Contents

Completion of BCC-algebras

Author(s): S. Mehrshad1
1 Faculty of Sciences, Zabol University of Zabol, Iran.
Copyright © S. Mehrshad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study some properties of induced topology by a uniform space generated by a family of ideals of a BCC-algebra. Also, by using Cauchy nets we construct a uniform space which is completion of this space.

Keywords: BCC-algebra, uniform space, cauchy net, ideal.

1. Introduction

In 1966, Y. Imai and K. Iséki in [1] introduced a class of algebras of type \((2,0)\) called BCK-algebras which generalizes on one hand the notion of algebra of sets whit the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra. K. Iséki posed an interesting problem whether the class of BCK-algebras form a variety. In connection with this problem Y. Komori in [2] introduced a notion of BCC-algebras which is a generalization of notion BCK-algebras and proved that class of all BCC-algebras is not a variety. W. A. Dudek in [3] redefined the notion of BCC-algebras by using a dual form of the ordinary definition. Further study of BCC-algebras was continued [4,5,6].

In 1937, André Weil in [7] introduced the concept of a uniform space as a generalization of the concept of a metric space in which many non-topological invariants can be defined. The study of quasi uniformities started in 1948 with Nachbin’s investigations on uniform preordered spaces. Mehrshad and Kouhestani in [8] introduced a quasi-uniformity on a BCC-algebra by a family of ideals and studied some properties of this structure. Now, in this present work, we consider the set \( C \) of all cauchy nets on BCC-algebras \( X \) and define a congruence relation \( \sim \) on this set. Then we consider the quotient BCC-algebra \( \mathcal{C}=\frac{C}{\sim} \) and prove that \( \mathcal{C} \) is a BCC-algebra. We construct a uniformity on \( \mathcal{C} \) and show that this uniformity is a completion of uniform space on \( X \) induced by a family of ideals of \( X. \)

2. Preliminary

BCC-algebras

A BCC-algebra is a non empty set \(X\) with a constant \(0\) and a binary operation \(\ast\) satisfying the following axioms, for all \(x,y,z\in X:\)
  • (1) \( ((x\ast y)\ast (z\ast y))\ast (x\ast z)=0,\)
  • (2) \(0\ast x=0,\)
  • (3) \(x\ast 0=x\)
  • (4) \( x\ast y=0 \) and \(y\ast x=0\) imply \(x=y\).
A non empty subset \(S\) of BCC-algebra \(X\) is called subalgebra of \( X\) if it is closed under BCC-operation. For a BCC-algebra \(X,\) we denote \(x\wedge y=y\ast(y\ast x)\) for all \(x,y\in X\). On any BCC-algebra \(X\) one can define the natural order \(\leq\) putting \[x \leq y \Leftrightarrow x\ast y=0.\] It is not difficult to verify that this order is partial and \(0\) is its smallest element. In BCC-algebra \(X,\) following hold: for any \(x,y,z\in X\)
  • (5) (\(x\ast y)\ast(z\ast y)\leq x\ast z\),
  • (6) \(x\leq y\) implies \(x\ast z \leq y\ast z\) and \(z\ast y \leq z\ast x,\)
  • (7) \(x\wedge y \leq x,y\)
  • (8) \(x\ast y\leq x\)
  • (9) \((x\ast y)\ast z \leq x\ast (y\ast z)\)
  • (10) \(x\ast x=0,\)
  • (11) \((x\ast y)\ast x=0\) [ see, [6]].

Definition 1.[9] Let \(X\) be a BCC-algebra and \(\emptyset\neq\) \(I\subseteq X\). \(I\) is called an ideal of \(X\) if it satisfies the following conditions:

  • (12) \(0\in I\),
  • (13) \(x\ast y \in I\) and \(y\in I\) imply \(x\in I\).
If \(I\) is an ideal in BCC-algebra of \(X\), then \(I\) is a subalgebra. Moreover, if \(x\in I\) and \(y\leq x\), then \(y\in I\). An ideal \(I\) is said to be regular ideal if the relation \[x\equiv^I y\Longleftrightarrow x\ast y, y\ast x\in I\] is a congruence relation. In this case we denote \(x/I=\left\{y: x\equiv^I y\right\}\) and \(X/I=\left\{x/I: x\in X\right\}.\) \(X/I\) is a BCC-algebra by \(x/I\ast y/I=(x\ast y)/I.\)

Uniform and quasi uniform space

Let \(A\) be a non-empty set and \(\emptyset\not=\mathcal{F}\subseteq P(A).\) Then \(\mathcal{F}\) is called a \(filter\) on \(P(A)\), if for each \(F_1,F_2\in\mathcal{F}:\)
  • (i) \(F_1\in\mathcal{F}\) and \(F_1\subseteq F\) imply \(F\in\mathcal{F},\)
  • (ii) \(F_1\cap F_2\in\mathcal{F},\)
  • (iii) \(\emptyset\not\in\mathcal{F}\).
A subset \(\mathcal{B}\) of a filter \(\mathcal{F}\) on \(A\) is a \(base\) of \(\mathcal{F}\) iff, every set of \(\mathcal{F}\) contains a set of \(\mathcal{B}\). If \(\mathcal{F}\) is a family of nonempty subsets of \(A\), then we denote generated filter by \(\mathcal{F}\) with \(fil(\mathcal{F}).\)

A \(quasi\)-\(uniformity\) on a set \(A\) is a filter \(Q\) on \(P(X\times X)\) such that

  • (i) \(\bigtriangleup=\left\{(x,x)\in A\times A: x\in A\right\}\subseteq q\), for each \(q\in Q,\)
  • (ii) For each \(q\in Q\), there is a \(p\in Q\) such that \(p\circ p\subseteq q\) where \[p\circ p=\left\{(x,y)\in A \times A:\exists z\in A\ s.t\ (x,z),(z,y)\in p\right\}.\]
The pair \((A,Q)\) is called a \(quasi\)-\(uniform\) \( space\). If \(Q\) is a quasi-uniformity on a set \(A\), then \(q^{-1}=\left\{q^{-1}:q\in Q \right\}\) is also a quasi-uniformity on \(A\) called the \(conjugate\) of \(Q\). It is well-known that if a quasi-uniformity satisfies condition: \(q\in Q\) implies \(q^{-1}\in Q\), then \(Q\) is a \(uniformity.\) Also \(Q\) is a uniformity on \(A\) provided \[\forall q\in Q\ \exists p\in Q\ s.t\ p^{-1}\circ p\subseteq q.\] Furthermore, \(Q^*=Q \vee Q^{-1}\) is a uniformity on \(A\). A subfamily \(\mathcal{C}\) of quasi-uniformity \(Q\) is said to be a base for \(Q\) iff, each \(q\in Q\) contains some member of \(\mathcal{C}\). The topology \(T(Q)=\left\{G\subseteq X:\forall x\in G\ \exists q\in Q\ s.t\ q(x)\subseteq G\right\}\) is called the topology induced by the quasi-uniformity \(Q\) [ See, [10]].

3. Main results

Let \(X\) be a \(BCC\)-algebra and \(\eta\) be an arbitrary family of ideals of \(X\) which is closed under intersection.

Theorem 1.[8] Let \(X\) be a BCC-algebra. The set \(\mathcal{I}=\left\{I_L:I\in \eta \right\}\) is a base for a quasi uniformity \(\mathcal{U}\) on \(X\), where \(I_L=\left\{(x,y)\in X\times X: y\ast x\in I \right\}\).

Lemma 1.[8] Let \(I\) be a regular ideal of BCC- algebra \(X\). Define \(I_L^{-1}=\left\{(x,y)\in X\times X:(y,x)\in I_L\right\}\) and \(I_L ^{\star}=I_L\cap I_L^{-1}\). Then following holds:

  • (i) \(I_L^{-1}=\left\{(x,y)\in X\times X: x\ast y\in I\right\},\)
  • (ii) \(I_L^{-1}(x)=\left\{y\in X: x\ast y\in I\right\},\)
  • (iii) \(I_L^{-1}(0)=X,\)
  • (iv) \(I_L^{\star}=\left\{(x,y)\in X\times X: x\equiv^{I} y \right\},\)
  • (v) \(I_L^{\star}(x)=\left\{y\in X: x\equiv^{I} y \right\}=x/I,\)
  • (vi) if \(x\in I\), then \(I_L^{\star}(x)=I.\)

Theorem 2.[8] Let \( \mathcal{U}^{\star}=\left\{U\subseteq X\times X: \exists I\in\eta \ \ I_{L}^{\star}\subseteq U\right\}. \) Then the pair \( (X,\mathcal{U}^{\star}) \) is a uniform space. Moreover, \( (X,T(\mathcal{U}^{\star})) \) is a topological BCC-algebra, where \( T(\mathcal{U}^{\star})=\left\{G\subseteq X: \forall x\in G \ \exists I\in \eta \ \ I_{L}^{\star}(x)\subseteq G\right\} \) is the induced topology by \(\mathcal{U}^{\star}\) on \(X.\) Let \( J=\bigcap_{I\in\eta} I. \) Then \( \mathcal{U}^{\star}=\left\{U\subseteq X\times X: J_{L}^{\star}\subseteq U\right\} \) and \( \tau_{J}=\left\{G\subseteq X: \forall x\in G \ \ J_{L}^{\star}(x)\subseteq G\right\}.\)

Proposition 1. \( T(\mathcal{U}^{\star})=\tau_{J}, \) where \( J=\bigcap_{I\in\eta} I. \)

Proof. Let \(x\in G\in T(\mathcal{U}^{\star}). \) Then there exists \( I\in \eta \) such that \( I_{L}^{\star}(x)\subseteq G. \) Since for any \( I\in \eta \) \( J\subseteq I, \) we get \( J_{L}^{\star}\subseteq I_{L}^{\star}. \) Hence \( J_{L}^{\star}(x)\subseteq I_{L}^{\star}(x)\subseteq G \) and so \( G\in \tau_{J}. \) Thus \( T(\mathcal{U}^{\star})\subseteq \tau_{J}. \) Conversely, let \( x\in G\in \tau_{J}. \) Then \( J_{L}^{\star}(x)\subseteq G. \) Since \( \eta \) is closed under intersection, \( J\in \eta \) and so \( J_{L}^{\star}\in \mathcal{U}^{\star}. \) Hence \( G\in T(\mathcal{U}^{\star}). \) Therefore \( \tau_{J}\subseteq T(\mathcal{U}^{\star}). \)

Definition 2.[11]

  • (i) A poset \( (D,\leq) \) is called an upward directed set if for any \( i,j\in D \) there exists \( k\in D \) such that \(i\leq k \) and \( j\leq k. \)
  • (ii) Let \( (D,\leq) \) be an upward directed set and \( X \) be a BCC-algebra. The mapping \( x:D\rightarrow X \) is called a net in \( X \) and denoted by \( \left\{x_{i}\right\}_{i\in D}. \)

Definition 3. Let \( \left\{x_{i}\right\}_{i\in D} \) be a net in topological space \( (X,\tau_{J}). \) Then

  • (i) \( \left\{x_{i}\right\}_{i\in D} \) is called converges to \( x\in X \) if for any neighborhood \( G \) of \( x \) there exists \( i_{0}\in D \) such that \( x_{i}\in G \) for any \( i\geq i_{0}. \) In this case we write \( x_{i}\rightarrow x. \)
  • (ii) \( \left\{x_{i}\right\}_{i\in D} \) is called Cauchy if there exists \( i_{0}\in D \) such that \( \frac{x_{i}}{J}=\frac{x_{j}}{J} \) for any \( i,j\geq i_{0}. \)

Proposition 2. Let \( \left\{x_{i}\right\}_{i\in D} \) and \( \left\{y_{i}\right\}_{i\in D} \) be two nets in \( (X,\tau_{J}) .\) Then

  • (i) If \( x,y\in X, \) \( x_{i}\rightarrow x \) and \( y_{i}\rightarrow y, \) then \( x_{i}\ast y_{i}\rightarrow x\ast y. \)
  • (ii) Each convergent net in \( X \) is a cauchy net.

Proof.

  • (i) Let \( x\ast y\in G\in \tau_{J}. \) Then \( J_{L}^{\star}(x\ast y)\subseteq G. \) Since \( x_{i}\rightarrow x \) and \( J_{L}^{\star}(x) \) is a neighbohood of \( x, \) there exists \( i_{0}\in D \) such that \( x_{i}\in J_{L}^{\star}(x) \) for any \( i\geq i_{0}. \) Similarly, there exists \( i_{1}\in D \) such that \( y_{i}\in I_{L}^{\star}(y) \) for any \( i\geq i_{1}. \) Since \( D \) is an upward directed set, there exists \( i_{2}\in D \) such that \( i_{0},i_{1}\leq i_{2}. \) Hence by Lemma 1 \( x_{i}\ast y_{i}\in J_{L}^{\star}(x)\ast J_{L}^{\star}(y)=\frac{x}{J}\ast \frac{y}{J}=\frac{x\ast y}{J}=J_{L}^{\star}(x\ast y)\subseteq G \) for any \( i\geq i_{2} \) and so \( x_{i}\ast y_{i}\rightarrow x\ast y. \)
  • (ii) Let \( \left\{x_{i}\right\}_{i\in D} \) be a net in \( X \) and \( x_{i}\rightarrow x\in X. \) Since \( J_{L}^{\star}(x) \) is a neighborhood of \( x, \) there exists \( i_{0}\in D \) such that \( x_{i}\in J_{L}^{\star}(x) \) for any \( i\geq i_{0}. \) Hence \( x_{i}\equiv ^{J} x \) and \( x_{j}\equiv ^{J} x \) for any \( i,j\geq i_{0} \) and so \( x_{i}\equiv ^{J} x_{j} \) for any \( i,j \geq i_{0}. \) Therefore \( \frac{x_{i}}{J}=\frac{x_{j}}{J} \) for any \( i,j\geq i_{0}. \) Thus \( \left\{x_{i}\right\}_{i\in D} \) is a cauchy net in \( X. \)

Definition 4.[11] Let \( (A,Q) \) be a uniform space.

  • (i) A net \( \left\{x_{i}\right\}_{i\in D} \) in \( A \) is said to converge to a point \( x\in A \) if for each \( q\in Q \) there exists \( i_{0}\in D \) such that \( (x_{i},x)\in q \) for any \( i\geq i_{0}. \)
  • (ii) A net \( \left\{x_{i}\right\}_{i\in D} \) in \( A \) is said to be a Cauchy net if for each \( q\in Q \) there exists \( i_{0}\in D \) such that \( (x_{i},x_{j})\in q \) for any \( i,j\geq i_{0}. \)
Let \( C \) be the set of all Cauchy sequence in \( (X,\mathcal{U}^{\star}). \) define a binary relation on \( C \) in the following way. For each \( \left\{x_{i}\right\}_{i\in D},\left\{y_{j}\right\}_{j\in D}\in C, \) \(\left\{x_{i}\right\}_{i\in D}\sim\left\{y_{j}\right\}_{j\in D}\) if and only if for all \( U\in \mathcal{U}^{\star} \) there exist \( i_{0}, j_{0}\in D\) such that \( (x_{i}, y_{j})\in G \) for any \( i\geq i_{0} \) and \( j\geq j_{0}. \)

Theorem 3. The relation \( \sim \) is a congruence relation on \( C. \)

Proof. Since \( (X,\mathcal{U}^{\star}) \) is a uniform space, \( \bigtriangleup\subseteq U \) for any \( U\in \mathcal{U}^{\star}. \) Hence \( (x_{i},x_{i})\in U \) for any \( i\in D \) and so \( \left\{x_{i}\right\}_{i\in D}\sim \left\{x_{i}\right\}_{i\in D}. \) Let \( \left\{x_{i}\right\}_{i\in D}\sim\left\{y_{j}\right\}_{j\in D}. \) Then for all \( U\in \mathcal{U}^{\star} \) there exist \( i_{0},j_{0}\in D \) such that \( (x_{i},y_{j})\in U \) for any \( i\geq i_{0} \) and \( j\geq j_{0}. \) Since \( U\in \mathcal{U}^{\star}, \) \( U^{-1}\in \mathcal{U}^{\star}. \) By definition of \( U^{-1} \) we have \( (y_{j},x_{i})\in U^{-1} \) for any \( i\geq i_{0} \) and \( j\geq j_{0}. \) Hence \( \left\{y_{j}\right\}_{j\in D}\sim \left\{x_{i}\right\}_{i\in D}.\) Let \( \left\{x_{i}\right\}_{i\in D}\sim\left\{y_{j}\right\}_{j\in D} \) and \( \left\{y_{j}\right\}_{j\in D}\sim\left\{z_{i}\right\}_{i\in D}. \) Let \( U\in \mathcal{U}^{\star}. \) There exists \( V\in \mathcal{U}^{\star} \) such that \( V\circ V\subseteq U. \) Since \( \left\{x_{i}\right\}_{i\in D}\sim\left\{y_{j}\right\}_{j\in D}, \) there exist \( i_{0},j_{0}\in D\) such that \( (x_{i},y_{j})\in V \) for any \( i\geq i_{0}, j\geq j_{0}. \) Similarly, there exist \(k_{0}, l_{0}\in D \) such that \( (y_{j},z_{k})\in V \) for any \( j\geq l_{0}, k\geq k_{0}. \) Since \( D \) is an upward directed set, there exsits \( n\in D \) such that \( j_{0}, l_{0}\leq n. \) If \( j\geq n, \) then \( (x_{i},y_{j})\in V \) and \((y_{j},z_{k})\in V \) for any \( i\geq i_{0} \) and \( k\geq k_{0}. \) Hence \((x_{i},z_{k})\in V\circ V\subseteq U\) for any \( i\geq i_{0} \) and \( k\geq k_{0} \) and so \( \left\{x_{i}\right\}_{i\in D}\sim\left\{z_{k}\right\}_{k\in D}. \) Thus \( \sim \) is an equivalence relation on \( C. \) Finally, we show that \( \sim \) is congruence. Let \( I\in\eta, \) \( \left\{x_{i}\right\}_{i\in D}\sim\left\{y_{j}\right\}_{j\in D} \) and \( \left\{z_{k}\right\}_{k\in D}\sim\left\{w_{l}\right\}_{l\in D}. \) Hence there exist \( i_{0}, j_{0},k_{0} \) and \( l_{0}\in D \) such that \( (x_{i},y_{j})\in I_{L}^{\star} \) for any \( i\geq i_{0},j\geq j_{0} \) and \( (z_{k},w_{l})\in I_{L}^{\star} \) for any \( k\geq k_{0} \) and \( l\geq i_{0}. \) Let \( i\geq i_{0}, j\geq j_{0} \) and \( k\geq k_{0}. \) Then \( y_{j}\in I_{L}^{\star}(x_{i}) \) and \( z_{k}\in L_{L}^{\star}(z_{k}). \) Thus \( y_{j}\ast z_{k}\in I_{L}(x_{i})\ast z_{k}\subseteq I_{L}^{\star}(x_{i})\ast I_{L}^{\star}(z_{k})=I_{L}^{\star}(x_{i}\ast z_{k}) \) and so \( (x_{i}\ast z_{k}, y_{j}\ast z_{k} )\in I_{L}^{\star}. \) Similarly, If \( j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}, \) then \( (y_{j}\ast z_{k},y_{j}\ast w_{l})\in I_{L}^{\star}. \) Thus \( (x_{i}\ast y_{j},z_{k}\ast w_{l})\in I_{L}^{\star}\circ I_{L}^{\star}subseteq I_{L}^{\star} \) for any \( i\geq i_{0},j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}. \) Since for each \( U\in \mathcal{U}^{\star} \) there exists \( I\in \eta \) such that \( I_{L}^{\star}\subseteq U, \) \( (x_{i}\ast y_{j},z_{k}\ast w_{l})\in U \) for \( i\geq i_{0},j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}. \) Hence \( \sim \) is a congruence relation on \( C. \)

Let \(\mathcal{ C}=\frac{C}{\sim}. \) Define a binary operation on \( \mathcal{C} \) as follow:

\[\ast:\mathcal{C}\times \mathcal{C}\rightarrow \mathcal{C}\ \ \ \ \ \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\rightarrow \frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}. \]

Theorem 4. \( \left(\mathcal{C},\ast, \frac{\left\{0\right\}_{i\in D}}{\sim}\right) \) is a BCC-algebra.

Proof. The proof is clear.

Let \( \mathcal{V}=\left\{\hat{U}: U\in \mathcal{U}^{\star}\right\} \) where,

\[\hat{U}=\left\{\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \mathcal{ C}\times \mathcal{ C}: \exists i_{0},j_{0}\in D: \ \forall i\geq i_{0}, j\geq j_{0}, \ (x_{i},y_{j})\in U\right\}. \]

Theorem 5. The pair \( (\mathcal{ C}, \mathcal{V}) \) is a uniform space.

Proof. Let \( \hat{U}\in \mathcal{V} \) and \( \frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\in \mathcal{C}. \) Since \( \left\{x_{i}\right\}_{i\in D}\sim \left\{x_{i}\right\}_{i\in D}, \) there exists \( i_{0}\in D \) such that \( \left(x_{i},x_{i}\right)\in U \) for any \( i\geq i_{0}. \) Hence \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\in \hat{U}. \) Since \( \frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\in \mathcal{C} \) is arbitrary, we get \( \bigtriangleup\subseteq \hat{U}. \) Let \( \hat{U}\in \mathcal{V}. \) Then \( U\in \mathcal{U}^{\star} \) and so \( U^{-1}\in \mathcal{U}^{\star}. \) Hence \( \widehat{U^{-1}}\in\mathcal{V}. \) We show that \( \widehat{U^{-1}}=\left(\hat{U}\right)^{-1}. \) Let \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \left(\hat{U}\right)^{-1}. \) Then \( \left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim},\frac{\left\{x_{i}\right\}_{j\in D}}{\sim}\right)\in \hat{U}. \) Hence there exist \( i_{0},j_{0}\in D \) such that \( \left(y_{j},x_{i}\right)\in U \) for any \( i\geq i_{0} \) and \( j\geq j_{0} \) and so \( \left(x_{i},y_{j}\right)\in U^{-1} \) for any \( i\geq i_{0} \) and \( j\geq j_{0} .\) Therefore \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \widehat{U^{-1}} \) and hence \( \left(\hat{U}\right)^{-1}\subseteq \widehat{U^{-1}}. \) Similarly, we have \( \widehat{U^{-1}}\subseteq \left(\hat{U}\right)^{-1}.\) Thus \( \left(\hat{U}\right)^{-1}\in\mathcal{V} \) for any \( \hat{U}\in \mathcal{V}. \) Let \( \hat{U}\in \mathcal{V}. \) Then \( U\in \mathcal{U}^{\star}. \) There exists \( V\in \mathcal{U}^{\star} \) such that \( V\circ V\in U. \) We claim that \( \hat{V}\circ \hat{V}\subseteq \hat{U}. \) Let \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{z_{k}\right\}_{k\in D}}{\sim}\right)\in \hat{V}\circ \hat{V}. \) There exists \( \frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\in \mathcal{C} \) such that \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \hat{V}\) and \( \left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim},\frac{\left\{z_{k}\right\}_{k\in D}}{\sim}\right)\in \hat{V}.\) Hence there exist \( i_{0},j_{0},k_{0} \) and \( l_{0}\in D \) such that \( \left(x_{i},y_{j}\right)\in V \) for any \( i\geq i_{0}, j\geq j_{0} \) and \( \left(y_{j},z_{k}\right)\in V \) for any \( j\geq l_{0}, k\geq k_{0}. \) Since \( D \) is an upward direcred set, there exists \( n\in D \) such that \( n\geq j_{0}, l_{0}. \) If \( j\geq n, \) then \( \left(x_{i},y_{j}\right)\in V \) and \( \left(y_{j},z_{k}\right)\in V \) for any \( i\geq i_{0}, k\geq k_{0}. \) Hence \( \left(x_{i},z_{k}\right)\in V\circ V\subseteq U \) for any \( i\geq i_{0}, k\geq k_{0} \) and so \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{z_{k}\right\}_{k\in D}}{\sim}\right)\in \hat{U}. \) Let \( \hat{U},\hat{V}\in \mathcal{V}. \) Then \( U,V\in \mathcal{U}^{\star} \) and so \( U\cap\in V\in \mathcal{U}^{\star}. \) Hence \( \widehat{U\cap V}\in \mathcal{V}. \) We show that \( \widehat{U\cap V}=\hat{U}\cap \hat{V}. \) Let \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \hat{U}\cap \hat{V}. \) Then \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \hat{U} \) and \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \hat{V}. \) There exist \( i_{0},j_{0},i_{1} \) and \( j_{1}\in D \) such that \( \left(x_{i},y_{j}\right)\in U \) for any \( i\geq i_{0}, j\geq j_{0} \) and \( \left(x_{i},y_{j}\right)\in V \) for any \( i\geq i_{1}, j\geq j_{1}. \) There exist \( i_{2},j_{2}\in D \) such that \( i_{0},i_{1}\leq i_{2} \) and \( j_{0},j_{1}\leq j_{2}. \) Hence \( \left(x_{i},y_{j}\right)\in U \) and \( \left(x_{i},y_{j}\right)\in V \) for any \( i\geq i_{2} \) and \( j\geq j_{2} \) and so \( \left(x_{i},y_{j}\right)\in U\cap V \) for any \( i\geq i_{2} \) and \( j\geq j_{2}. \) Hence \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \widehat{U\cap V}\) and so \( \hat{U}\cap \hat{V}\subseteq \widehat{U\cap V}. \) Similarly, we can show that \( \widehat{U\cap V}\subseteq \hat{U}\cap \hat{V}. \) Finally, let \( \hat{U}\in \mathcal{V} \) and \( \hat{U}\subseteq \widetilde{V}\subseteq \mathcal{C}\times \mathcal{C}. \) We have to show that \( \widetilde{V}\in \mathcal{V}. \) Let \( \left(x,y\right)\in U\in \mathcal{U}^{\star}. \) Then \( \left(\frac{\left\{x\right\}_{i\in D}}{\sim},\frac{\left\{y\right\}_{j\in D}}{\sim}\right) \in \hat{U}\) and so \( \left(\frac{\left\{x\right\}_{i\in D}}{\sim},\frac{\left\{y\right\}_{j\in D}}{\sim}\right) \in\widetilde{V}. \) Thus \( \left(x,y\right)\in V \) and so \( U\subseteq V. \) Hence \( V\in \mathcal{U}^{\star} \) and so \( \widetilde{V}\in \mathcal{V}. \)

Theorem 6. \( \left(\mathcal{ C},\ast, T\left(\mathcal{V}\right)\right) \) is a topological BCC-algebra where, \[ T\left(\mathcal{V}\right)=\left\{G\in \mathcal{C}: \forall \ \ \frac{\left\{x\right\}_{i\in D}}{\sim} \ \ \exists\hat{U}\in\mathcal{V} \ \ s.t. \ \ \hat{U}\left(\frac{\left\{x\right\}_{i\in D}}{\sim}\right)\subseteq G\right\}. \]

Proof. Let \( \frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\ast\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\in G\in T\left(\mathcal{V}\right). \) Then there exists \( U\in \mathcal{U}^{\star} \) such that \( \hat{U}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}\right) \subseteq G.\) Since \( U\in \mathcal{U}^{\star}, \) there exists \( I\in\eta \) such that \( I_{L}^{\star}\subseteq U. \) Clearly, \( \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}\right)\subseteq \hat{U}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}.\right) \) We claim that \( \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\ast \widehat{I_{L}^{\star}}\left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\subseteq \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}\right). \) Let \( \frac{\left\{a_{k}\right\}_{k\in D}}{\sim}\in \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right) \) and \( \frac{\left\{b_{l}\right\}_{l\in D}}{\sim}\in \widehat{I_{L}^{\star}}\left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right).\) Then \( \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},\frac{\left\{a_{k}\right\}_{k\in D}}{\sim}\right)\in \widehat{I_{L}^{\star}} \) and \( \left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim},\frac{\left\{b_{l}\right\}_{l\in D}}{\sim}\right)\in \widehat{I_{L}^{\star}}. \) Hence there exist \( i_{0},j_{0},k_{0} \) and \( l_{0}\in D \) such that \( \left(x_{i},a_{k}\right)\in I_{L}^{\star} \) and \( \left(y_{j},b_{l}\right)\in I_{L}^{\star} \) for any \( i\geq i_{0}, j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}. \) Thus \( x_{i}\equiv^{I} a_{k} \) and \( y_{j}\equiv^{I} b_{l} \) and so \( x_{i}\ast y_{j}\equiv^{I} a_{k}\ast b_{l} \) for any \( i\geq i_{0}, j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}. \) Therefore \( \left( x_{i}\ast y_{j},a_{k}\ast b_{l}\right)\in I_{L}^{\star} \) for any \( i\geq i_{0}, j\geq j_{0}, k\geq k_{0} \) and \( l\geq l_{0}\) and so \( \left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim},\frac{\left\{a_{k}\ast b_{l}\right\}_{k,l\in D}}{\sim}\right)\in \widehat{I_{L}^{\star}}. \) Hence \( \frac{\left\{a_{k}\ast b_{l}\right\}_{k,l\in D}}{\sim}\in \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}\right). \) Thus \( \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\ast \widehat{I_{L}^{\star}}\left(\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\subseteq \widehat{I_{L}^{\star}}\left(\frac{\left\{x_{i}\ast y_{j}\right\}_{i,j\in D}}{\sim}\right). \)

Definition 5.[11] The uniform space \( \left(A,Q\right) \) is complete if each cauchy net in \( A \) is convergent.

Definition 6.[11] Let \( \left(A,Q\right) \) be a uniform space. a uniform space \( \left(\hat{A},\hat{Q}\right) \) is said to be a completion of \( \left(A,Q\right) \) if

  • (i) \( \left(\hat{A},\hat{Q}\right) \) is a complete uniform space.
  • (ii) \( \left(A,Q\right) \) with its topology induced by its uniform structure is homeomorphic to a dense subspace of \( \left(\hat{A},\hat{Q}\right). \)

Theorem 7. The uniform space \( \left(\mathcal{ C}, \mathcal{V}\right) \) is a completion of \( \left(X,\mathcal{U}^{\star} \right). \)

Proof. Let \( i:X\rightarrow \mathcal{C} \) be defined by \( i\left(x\right)=\frac{\left\{x\right\}_{i\in D}}{\sim}. \) Clearly, \( i \) is one to one. We show that \( i\left(X\right) \) is dense in \( \mathcal{C}. \) Let \( \hat{U}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\in T\left(\mathcal{V}\right). \) Then \begin{eqnarray*} \hat{U}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\cap i\left(X\right)&= & \left\{i\left(x\right): \left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim},i\left(x\right)\right)\in \hat{U}\right\}, \\ &= &\left\{i\left(x\right): \exists i_{0}\in D \ \ \forall i\geq i_{0} \ s.t. \ \ \left(x_{i},x\right) \in U\right\}, \\ &= &\left\{i\left(x\right): \exists i_{0}\in D \ \ \forall i\geq i_{0} \ s.t. \ \ x \in U\left(x_{i}\right)\right\}, \\ &=& \left\{i\left(x\right): x\in \bigcup_{i\in D}\bigcap_{i_{0}\leq i} U\left(x_{i}\right)\right\}, \\&=& i\left(V\right) \end{eqnarray*} where \( V=\bigcup_{i\in D}\bigcap_{i_{0}\leq i} U\left(x_{i}\right). \) Hence \( \hat{U}\left(\frac{\left\{x_{i}\right\}_{i\in D}}{\sim}\right)\cap i\left(X\right)\neq \emptyset \) and so \( i\left(X\right) \) is dense in \( \mathcal{C}. \) It is easy to see that \( i:X\rightarrow i\left(X\right) \) is a homeomorphism. Now we show that the uniform space \( \left(\mathcal{ C}, \mathcal{V}\right) \) is complete. Let \( \left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i\in D}}{\sim}\right\}_{\alpha\in D} \) be a cauchy net in \( \mathcal{C}. \) We have to show that it is convergent. Let \( U\in \mathcal{U}^{\star}. \) Since \(\left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i\in D}}{\sim}\right\}_{\alpha\in D}\) is a cauchy net, there exists \( \gamma\in D \) such that \( \left(\frac{\left\{x_{i}^{\alpha}\right\}_{i\in D}}{\sim},\frac{\left\{x_{i}^{\beta}\right\}_{i\in D}}{\sim}\right)\in\hat{U} \) for any \( \alpha, \beta\geq \gamma. \) Hence there exist \( \alpha_{0},\beta_{0}\in D \) such that \( \left(x_{i}^{\alpha},x_{i}^{\beta}\right)\in U \) for any \( \alpha\geq \alpha_{0} \) and \( \beta\geq \beta_{0}. \) We define the net of \( {\left\{y_{j}\right\}_{j\in D}} \) by \( y_{j}=x_{i}^{\beta_{0}} \) for any \( j\in D. \) Clearly, \( \left(\frac{\left\{x_{i}^{\alpha}\right\}_{i\in D}}{\sim},\frac{\left\{y_{j}\right\}_{j\in D}}{\sim}\right)\in \hat{U} \) for any \( \alpha\geq \alpha_{0}. \) Therefore \( \left\{\frac{\left\{x_{i}^{\alpha}\right\}_{i\in D}}{\sim}\right\}_{\alpha\in D} \) is converges to \( \frac{\left\{y_{j}\right\}_{j\in D}}{\sim}. \)

4. Conclusion

The aim of this paper was to study the concept of completion of a quasi-uniformity on a BCC-algebra. This work can be the basis for further and deeper research of the properties of BCC-algebras.

Conflictofinterests

The author declares no conflict of interest.

References

  1. Imai, Y. & Iséki, K. (1966). On axioms system of propositional calculi XIV. Proceedings of the Japan Academy, 42, 19-22. [Google Scholor]
  2. Komori, Y. (1983). The variety generated by BCC-algebras is finitely basded. Reports of the Faculty of Science, Shizuoka University, 17, 13-16. [Google Scholor]
  3. Dudek, W. A. (1990). On BCC-algebras. Logique et Analyse, 33(129/130), 103-111. [Google Scholor]
  4. Dudek, W. A. (1999). A new characterization of ideals in BCC-algebras. Novi Sad Journal of Mathematics, 29(1), 139-145. [Google Scholor]
  5. Dudek, W. A., & Zhang, X. (1998). On ideals and congruences in BCC-algebras. Czechoslovak Mathematical Journal, 48(1), 21-29. [Google Scholor]
  6. Dudek, W. A., & Zhang, X. (1992). On proper BCC-algebras. Bulletin of the Institute of Mathematics, Academia Sinica, 20(2), 137-150. [Google Scholor]
  7. Weil, A. (1973). sur les espaces a structuure uniforme et sur la topologibgeneral, Gauthier-villars, Paris. [Google Scholor]
  8. Mehrshad, S., & Kouhestani, N. (2017). A quasi-uniformity on BCC-algebras. Annals of the University of Craiova-Mathematics and Computer Science Series, 44(1), 64-77. [Google Scholor]
  9. Hao, J. (1998). Ideal theory of BCC-algebras. Scientiae Mathematicae, 1(3), 373-381. [Google Scholor]
  10. Fletcher, P. & Lindgren, W. F.(1982). Quasi-uniform Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel dekker, New York, 77. [Google Scholor]
  11. Husain, T. (Ed.). (2012). Topology and maps (Vol. 5). Springer Science & Business Media. [Google Scholor]