1. Introduction
The classical form of Grüss inequality, first published by G. Grüss
in 1935, gives an estimate of the difference between the integral of the
product and the product of the integrals of two functions. In recent years,
several bounds for the Cebysev functional in various cases including
convexity assumptions for the functions involved are proved. In the
subsequent years, many variants of these inequalities appeared in the
literature (see, [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12]).
In 1935, G. Grüss [
4]
proved the following inequality:
\begin{equation}
\left\vert \frac{1}{b-a}\int\limits_{a}^{b}f(x)g(x)dx-\frac{1}{b-a}
\int\limits_{a}^{b}f(x)dx\frac{1}{b-a}\int\limits_{a}^{b}g(x)dx\right\vert
\leq \frac{1}{4}(\Phi -\varphi )(\Gamma -\gamma ), \label{1}
\end{equation}
(1)
provided that \(f\) and \(g\) are two integrable function on \([a,b]\) satisfying
the condition
\begin{equation*}
\varphi \leq f(x)\leq \Phi \text{ and }\gamma \leq g(x)\leq \Gamma \text{
for all }x\in \lbrack a,b].
\end{equation*}
The constant \(\frac{1}{4}\) is best possible.
In 1882, P. L. Čebyšev [
13] gave the following inequality:
\begin{equation*}
\left\vert T(f,g)\right\vert \leq \frac{1}{12}(b-a)^{2}\left\Vert f^{\prime
}\right\Vert _{\infty }\left\Vert g^{\prime }\right\Vert _{\infty },
\end{equation*}
where \(f,g:[a,b]\rightarrow \mathbb{R}\) are absolutely continuous function,
whose first derivatives \(f^{\prime }\) and \(g^{\prime }\) are bounded,
\begin{equation*}
T(f,g)=\frac{1}{b-a}\int\limits_{a}^{b}f(x)g(x)dx-\left( \frac{1}{b-a}
\int\limits_{a}^{b}f(x)dx\right) \left( \frac{1}{b-a}\int
\limits_{a}^{b}g(x)dx\right)
\end{equation*}
and \(\left\Vert .\right\Vert _{\infty }\) denotes the norm in \(L_{\infty
}[a,b]\) defined as \(\left\Vert p\right\Vert _{\infty }=\underset{t\in
\lbrack a,b]}{ess\sup }\left\vert p(t)\right\vert .\)
In [
14], Beesack
et al. have proved the following Cebysev inequality
for absolutely continuous functions whose first derivatives belong to \(Lp\)
spaces.
\begin{equation}
\left\vert T\left( f,g\right) \right\vert \leq \frac{\left( b-a\right) }{4}
\left( \frac{2^{p}-1}{p(p+1)}\right) ^{\frac{1}{p}}\left( \frac{2^{q}-1}{
q(q+1)}\right) ^{\frac{1}{q}}\left\Vert f\right\Vert _{p}\left\Vert
g\right\Vert _{q} \label{01}
\end{equation}
(2)
where \(\left\Vert h\right\Vert _{p}=\left( \int\limits_{a}^{b}\left\vert
h(x)\right\vert ^{p}dx\right) ^{\frac{1}{p}},\ \forall p>1\) and \(\frac{1}{p}+
\frac{1}{q}=1.\)
In this paper, some inequalities related to Chebyshev’s functional are
proved. We give our results in the case of differentiable functions whose
derivatives and theirself belong to \(L_{p}[a,b],\) \(1\leq p\leq \infty .\)
2. Main results
Theorem 2.1.
Let \(f,g:[a,b]\rightarrow R\) be an absolutely continuous function on \([a,b]\)
so that \(\left\vert f^{\prime }\right\vert \) and \(\left\vert g^{\prime
}\right\vert \) are convex on \([a,b].\)
- If \(f,f^{\prime },g,g^{\prime }\in L_{\infty }[a,b]\), then we have
\begin{equation}
\left\vert T\left( f,g\right) \right\vert \leq \frac{\left( b-a\right) }{6}
\left[ \left\Vert g\right\Vert _{\infty }\left\Vert f^{\prime }\right\Vert
_{\infty }+\left\Vert f\right\Vert _{\infty }\left\Vert g^{\prime
}\right\Vert _{\infty }\right] , \label{z1}
\end{equation}
(3)
- If \(f,f^{\prime },g,g^{\prime }\in L_{p}[a,b]\), \(p>1,\ \frac{1}{p}+\frac{
1}{q}=1,\) then we have
\begin{eqnarray}
&&\left\vert T\left( f,g\right) \right\vert \leq \frac{2^{\frac{1}{q}-2}\left(
b-a\right) ^{\frac{2}{q}-1}}{\left[ (q+1)(q+2)\right] ^{\frac{1}{q}}}\nonumber\\&&\left[
\left( b-a\right) ^{\frac{1}{p}}\left( \left\Vert gf^{\prime }\right\Vert
_{p}+\left\Vert fg^{\prime }\right\Vert _{p}\right) +\left\Vert g\right\Vert
_{p}\left\Vert f^{\prime }\right\Vert _{p}+\left\Vert f\right\Vert
_{p}\left\Vert g^{\prime }\right\Vert _{p}\right] , \label{z2}
\end{eqnarray}
(4)
- If \(f,f^{\prime },g,g^{\prime }\in L_{1}[a,b]\), then we have
\begin{equation}
\left\vert T\left( f,g\right) \right\vert \leq \frac{1}{4}\left[ \left\Vert
gf^{\prime }\right\Vert _{1}+\left\Vert fg^{\prime }\right\Vert _{1}\right] +
\frac{1}{4\left( b-a\right) }\left[ \left\Vert g\right\Vert _{1}\left\Vert
f^{\prime }\right\Vert _{1}+\left\Vert f\right\Vert _{1}\left\Vert g^{\prime
}\right\Vert _{1}\right] . \label{z3}
\end{equation}
(5)
Proof.
For any \(x,t\in \lbrack a,b],\ x\neq t,\) we write
\begin{equation*}
\frac{f(x)-f(t)}{x-t}=\frac{1}{x-t}\int\limits_{t}^{x}f^{\prime
}(u)du=\int\limits_{0}^{1}f^{\prime }\left[ (1-\lambda )x+\lambda t\right]
d\lambda
\end{equation*}
and so
\begin{equation}
f(x)=f(t)+(x-t)\int\limits_{0}^{1}f^{\prime }\left[ (1-\lambda )x+\lambda t
\right] d\lambda . \label{2}
\end{equation}
(6)
Let’s rewrite (6) as follows
\begin{equation}
g(x)=g(t)+(x-t)\int\limits_{0}^{1}g^{\prime }\left[ (1-\lambda )x+\lambda t
\right] d\lambda . \label{3}
\end{equation}
(7)
Multiplying (6) by \(g(x)\) and (7) by \(f(x)\), adding the
resulting identities, and integrate over \(x,t\in \lbrack a,b]\), and divide
by \(\left( b-a\right) ^{2},\) we have
\begin{eqnarray*}
\frac{2}{\left( b-a\right) }\int\limits_{a}^{b}f(x)g(x)dx &=&\frac{2}{
\left( b-a\right) ^{2}}\int\limits_{a}^{b}f(x)dx\int\limits_{a}^{b}g(x)dx
\\
&&+\frac{1}{\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int
\limits_{a}^{b}(x-t)g(x)\int\limits_{0}^{1}f^{\prime }\left[ (1-\lambda
)x+\lambda t\right] d\lambda dtdx \\
&&+\frac{1}{\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int
\limits_{a}^{b}(x-t)f(x)\int\limits_{0}^{1}g^{\prime }\left[ (1-\lambda
)x+\lambda t\right] d\lambda dtdx
\end{eqnarray*}
and rewriting we get
\begin{eqnarray}
T\left( f,g\right) &=&\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}
\int\limits_{a}^{b}(x-t)g(x)\int\limits_{0}^{1}f^{\prime }\left[
(1-\lambda )x+\lambda t\right] d\lambda dtdx \label{s1} \\
&&+\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int
\limits_{a}^{b}(x-t)f(x)\int\limits_{0}^{1}g^{\prime }\left[ (1-\lambda
)x+\lambda t\right] d\lambda dtdx. \notag
\end{eqnarray}
(8)
(1) Thus, using the properties of modulus and the convexity of \(\left\vert
f^{\prime }\right\vert \) and \(\left\vert g^{\prime }\right\vert \), we have
\begin{eqnarray*}
\left\vert T\left( f,g\right) \right\vert &\leq &\frac{1}{2\left( b-a\right)
^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert
\left\vert g(x)\right\vert \int\limits_{0}^{1}\left[ (1-\lambda )\left\vert
f^{\prime }(x)\right\vert +\lambda \left\vert f^{\prime }(t)\right\vert
\right] d\lambda dtdx \\
&&+\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}
\left\vert x-t\right\vert \left\vert f(x)\right\vert \int\limits_{0}^{1}
\left[ (1-\lambda )\left\vert g^{\prime }(x)\right\vert +\lambda \left\vert
g^{\prime }(t)\right\vert \right] d\lambda dtdx \\
&=&\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}
\left\vert x-t\right\vert \left[ \left\vert g(x)\right\vert \left\vert
f^{\prime }(x)\right\vert +\left\vert g(x)\right\vert \left\vert f^{\prime
}(t)\right\vert \right] dtdx \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}
\left\vert x-t\right\vert \left[ \left\vert f(x)\right\vert \left\vert
g^{\prime }(x)\right\vert +\left\vert f(x)\right\vert \left\vert g^{\prime
}(t)\right\vert \right] dtdx \\
&\leq &\frac{1}{4\left( b-a\right) ^{2}}ess\sup_{x\in \left[ a,b\right] }
\left[ \left\vert g(x)\right\vert \left\vert f^{\prime }(x)\right\vert
+\left\vert f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right]
\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert dxdt \\
&&+\frac{1}{4\left( b-a\right) ^{2}}ess\sup_{x\in \left[ a,b\right]
}\left\vert g(x)\right\vert
\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert \left\vert
f^{\prime }(t)\right\vert dxdt \\
&&+\frac{1}{4\left( b-a\right) ^{2}}ess\sup_{x\in \left[ a,b\right]
}\left\vert f(x)\right\vert
\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert \left\vert
g^{\prime }(t)\right\vert dxdt \\
&\leq &\frac{1}{4\left( b-a\right) ^{2}}\left[ \left\Vert g\right\Vert
_{\infty }\left\Vert f^{\prime }\right\Vert _{\infty }+\left\Vert
f\right\Vert _{\infty }\left\Vert g^{\prime }\right\Vert _{\infty }\right]
\int\limits_{a}^{b}\left[ \frac{\left( t-a\right) ^{2}+\left( b-t\right)
^{2}}{2}\right] dt \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\left\Vert g\right\Vert _{\infty
}ess\sup_{t\in \left[ a,b\right] }\left\vert f^{\prime }(t)\right\vert
\int\limits_{a}^{b}\left[ \frac{\left( t-a\right) ^{2}+\left( b-t\right)
^{2}}{2}\right] dt \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\left\Vert f\right\Vert _{\infty
}ess\sup_{t\in \left[ a,b\right] }\left\vert g^{\prime }(t)\right\vert
\int\limits_{a}^{b}\left[ \frac{\left( t-a\right) ^{2}+\left( b-t\right)
^{2}}{2}\right] dt \\
&=&\frac{\left( b-a\right) }{6}\left[ \left\Vert g\right\Vert _{\infty
}\left\Vert f^{\prime }\right\Vert _{\infty }+\left\Vert f\right\Vert
_{\infty }\left\Vert g^{\prime }\right\Vert _{\infty }\right]
\end{eqnarray*}
for \(x,t\in \left[ a,b\right] ,\) and the inequality (3) is proved.
(2) As above, we rewrite
\begin{eqnarray}
\left\vert T\left( f,g\right) \right\vert &\leq &\frac{1}{4\left( b-a\right)
^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert \left[
\left\vert g(x)\right\vert \left\vert f^{\prime }(x)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right] dtdx \label{4}
\\
&&+\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}
\left\vert x-t\right\vert \left[ \left\vert g(x)\right\vert \left\vert
f^{\prime }(t)\right\vert +\left\vert f(x)\right\vert \left\vert g^{\prime
}(t)\right\vert \right] dtdx. \notag
\end{eqnarray}
(9)
Using the Hölder’s inequality for \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1,\) we
have
\begin{eqnarray*}
&&\left\vert T\left( f,g\right) \right\vert \\
&&\leq \frac{1}{4\left( b-a\right)
^{2}}\left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
x-t\right\vert ^{q}dtdx\right) ^{\frac{1}{q}} \\
&&\times \left\{ \left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left[
\left\vert g(x)\right\vert \left\vert f^{\prime }(x)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right] ^{p}dtdx\right)
^{\frac{1}{p}} \right.\\
&&+ \left. \left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
g(x)\right\vert ^{p}\left\vert f^{\prime }(t)\right\vert ^{p}dtdx\right) ^{
\frac{1}{p}} + \left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
f(x)\right\vert ^{p}\left\vert g^{\prime }(t)\right\vert ^{p}dtdx\right) ^{
\frac{1}{p}}\right\} \\
&=&\frac{1}{4\left( b-a\right) ^{2}}\left[ \left( b-a\right) ^{\frac{1}{p}
}\left\Vert \left\vert gf^{\prime }\right\vert +\left\vert fg^{\prime
}\right\vert \right\Vert _{p}+\left\Vert g\right\Vert _{p}\left\Vert
f^{\prime }\right\Vert _{p}+\left\Vert f\right\Vert _{p}\left\Vert g^{\prime
}\right\Vert _{p}\right]\\
&\times & \left( \int\limits_{a}^{b}\left[ \frac{\left(
t-a\right) ^{q+1}+\left( b-t\right) ^{q+1}}{q+1}\right] dt\right) ^{\frac{1}{
q}} \\
&\leq &\frac{2^{\frac{1}{q}-2}\left( b-a\right) ^{\frac{2}{q}-1}}{\left[
(q+1)(q+2)\right] ^{\frac{1}{q}}}\left[ \left( b-a\right) ^{\frac{1}{p}
}\left( \left\Vert gf^{\prime }\right\Vert _{p}+\left\Vert fg^{\prime
}\right\Vert _{p}\right) +\left\Vert g\right\Vert _{p}\left\Vert f^{\prime
}\right\Vert _{p}+\left\Vert f\right\Vert _{p}\left\Vert g^{\prime
}\right\Vert _{p}\right]
\end{eqnarray*}
and the inequality (4) is proved.
(3) We consider the inequality (9) that
\begin{eqnarray*}
&&\left\vert T\left( f,g\right) \right\vert \\&\leq &\frac{1}{4\left( b-a\right)
}\int\limits_{a}^{b}\left[ \left\vert g(x)\right\vert \left\vert f^{\prime
}(x)\right\vert +\left\vert f(x)\right\vert \left\vert g^{\prime
}(x)\right\vert \right] \sup_{t\in \left[ a,b\right] }\left\vert
x-t\right\vert dx \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\sup_{t\in \left[ a,b
\right] }\left\vert x-t\right\vert \int\limits_{a}^{b}\left[ \left\vert
g(x)\right\vert \left\vert f^{\prime }(t)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(t)\right\vert \right] dtdx \\
&=&\frac{1}{4\left( b-a\right) }\int\limits_{a}^{b}\left[ \left\vert
g(x)\right\vert \left\vert f^{\prime }(x)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right] \max \left\{
x-a,b-x\right\} dx \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\max \left\{
x-a,b-x\right\} \left[ \left\vert g(x)\right\vert \left\Vert f^{\prime
}\right\Vert _{1}+\left\vert f(x)\right\vert \left\Vert g^{\prime
}\right\Vert _{1}\right] dx \\
&=&\frac{1}{4\left( b-a\right) }\int\limits_{a}^{b}\left[ \left\vert
g(x)\right\vert \left\vert f^{\prime }(x)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right] \left( \frac{
\left( b-a\right) +\left\vert 2x-b-a\right\vert }{2}\right) dx \\
&&+\frac{1}{4\left( b-a\right) ^{2}}\int\limits_{a}^{b}\left( \frac{\left(
b-a\right) +\left\vert 2x-b-a\right\vert }{2}\right) \left[ \left\vert
g(x)\right\vert \left\Vert f^{\prime }\right\Vert _{1}+\left\vert
f(x)\right\vert \left\Vert g^{\prime }\right\Vert _{1}\right] dx \\
&\leq &\frac{1}{8}\left[ \left\Vert gf^{\prime }\right\Vert _{1}+\left\Vert
fg^{\prime }\right\Vert _{1}\right] +\frac{1}{8\left( b-a\right) }\left[
\left\Vert g\right\Vert _{1}\left\Vert f^{\prime }\right\Vert
_{1}+\left\Vert f\right\Vert _{1}\left\Vert g^{\prime }\right\Vert _{1}
\right] \\
&&+\frac{1}{8\left( b-a\right) }\sup_{x\in \left[ a,b\right] }\left\vert
2x-b-a\right\vert \left\{ \int\limits_{a}^{b}\left[ \left\vert
g(x)\right\vert \left\vert f^{\prime }(x)\right\vert +\left\vert
f(x)\right\vert \left\vert g^{\prime }(x)\right\vert \right] dx\right. \\
&&+\left. \frac{1}{\left( b-a\right) }\int\limits_{a}^{b}\left[ \left\vert
g(x)\right\vert \left\Vert f^{\prime }\right\Vert _{1}+\left\vert
f(x)\right\vert \left\Vert g^{\prime }\right\Vert _{1}\right] dx\right\} \\
&=&\frac{1}{4}\left[ \left\Vert gf^{\prime }\right\Vert _{1}+\left\Vert
fg^{\prime }\right\Vert _{1}\right] +\frac{1}{4\left( b-a\right) }\left[
\left\Vert g\right\Vert _{1}\left\Vert f^{\prime }\right\Vert
_{1}+\left\Vert f\right\Vert _{1}\left\Vert g^{\prime }\right\Vert _{1}
\right]
\end{eqnarray*}
and the inequality (5) is proved.
Theorem 2.2.
Let \(f,g:[a,b]\rightarrow R\) be an absolutely continuous function on \([a,b]\)
so that \(\left\vert f^{\prime }\right\vert ^{p}\) and \(\left\vert g^{\prime
}\right\vert ^{p}\) with \(p>1\)are convex on \([a,b].\)
- If \(f,f^{\prime },g,g^{\prime }\in L_{\infty }[a,b]\), then we have
\begin{equation}
\left\vert T\left( f,g\right) \right\vert \leq \frac{\left( b-a\right) }{6}
\left[ \left\Vert g\right\Vert _{\infty }\left\Vert f^{\prime }\right\Vert
_{\infty }+\left\Vert f\right\Vert _{\infty }\left\Vert g^{\prime
}\right\Vert _{\infty }\right] , \label{z4}
\end{equation}
(10)
- If \(f,f^{\prime },g,g^{\prime }\in L_{p}[a,b]\), \(p>1,\ \frac{1}{p}+\frac{
1}{q}=1,\) then we have
\begin{eqnarray}
&&\left\vert T\left( f,g\right) \right\vert \leq \frac{2^{\frac{1}{q}-\frac{1
}{p}-1}\left( b-a\right) ^{\frac{2}{q}-1}}{\left[ (q+1)(q+2)\right] ^{\frac{1
}{q}}} \label{z5} \\
&&\times \left\{ \left( \left( b-a\right) \left\Vert gf^{\prime }\right\Vert
_{p}^{p}+\left\Vert g\right\Vert _{p}^{p}\left\Vert f^{\prime }\right\Vert
_{p}^{p}\right) ^{\frac{1}{p}}+\left( \left( b-a\right) \left\Vert
fg^{\prime }\right\Vert _{p}^{p}+\left\Vert f\right\Vert _{p}^{p}\left\Vert
g^{\prime }\right\Vert _{p}^{p}\right) ^{\frac{1}{p}}\right\} , \notag
\end{eqnarray}
(11)
- If \(f,f^{\prime },g,g^{\prime }\in L_{p}[a,b]\), then we have
\begin{equation}
\left\vert T\left( f,g\right) \right\vert \leq \frac{\left( b-a\right) ^{
\frac{1}{q}}}{2}\left\{ \left[ \left\Vert f^{\prime }\right\Vert
_{p}^{p}+\left\Vert gf^{\prime }\right\Vert _{p}^{p}\right] ^{\frac{1}{p}}+
\left[ \left\Vert g^{\prime }\right\Vert _{p}^{p}+\left\Vert fg^{\prime
}\right\Vert _{p}^{p}\right] ^{\frac{1}{p}}\right\} . \label{z6}
\end{equation}
(12)
Proof.
By Hölder’s inequality and using the convexity of \(\left\vert f^{\prime
}\right\vert ^{p},\) we get
\begin{eqnarray*}
\int\limits_{0}^{1}f^{\prime }\left[ (1-\lambda )x+\lambda t\right]
d\lambda &\leq &\left( \int\limits_{0}^{1}1^{q}\right) ^{\frac{1}{q}}\left(
\int\limits_{0}^{1}\left\vert f^{\prime }\left[ (1-\lambda )x+\lambda t
\right] \right\vert ^{p}d\lambda \right) ^{\frac{1}{p}} \\
&=&\left( \int\limits_{0}^{1}\left\vert f^{\prime }\left[ (1-\lambda
)x+\lambda t\right] \right\vert ^{p}d\lambda \right) ^{\frac{1}{p}} \\
&\leq &\left( \int\limits_{0}^{1}\left[ (1-\lambda )\left\vert f^{\prime
}(x)\right\vert ^{p}+\lambda \left\vert f^{\prime }(t)\right\vert ^{p}\right]
d\lambda \right) ^{\frac{1}{p}} \\
&=&\left( \frac{\left\vert f^{\prime }(x)\right\vert ^{p}+\left\vert
f^{\prime }(t)\right\vert ^{p}}{2}\right) ^{\frac{1}{p}}.
\end{eqnarray*}
From (8) and using the properties of modulus and the convexity of \(
\left\vert f^{\prime }\right\vert ^{p}\) and \(\left\vert g^{\prime
}\right\vert ^{p}\), we have
\begin{eqnarray}
\left\vert T\left( f,g\right) \right\vert &\leq &\frac{1}{2\left( b-a\right)
^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert x-t\right\vert
\left\vert g(x)\right\vert \left( \frac{\left\vert f^{\prime }(x)\right\vert
^{p}+\left\vert f^{\prime }(t)\right\vert ^{p}}{2}\right) ^{\frac{1}{p}}dtdx
\label{s2} \\
&&+\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\int\limits_{a}^{b}
\left\vert x-t\right\vert \left\vert f(x)\right\vert \left( \frac{\left\vert
g^{\prime }(x)\right\vert ^{p}+\left\vert g^{\prime }(t)\right\vert ^{p}}{2}
\right) ^{\frac{1}{p}}dtdx \notag
\end{eqnarray}
for \(x,t\in \left[ a,b\right] .\)
(1) If we take \(f,f^{\prime },g,g^{\prime }\in L_{\infty }[a,b]\), then from (
13), we have
\begin{eqnarray*}
&&\left\vert T\left( f,g\right) \right\vert\\ &\leq &\frac{1}{2\left( b-a\right)
^{2}}ess\sup_{x\in \left[ a,b\right] }\left\vert g(x)\right\vert
ess\sup_{x,t\in \left[ a,b\right] }\left( \frac{\left\vert f^{\prime
}(x)\right\vert ^{p}+\left\vert f^{\prime }(t)\right\vert ^{p}}{2}\right) ^{
\frac{1}{p}}\int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
x-t\right\vert dtdx \\
&+&\frac{1}{2\left( b-a\right) ^{2}}ess\sup_{x\in \left[ a,b\right]
}\left\vert f(x)\right\vert ess\sup_{x,t\in \left[ a,b\right] }\left( \frac{
\left\vert g^{\prime }(x)\right\vert ^{p}+\left\vert g^{\prime
}(t)\right\vert ^{p}}{2}\right) ^{\frac{1}{p}}\int\limits_{a}^{b}\int
\limits_{a}^{b}\left\vert x-t\right\vert dtdx \\
&\leq &\frac{\left( b-a\right) }{6}\left[ \left\Vert g\right\Vert _{\infty
}\left\Vert f^{\prime }\right\Vert _{\infty }+\left\Vert f\right\Vert
_{\infty }\left\Vert g^{\prime }\right\Vert _{\infty }\right]
\end{eqnarray*}
for any \(x,t\in \left[ a,b\right] ,\) the inequality is proved.
(2) If \(f,f^{\prime },g,g^{\prime }\in L_{p}[a,b]\), \(p>1,\ \frac{1}{p}+\frac{
1}{q}=1,\) then from (13) and by Hölder’s inequality we have
\begin{eqnarray*}
\left\vert T\left( f,g\right) \right\vert &\leq &\frac{1}{2\left( b-a\right)
^{2}}\left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
x-t\right\vert ^{q}dtdx\right) ^{\frac{1}{q}} \\
&\times & \left\{ \left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
g(x)\right\vert ^{p}\left( \frac{\left\vert f^{\prime }(x)\right\vert
^{p}+\left\vert f^{\prime }(t)\right\vert ^{p}}{2}\right) dtdx\right) ^{
\frac{1}{p}}\right. \\
&+&\left. \left( \int\limits_{a}^{b}\int\limits_{a}^{b}\left\vert
f(x)\right\vert ^{p}\left( \frac{\left\vert g^{\prime }(x)\right\vert
^{p}+\left\vert g^{\prime }(t)\right\vert ^{p}}{2}\right) dtdx\right) ^{
\frac{1}{p}}\right\} \\
&=&\frac{1}{2^{1+\frac{1}{p}}\left( b-a\right) ^{2}}\left(
\int\limits_{a}^{b}\frac{\left( x-a\right) ^{q+1}+\left( b-x\right) ^{q+1}}{
q+1}dx\right) ^{\frac{1}{q}} \\
&&\times \left( \left( b-a\right) \left\Vert gf^{\prime }\right\Vert
_{p}^{p}+\left\Vert g\right\Vert _{p}^{p}\left\Vert f^{\prime }\right\Vert
_{p}^{p}\right) ^{\frac{1}{p}}+\left( \left( b-a\right) \left\Vert
fg^{\prime }\right\Vert _{p}^{p}+\left\Vert f\right\Vert _{p}^{p}\left\Vert
g^{\prime }\right\Vert _{p}^{p}\right) ^{\frac{1}{p}} \\
&=&\frac{2^{\frac{1}{q}-\frac{1}{p}-1} \left( b-a\right) ^{\frac{2}{q}-1}}{
\left[ \left( q+1\right) \left( q+2\right) \right] ^{\frac{1}{q}}}
\Bigg[ \left(
\left( b-a\right) \left\Vert gf^{\prime }\right\Vert _{p}^{p}+\left\Vert
g\right\Vert _{p}^{p}\left\Vert f^{\prime }\right\Vert _{p}^{p}\right) ^{
\frac{1}{p}} \\
&& +\left( \left( b-a\right) \left\Vert fg^{\prime }\right\Vert
_{p}^{p}+\left\Vert f\right\Vert _{p}^{p}\left\Vert g^{\prime }\right\Vert
_{p}^{p}\right) ^{\frac{1}{p}} \Bigg]
\end{eqnarray*}
which is proved the inequality (11).
(3) If \(f,f^{\prime },g,g^{\prime }\in L_{p}[a,b]\), then from (13)
and by Hölder’s inequality we also have
\begin{eqnarray*}
&&\left\vert T\left( f,g\right) \right\vert \\
&\leq &\frac{1}{2\left(
b-a\right) ^{2}}\int\limits_{a}^{b}\sup_{x\in \left[ a,b\right] }\left\vert
x-t\right\vert \int\limits_{a}^{b}\left\vert g(x)\right\vert \left( \frac{%
\left\vert f^{\prime }(x)\right\vert ^{p}+\left\vert f^{\prime
}(t)\right\vert ^{p}}{2}\right) ^{\frac{1}{p}}dxdt \\
&+&\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\sup_{x\in \left[ a,b%
\right] }\left\vert x-t\right\vert \int\limits_{a}^{b}\left\vert
f(x)\right\vert \left( \frac{\left\vert g^{\prime }(x)\right\vert
^{p}+\left\vert g^{\prime }(t)\right\vert ^{p}}{2}\right) ^{\frac{1}{p}}dxdt
\\
&=&\frac{1}{2^{1+\frac{1}{p}}\left( b-a\right) ^{2}}\int\limits_{a}^{b}\max
\left\{ t-a,b-t\right\} \int\limits_{a}^{b}\left\vert g(x)\right\vert
\left( \left\vert f^{\prime }(x)\right\vert ^{p}+\left\vert f^{\prime
}(t)\right\vert ^{p}\right) ^{\frac{1}{p}}dxdt \\
&+&\frac{1}{2^{1+\frac{1}{p}}\left( b-a\right) ^{2}}\int\limits_{a}^{b}\max
\left\{ t-a,b-t\right\} \int\limits_{a}^{b}\left\vert f(x)\right\vert
\left( \left\vert g^{\prime }(x)\right\vert ^{p}+\left\vert g^{\prime
}(t)\right\vert ^{p}\right) ^{\frac{1}{p}}dxdt \\
&\leq &\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\left( \frac{%
\left( b-a\right) +\left\vert 2t-b-a\right\vert }{2}\right) \\
&\times &\left[ \left(
\int\limits_{a}^{b}\left\vert g(x)\right\vert ^{p}\left( \left\vert
f^{\prime }(x)\right\vert ^{p}+\left\vert f^{\prime }(t)\right\vert
^{p}\right) dx\right) ^{\frac{1}{p}}\left(
\int\limits_{a}^{b}1^{q}dx\right) ^{\frac{1}{q}}\right] dt \\
&+&\frac{1}{2\left( b-a\right) ^{2}}\int\limits_{a}^{b}\left( \frac{\left(
b-a\right) +\left\vert 2t-b-a\right\vert }{2}\right) \\
&\times &\left[ \left(
\int\limits_{a}^{b}\left\vert f(x)\right\vert ^{p}\left( \left\vert
g^{\prime }(x)\right\vert ^{p}+\left\vert g^{\prime }(t)\right\vert
^{p}\right) dx\right) ^{\frac{1}{p}}\left(
\int\limits_{a}^{b}1^{q}dx\right) ^{\frac{1}{q}}\right] dt
\end{eqnarray*}
\begin{eqnarray*}
&\leq &\frac{\left( b-a\right) ^{\frac{1}{q}-2}}{2}\sup_{t\in \left[ a,b%
\right] }\left( \frac{\left( b-a\right) +\left\vert 2t-b-a\right\vert }{2}%
\right) \int\limits_{a}^{b}\left[ \left( b-a\right) \left\vert f^{\prime
}(t)\right\vert ^{p}+\left\Vert gf^{\prime }\right\Vert _{p}^{p}\right] ^{%
\frac{1}{p}}dt \\
&&+\frac{\left( b-a\right) ^{\frac{1}{q}-2}}{2}\sup_{t\in \left[ a,b\right]
}\left( \frac{\left( b-a\right) +\left\vert 2t-b-a\right\vert }{2}\right)
\int\limits_{a}^{b}\left[ \left( b-a\right) \left\vert g^{\prime
}(t)\right\vert ^{p}+\left\Vert fg^{\prime }\right\Vert _{p}^{p}\right] ^{%
\frac{1}{p}}dt \\
&\leq &\frac{\left( b-a\right) ^{\frac{1}{q}-1}}{2}\left(
\int\limits_{a}^{b}\left[ \left( b-a\right) \left\vert f^{\prime
}(t)\right\vert ^{p}+\left\Vert gf^{\prime }\right\Vert _{p}^{p}\right]
dt\right) ^{\frac{1}{p}}\left( \int\limits_{a}^{b}1^{q}dt\right) ^{\frac{1}{%
q}} \\
&&+\frac{\left( b-a\right) ^{\frac{1}{q}-1}}{2}\left( \int\limits_{a}^{b}%
\left[ \left( b-a\right) \left\vert g^{\prime }(t)\right\vert
^{p}+\left\Vert fg^{\prime }\right\Vert _{p}^{p}\right] dt\right) ^{\frac{1}{%
p}}\left( \int\limits_{a}^{b}1^{q}dt\right) ^{\frac{1}{q}} \\
&=&\frac{\left( b-a\right) ^{\frac{1}{q}}}{2}\left\{ \left[ \left\Vert
f^{\prime }\right\Vert _{p}^{p}+\left\Vert gf^{\prime }\right\Vert _{p}^{p}%
\right] ^{\frac{1}{p}}+\left[ \left\Vert g^{\prime }\right\Vert
_{p}^{p}+\left\Vert fg^{\prime }\right\Vert _{p}^{p}\right] ^{\frac{1}{p}%
}\right\}
\end{eqnarray*}
which is proved the inequality (12).
Competing interests
The authors declare that they have no competing interests.