In this paper, we introduce new labeling and named it as k-total edge mean cordial (k-TEMC) labeling. We study certain classes of graphs namely path, double comb, ladder and fan in the context of 3-TEMC labeling.
Definition 1. Let \({\alpha}: V_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) be a mapping that induces \({\alpha}^*: E_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) as \({\alpha}^*(uv)=|{\alpha}(u)-{\alpha}(v)|\) where \(uv \in E_{\mathcal{G}}\). Then \({\alpha}\) is called cordial labeling if \(|v_{\alpha}(1,0)|\leq1\) and \(|e_{\alpha}(1,0)|\leq1\).
Definition 2. Let \({\alpha}: V_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) be a mapping that induces \({\alpha}^*: E_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) as \({\alpha}^*(uv)={\alpha}(u){\alpha}(v)\) where \(uv \in E_{\mathcal{G}}\). Then \({\alpha}\) is called product cordial labeling if \(|v_{\alpha}(1,0)|\leq1\) and \(|e_{\alpha}(1,0)|\leq1\). For details see [3].
Definition 3. Let \({\alpha}: V_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) be a mapping that induces \({\alpha}^*: E_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) as \({\alpha}^*(uv)={\alpha}(u){\alpha}(v)\) where \(uv \in E_{\mathcal{G}}\). Then \({\alpha}\) is called total product cordial labeling if \(|s(0)-s(1)|\leq1\). For details see [4, 5.
Definition 4. Let \( {\alpha}:V_{\mathcal{G}} \rightarrow\mathbb{Z}_k\), \(2\leq k\leq|E_{\mathcal{G}}|\) be a mapping that induces \({\alpha}^*: E_{\mathcal{G}}\rightarrow\mathbb{Z}_k\) as \({\alpha}^*(uv)={\alpha}(u){\alpha}(v)\) \((\text{mod}k)\) where \(uv \in E_{\mathcal{G}}\). Then \({\alpha}\) is called a k-total product cordial labeling if \(|s(a)-s(b)|\leq1\) for all \(a,b\in\mathbb{Z}_k\). For details see [6].
Definition 5. Let \( {\alpha}:E_{\mathcal{G}} \rightarrow\mathbb{Z}_2\) be a mapping that induces \({\alpha}^*: V_{\mathcal{G}}\rightarrow\mathbb{Z}_2\) such that \({\alpha}^*(u)={\alpha}(e_1){\alpha}(e_2) \ldots {\alpha}(e_n)\) for edges \(e_1,e_2,. . ., e_n \) incident to \(u\), then \({\alpha}\) is called edge product cordial labeling if \(|v_{\alpha}(0,1)|\leq1\) and \(|e_{\alpha}(0,1)|\leq1\). For details see [7, 8]VB4,VB1}.
Definition 6. Let \({\alpha} : E_{\mathcal{G}} \rightarrow \mathbb{Z}_2\) be a mapping that induces \({\alpha}^* : V_{\mathcal{G}} \rightarrow \mathbb{Z}_2\) such that \({\alpha}^*(u)={\alpha}(e_1){\alpha}(e_2) \ldots {\alpha}(e_n)\) for edges \(e_1,e_2,. . ., e_n \) that are incident to \(u\), then \({\alpha}\) is called a total edge product cordial labeling if \(|s(0)-s(1)|\leq1\). For details see [9, 10].
Definition 7. Let \({\alpha}:E_{\mathcal{G}} \longrightarrow\mathbb{Z}_k\), \( 2\leq k\leq|E_{\mathcal{G}}|\) be a mapping that induces \({\alpha}^*:V_{\mathcal{G}} \longrightarrow\mathbb{Z}_k\) such that \({\alpha}^*(u)={\alpha}(e_1){\alpha}(e_2) \ldots {\alpha}(e_n)\)(mod \(k\)) for edges \(e_1,e_2,. . .,e_n \) incident to \(u\), then \({\alpha}\) is called \(k\)-total edge product cordial labeling if it satisfy \(|s(a)-s(b)|\leq1\) for all \(a,b\in\mathbb{Z}_k\). For details see [11, 12, 13, 14, 15, 16, 17, 18, 19].
Motivated by the above definitions, we introduce new labeling named k-total edge mean cordial labeling which is defined as:Definition 8. Let \({\alpha}: E_G\longrightarrow\mathbb{Z}_k\) be a mapping that induces \({\alpha}^*:V_G\longrightarrow\mathbb{Z}_k\) such that for each vertex \(u\), \({\alpha}^*(u)\) =\(\lceil\ {\alpha}(e_1)+{\alpha}(e_2)\ldots+{\alpha}(e_n) /n\rceil\), where \(e_1\), \(e_2\),. . ., \(e_n\) are incident with \(u\) then \({\alpha}\) is called k-total edge mean cordial labeling (k-TEMC) if \(|s(i)-s(j)|\leq 1\) where \(i,j\in\mathbb{Z}_k\). A graph with a \(k\)-total edge mean cordial labeling is called \(k\)-total edge mean cordial graph.
The rest of the paper is structured as follows: In Section 2, 3-TEMC labeling of path is discussed. Section 3 devoted to the study 3-TEMC labeling of double comb graph. In Section 4, we study ladder graph and its 3-TEMC labeling. In Section 5, 3-TEMC labeling of fan graph is discussed.Theorem 9. Any path \(P_n\) for \(n\geq3\) admits 3-TEMC labeling.
Proof.
The following cases should be considered in order to prove that \(P_n\) is 3-TEMC.
Case 1. If \(n\equiv0 \text{ (mod }3)\) then \(n= 3q\), where \(q\in \mathbb{Z}^+\). For \(q=1\), we have the following labeling of \(P_3\) (see Figure 2).
If \(q\geq2,\) then we define the function \( \alpha:E(P_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q-1. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 2q, & \text{ if \(i=0,1\)}\\ 2q-1, & \text{if \(i=2.\)} \end{cases}\).
Case 2. Let \(n\equiv1 \text{ (mod }3)\) then \(n= 3q+1\), where \(q\in \mathbb{Z}^+\). For \(q=1\), we have the following labeling of \(P_4\) (see Figure 3).
If \(q\geq2,\) then we define the function \( \alpha:E(P_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 2q, & \text{ if \(i=0,1\)}\\ 2q+1, & \text{if \(i=2.\)} \end{cases}\).
Case 3. If \(n\equiv2 \text{ (mod }3)\) then \(n= 3q+2\), where \(q\in \mathbb{Z}^+\).
For \(q=1\), we have the following labeling of \(P_5\) (see Figure 4).
If \(q\geq2,\) then we define the function \( \alpha:E(P_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+3\leq i \leq 2q+1; \)}\\
2, & \text{if \( 2q+2\leq i \leq 3q+1. \)}
\end{cases}\) and \(\alpha(e_{q+2})=0\), \(\alpha(e_{q+1})=1\).
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)= 2q+1,\) for all \(i=0,1,2.\) Hence \(P_n\) have 3-TEMC labeling for \(n\geq2\).
Theorem 10. Let \(L_n\) be a ladder graph, then \(L_n\) admits 3-TEMC labeling.
Proof.
The following cases should be considered in order to prove that \(L_n\) is 3-TEMC.
Case 1. If \(n\equiv0 \text{ (mod }3)\) then \(n= 3q\), where \(q\in \mathbb{Z}^+\).
For \(q=1\), we have the following labeling of \(L_3\) (see Figure 6).
If \(q\geq2,\) then we define the function \( \alpha:E(L_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q-1; \)}\\
2, & \text{if \( 2q\leq i \leq 3q-1. \)}
\end{cases}\) \(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)
\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q+1; \)}\\
2, & \text{if \( 2q+2\leq i \leq 3q-1. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 5q, & \text{ if \(i=0\)}\\ 5q-1, & \text{if \(i=1,2.\)} \end{cases}\)
Case 2. If \(n\equiv1 \text{ (mod }3)\) then \(n= 3q+1\), where \(q\in \mathbb{Z}^+\).
For \(q=1\), we have the following labeling of \(L_4\) (see Figure 7).
If \(q\geq2,\) then we define the function \( \alpha:E(L_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\) \(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+2; \)}\\
2, & \text{if \( 2q+3\leq i \leq 3q+1. \)}
\end{cases}\)
\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=5q+1\), for all \(i=0,1,2.\) For \(q=1\), we have the following labeling of \(L_5\) (see Figure 8).
If \(q\geq2,\) then we define the function \( \alpha:E(L_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q+1. \)}
\end{cases}\) \(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+2; \)}\\
2, & \text{if \( 2q+3\leq i \leq 3q+2. \)}
\end{cases}\)
\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+2; \)}\\
2, & \text{if \( 2q+3\leq i \leq 3q+1. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 5q+3, & \text{ if \(i=0,1\)}\\ 5q+2, & \text{if \(i=2.\)} \end{cases}\)
Hence the ladder graph \(L_n\) have 3-TEMC labeling.
Theorem 11. Let \(DCO_n\) be a double comb graph, then \(DCO_n\) admits 3-TEMC labeling.
Proof. The following cases should be considered in order to prove that \(DCO_n\) is 3-TEMC.
Case 1. If \(n\equiv0 \text{ (mod }3)\) then \(n= 3q\), where \(q\in \mathbb{Z}^+\). For \(q=1\), we have the following labeling of \(DCO_3\) (see Figure 10).
If \(q\geq2,\) then we define the function \( \alpha:E(DCO_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q-1. \)}
\end{cases}\) \(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 6q, & \text{ if \(i=0,1\)}\\ 6q-1, & \text{if \(i=2.\)} \end{cases}\)
Case 2. If \(n\equiv1 \text{ (mod }3)\) then \(n= 3q+1\), where \(q\in \mathbb{Z}^+\).
For \(q=1,\) we have the following labeling of \(DCO_4\) (see Figure 11).
If \(q\geq2,\) then we define the function \( \alpha:E(DCO_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q-1; \)}\\
1, & \text{if \( q\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)\(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+1; \)}\\
2, & \text{if \( 2q+2\leq i \leq 3q+1. \)}
\end{cases}\)
\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+1; \)}\\
2, & \text{if \( 2q+2\leq i \leq 3q+1. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 6q+2, & \text{ if \(i=0,1\)}\\ 6q+1, & \text{if \(i=2.\)} \end{cases}\)
Case 3. If \(n\equiv2 \text{ (mod }3)\) then \(n= 3q+2\), where \(q\in \mathbb{Z}^+\).
For \(q=1,\) we have the following labeling of \(DCO_5\) (see Figure 12).
If \(q\geq2,\) then we define the function \( \alpha:E(DCO_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q+1. \)}
\end{cases}\)\(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+2; \)}\\
2, & \text{if \( 2q+3\leq i \leq 3q+2. \)}
\end{cases}\)
\(\alpha(g_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q+1; \)}\\
1, & \text{if \( q+2\leq i \leq 2q+2; \)}\\
2, & \text{if \( 2q+3\leq i \leq 3q+2. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 6q+4, & \text{ if \(i=0,1\)}\\ 6q+3, & \text{if \(i=2.\)} \end{cases}\)
Hence the double comb graph \(DCO_n\) have 3-TEMC labeling.
Theorem 12. Fan graph \(F_n\) for \(n\geq2\) admits 3-TEMC labeling.
Proof.
The following cases should be considered in order to prove that \(F_n\) is 3-TEMC.
Case 1. Let \(n\equiv1 \text{(mod }3)\) then \(n= 3q\), where \(q\in \mathbb{Z}^+\). For \(q=1,\) we have the following labeling of \(F_3\) (see Figure 14).
If \(q\geq2,\) then we define the function \( \alpha:E(F_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq 2q; \)}\\
1, & \text{if \( 2q+1\leq i \leq 4q; \)}\\
2, & \text{if \( 4q+1\leq i \leq 6q. \)}
\end{cases}\)\(\alpha(f_i)=\begin{cases}
0, & \text{if \( 1\leq i \leq q; \)}\\
1, & \text{if \( q+1\leq i \leq 2q; \)}\\
2, & \text{if \( 2q+1\leq i \leq 3q. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases}
5q, & \text{ if \(i=0,2\)}\\
5q+1, & \text{if \(i=1.\)}
\end{cases}\)
Case 2. Let \(n\equiv1 \text{ (mod }3)\) then \(n= 3q+1\), where \(q\in \mathbb{Z}^+\). For \(q=1,\) we have the following labeling of \(F_4\) (see Figure 15).
If \(q\geq2,\) then we define the function \( \alpha:E(F_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(e_i)=\begin{cases}
0 & \text{if \( 1\leq i \leq 2q+2; \)}\\
1 & \text{if \( 2q+3\leq i \leq 4q+1; \)}\\
2 & \text{if \( 4q+2\leq i \leq 6q+2. \)}
\end{cases}\)\(\alpha(f_i)=\begin{cases}
0 & \text{if \( 1\leq i \leq q; \)}\\
1 & \text{if \( q+1\leq i \leq 2q+1; \)}\\
2 & \text{if \( 2q+2\leq i \leq 3q+1. \)}
\end{cases}\)
Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=5q+2,\) for all \(i=0,1,2.\)
Case 3. If \(n\equiv1 \text{ (mod }3)\) then \(n= 3q+2\), where \(q\in \mathbb{Z}^+\). we have the following labeling of \(F_2\) (see Figure 16).
If \(q\geq1,\) then we define the function \( \alpha:E(F_n)\rightarrow\mathbb{Z}_3\) as
\(\alpha(f_i)=\begin{cases} 0 & \text{if \( 1\leq i \leq 2q+1; \)}\\ 1 & \text{if \( 2q+2\leq i \leq 4q+3; \)}\\ 2 & \text{if \( 4q+4\leq i \leq 6q+4. \)} \end{cases}\); \(\alpha(f_i)=\begin{cases} 0 & \text{if \( 1\leq i \leq q+1; \)}\\ 1 & \text{if \( q+2\leq i \leq 2q+1; \)}\\ 2 & \text{if \( 2q+2\leq i \leq 3q+2. \)} \end{cases}\)Hence \(\alpha\) is 3-TEMC labeling because \(s(i)=\begin{cases} 5q+3, & \text{ if \(i=0\)}\\ 5q+4, & \text{if \(i=1,2.\)} \end{cases}\)
Hence the fan graph \(F_n\) have 3-TEMC labeling for \(n\geq2\).