\rvert \lvert z^{k+1}\lvert. \nonumber \end{equation} \begin{eqnarray*} &&\rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\\&&\geq\rvert z\rvert-\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{k+1}\lvert. \nonumber \end{eqnarray*} Similarly we can show that \begin{eqnarray*} &&\rvert D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)\lvert\\&&\leq\rvert z\rvert+\dfrac{\beta \lvert\gamma \rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(n+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z^{k+1}\lvert. \nonumber \end{eqnarray*}
Theorem 4.4. If the function \(f\) defined by (2) belong to the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\), then for \(\lvert z\rvert0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)
Theorem 4.5. Let the hypotheses of Theorem 4.1 be satisfied, then \begin{equation} \lvert f'(z)\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} \begin{equation} \lvert f'(z)\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)
Theorem 4.6. Let the hypotheses of Theorem 4.2 be satisfied, then \begin{equation} \lvert f'(z)\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} \begin{equation} \lvert f'(z)\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert\lvert z\rvert^{n}}{\left(\dfrac{\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)
Theorem 4.7. Let the hypotheses of Theorem 4.3 be satisfied, then \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z\rvert^{n} \nonumber \end{equation} \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\left(\dfrac{\beta\lvert\gamma \rvert\nu+n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\lvert z\rvert^{n} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U.\)
Theorem 4.8. Let the hypotheses of Theorem 4.4 be satisfied, then \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\leq1+\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\rvert z\rvert^{n} \nonumber \end{equation} \begin{equation} \lvert (D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))’\rvert\geq1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{2\nu+\mu n(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}\rvert z\rvert^{n} \nonumber \end{equation} where \(f(z)\in A(n), \nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}, z\in U. \)
Theorem 5.1.
(a). Let \(f_{1}(z)=z\) and
\begin{equation}
f_{i}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}, k\geq n. \nonumber
\end{equation}
then \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if it can be expressed in the form
\(f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) where \(\lambda_{i}\geq0\) and \(\sum_{i=1}^{\infty}\lambda_{i}=1.\)
(b). Let \(f_{1}(z)=z\) and
\begin{equation}
f_{i}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}z^{i+1}, k\geq n. \nonumber
\end{equation}
then \(f\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) if and only if it can be expressed in the form \(f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) where \(\lambda_{i}\geq0\) and \(\sum_{i=1}^{\infty}\lambda_{i}=1.\)
Proof. Let \(f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z), i=1,2,3,… \lambda_{i}\geq0\) with \(\sum_{i=1}^{\infty}\lambda_{i}=1.\) This implies that \begin{equation} f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z), \nonumber \end{equation} or \begin{eqnarray*} && f(z)=\lambda_{1}(z)+\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left(z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right), \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=\lambda_{1}(z)+\sum_{i=2}^{\infty}\lambda_{i}(z)-\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1} , \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=\sum_{i=1}^{\infty} \lambda_{i}(z)-\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left( \dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right), \nonumber \end{eqnarray*} \begin{eqnarray*} &&f(z)=(z) -\sum_{i=2}^{\infty}\lambda_{i}\\&&\times\left( \dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu}\right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right). \nonumber \end{eqnarray*} Since \begin{equation} \sum_{i=2}^{\infty}\left( \dfrac{\lambda_{i}\beta\lvert \gamma\rvert\left[ \left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)\right] }{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{i+1}\right) \nonumber \end{equation} \begin{equation} =\sum_{i=2}^{\infty}\lambda_{i}\beta\lvert \gamma\rvert=\beta\lvert \gamma\rvert\sum_{i=2}^{\infty}\lambda_{i}=\beta\lvert \gamma\rvert(1-\lambda_{1})< \beta\lvert \gamma\rvert. \nonumber \end{equation} The condition (13) for \(f(z)\in\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z)\) is satisfied. Thus \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\) \(\nu,\varrho,\mho,\omega)\). Conversely, we suppose that \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) since \begin{eqnarray*} \lvert a_{k+1}\rvert\leq\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}, k\geq n \nonumber \end{eqnarray*} where \(\nu\neq0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}.\) We put \begin{equation} \lambda_{i}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}a_{i}, k\geq n \nonumber \end{equation} where \(\nu>0,\varrho,\omega,\lambda,\alpha\geq0, \mho\in N_{0}\) and \( \lambda \nonumber_{1}=1-\sum_{i=2}^{\infty}\lambda_{i},\) then \begin{equation} f(z)=\sum_{i=1}^{\infty}\lambda_{i}f_{i}(z).\nonumber \end{equation}
The proof of the second part of Theorem 5.1 is similar to the first part.For any two functions \(f\) and \(g\) analytic in \(U\), \(f\) is said to be subordinate to \(g\) in \(U\) denoted by \(f\prec g\) if there exists an analytic function \(w\) defined \(U\) satisfying \(w(0)=0\) and \(\lvert w(z)\rvert< 1\) such that \(f(z)=g(w(z)), z\in U\).
In particular, if the function \(g\) is univalent in \(U\), the above subordination is equivalent to \(f(0)=g(0)\) and \(f(U)\subset g(U)\). In 1925, Littlewood [22] proved the following subordination theorem.
Theorem 6.1. If \(f\) and \(g\) are any two functions, analytic in \(U\) with \(f\prec g\) then for \(\mu>0\) and \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(z)\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert g(z)\rvert^{\mu}d\theta .\nonumber \end{equation}
Theorem 6.2. (a). Let \(f\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(f_{k}\) be defined by \begin{equation} f_{k}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}, k\geq n. \nonumber \end{equation} if there exists an analytic function \(w(z)\) given by \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}, \nonumber \end{equation} then for \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation} (b). Let \(f\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(f_{k}\) be defined by \begin{equation} f_{k}(z)=z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}z^{k+1}, k\geq n. \nonumber \end{equation} If there exists an analytic function \(w(z)\) given by \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}, \nonumber \end{equation} then for \(z=re^{i\theta} (0< r< 1)\), \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation}
Proof. (a) We have to show that \begin{equation} \int^{2\pi}_{0}\lvert f(re^{i\theta})\rvert^{\mu}d\theta\leq \int^{2\pi}_{0}\lvert f_{k}(re^{i\theta})\rvert^{\mu}d\theta \nonumber \end{equation} or \(\int^{2\pi}_{0}\lvert z-\sum_{k=n}^{\infty} a_{k+1}z^{k+1})\rvert^{\mu}d\theta\) \begin{equation} \leq \int^{2\pi}_{0}\lvert z-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k+1}\rvert ^{\mu}d\theta \nonumber \end{equation} or \(\int^{2\pi}_{0}\lvert 1-\sum_{k=n}^{\infty} a_{k+1}z^{k})\rvert^{\mu}d\theta\) \begin{equation} \leq \int^{2\pi}_{0}\lvert 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k}\rvert^{\mu}d\theta \nonumber \end{equation} By using Theorem 6.1 it is enough to show that \( 1-\sum_{k=n}^{\infty} a_{k+1}z^{k}\) \begin{equation} < 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}z^{k}. \nonumber \end{equation} Now by taking \( 1-\sum_{k=n}^{\infty} a_{k+1}z^{k}\) \begin{equation} = 1-\dfrac{\beta\lvert \gamma\rvert}{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}(w(z))^{k} \nonumber \end{equation} and after simplification we get \begin{equation} [w(z)]^{k}=\dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}. \nonumber \end{equation} This implies that \(w(0)=0\) and \begin{equation} \lvert[w(z)]^{k}\rvert=\left| \dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}a_{k+1}z^{k}\right| , \nonumber \end{equation} or \begin{equation} \lvert[w(z)]^{k}\rvert= \dfrac{\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)}{\beta\lvert \gamma\rvert}\sum_{k=n}^{\infty}\lvert a_{k+1}\rvert \lvert z^{k}\rvert. \nonumber \end{equation} By using (13) we get \begin{equation} \lvert[w(z)]^{k}\rvert\leq\lvert z\rvert < 1. \nonumber \end{equation}
The proof of the second part of the Theorem 6.2 is similar to the first part. Theorem 7.1.
(a) Let \(0\leq\alpha_{1}\leq\alpha_{2}\leq1,0\leq\beta_{1}\leq\beta_{2}\leq1,0\leq\lambda_{1}\leq\lambda_{2}\leq1\) and \(0\leq\omega_{1}\leq\omega_{2}\leq1\). Let a function \(f\) be in the class \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) satisfying
\begin{equation}
\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert \nonumber
\end{equation}
then
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{2})\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{1})\).
\(\bullet\) \(S_{n,\mu_{2}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu_{1}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).
(b) Let \(0\leq\alpha_{1}\leq\alpha_{2}\leq1,0\leq\beta_{1}\leq\beta_{2}\leq1,0\leq\lambda_{1}\leq\lambda_{2}\leq1\) and \(0\leq\omega_{1}\leq\omega_{2}\leq1\). Let a function \(f\) be in the class \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) satisfying
\begin{equation}
\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +2}\left(\dfrac{2\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1) a_{k+1}\leq\beta \lvert\gamma \rvert \nonumber
\end{equation}
then
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
\(\bullet\) \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{2})\subseteq R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega_{1})\).
\(\bullet\) \(R_{n,\mu_{2}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq R_{n,\mu_{1}}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).
Proof.
(a) To prove \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
Since it is given that \(0\leq\alpha_{1}\leq\alpha_{2}\leq1\), implies
\begin{equation}
\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha_{2}}}{\nu} \right) a_{k+1} \nonumber
\end{equation}
\begin{equation}
\leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha_{1}}}{\nu} \right) a_{k+1} \nonumber
\end{equation}
therefore if \(f(z)\in S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\) implies \(f(z)\in S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\). This show that \(S_{n,\mu}(\gamma,\alpha_{1},\beta,\lambda,\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha_{2},\beta,\lambda,\nu,\varrho,\mho,\omega)\).
Similarly, to prove that \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
Since it is given that \(0\leq\lambda_{1}\leq\lambda_{2}\leq1\) thus
\begin{equation}
\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda_{1})\omega^{\alpha}}{\nu} \right) a_{k+1} \nonumber
\end{equation}
\begin{equation}
\leq\sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda_{2})\omega^{\alpha}}{\nu} \right) a_{k+1} \nonumber
\end{equation}
Therefore, if \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\) implies \(f(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\) \(\varrho,\mho,\omega)\). This show that \(S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{2},\nu,\varrho,\mho,\omega)\subseteq S_{n,\mu}(\gamma,\alpha,\beta,\lambda_{1},\nu,\varrho,\mho,\omega)\).
Theorem 8.1.
Let \(f,g\in A(n)\) where \(f(z)\) is given in (2) and \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\), then the modified Hadamard product \(f\ast g\) is defined by \((f\ast g)(z)=z-\sum_{k=n}^{\infty}a_{k+1}b_{k+1}z^{k+1}\).
(a) If \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho,\omega)\) and
\(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) then \((f\ast g)(z)\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\).
(b) If \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and
\(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), then \((f\ast g)(z)\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\).
Proof. (a) Since it is given that \(f(z)=z-\sum_{k=n}^{\infty}a_{k+1}z^{k+1}\in S_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\) \(\mho,\omega)\), implies \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert. \nonumber \end{equation} Similarly \(g(z)=z-\sum_{k=n}^{\infty}b_{k+1}z^{k+1}\in R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\), implies \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) b_{k+1}\leq\beta \lvert\gamma \rvert, \nonumber \end{equation} because \begin{equation} \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) b_{k+1} \nonumber \end{equation} \begin{equation} \leq \sum_{k=n}^{\infty}\left(\dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho +1}\left(\dfrac{\nu+\mu k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)(k+1)\left(\dfrac{\beta\lvert\gamma \rvert\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right) a_{k+1}\leq\beta \lvert\gamma \rvert. \nonumber \end{equation}
Other work regarding differential operators for various problems can be found in [6, 7, 23, 24, 25, 26, 27, 28, 29].