In this paper we are interested in the existence of solutions for Navier problem associated with the degenerate nonlinear elliptic equations in the setting of the weighted Sobolev spaces.
In this paper, we prove the existence of (weak) solutions in the weighted Sobolev space \(X= W^{2,p}(\Omega , \omega)\,{\cap}\,W _0^{1,p}(\Omega , \omega)\) (see Definition 3 and Definition 4) for the Navier problem
In general, the Sobolev spaces \(W^{k,p}(\Omega)\) without weights occur as spaces of solutions for elliptic and parabolic partial differential equations. In the particular case where \(p=q=2\) and \({\omega}{\equiv}\, 1\), we have the equation
\[\displaystyle {\Delta}^2u – \sum_{j=1}^nD_j{\mathcal{A}}_j(x,u,{\nabla}u) = f,\] where \({\Delta}^2u\) is the biharmonic operator. If \(p=q\), \({\omega}{\equiv}\,1\) and \({\mathcal{A}}(x, \eta, \xi) = {\vert \xi \vert}^{p-2}\,{\xi}\), we have the equation \[{\Delta}({\vert{\Delta}\vert}^{p-2}\, {\Delta}u) – {\mathrm{div}}({\vert{\nabla}u\vert}^{p-2}{\nabla}u) = f.\] Biharmonic equations appear in the study of mathematical model in several real-life processes as, among others, radar imaging (see [1]) or incompressible flows (see [2]).For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [3,4,5,6]). In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. There are several very concrete problems from practice which lead to such differential equations, e.g. from glaceology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, petroleum extraction and reaction-diffusion problems (see some examples of applications of degenerate elliptic equations in [7,8]).
A class of weights, which is particularly well understood, is the class of \(A_p\)-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [9]). These classes have found many useful applications in harmonic analysis (see [10]). Another reason for studying \(A_p\)-weights is the fact that powers of distance to submanifolds of \(\mathbb{R}^n\) often belong to \(A_p\) (see [11]). There are, in fact, many interesting examples of weights (see [12] for p-admissible weights).
In the non-degenerate case (i.e. with \({\omega}(x) \equiv 1\)), for all \(f\, {\in}\,L^p(\Omega)\), the Poisson equation associated with the Dirichlet problem
\begin{equation*} \begin{cases}\, – \, {\Delta}u = f(x), &\ {\mathrm{in}} \ {\Omega} \\ u(x) = 0, &\ {\mathrm{on}} \ {\partial\Omega} \end{cases} \end{equation*} is uniquely solvable in \(W^{2,p}(\Omega)\,{\cap}\, W_0^{1,p}(\Omega)\) (see [13]), and the nonlinear Dirichlet problem \begin{equation*} \begin{cases} – \, {\Delta}_p u = f(x), & {\mathrm{in}} \ {\Omega} \\ u(x) = 0, & {\mathrm{on}} \ {\partial\Omega} \end{cases} \end{equation*} is uniquely solvable in \(W_0^{1,p}(\Omega)\) (see [14]), where \({\Delta}_p u = {\div}({\vert {\nabla}u\vert}^{p-2}{\nabla}u)\) is the p-Laplacian operator. In the degenerate case, the weighted p-Biharmonic operator has been studied by many authors (see [15] and the references therein), and the degenerated p-Laplacian was studied in [6].The following theorem will be proved in Section 3.
Theorem 1. Let \(2\,{\leq}\,q < p < {\infty}\) and assume (H1)-(H4). If \({\omega}\,{\in}\,A_p\), \({\dfrac{f_j}{\omega}}\,{\in}\,L^{p\,'}(\Omega , \omega)\) (\(j=0,1,…,n\)) then the problem (P) has a unique solution \(u{\in}\,X = W^{2,p}(\Omega , \omega) {\cap}\,W_0^{1,p}(\Omega , \omega)\). Moreover, we have \[{\Vert u \Vert}_X {\leq}{\dfrac{1}{{\gamma}^{p\,'/p}}} {\bigg(} C_{\Omega}{\Vert f_0/{\omega}\Vert}_{L^{p\,'}(\Omega , \omega)} + \sum_{j=1}^n {\Vert f_j/{\omega}\Vert}_{L^{p\,'}(\Omega , \omega)}{\bigg)}^{p\,'/p},\] where \({\gamma} = \min\,\{{\lambda}_1, 1\}\) and \(C_{\Omega}\) is the constant in Theorem 3.
As an example of \(A_p\)-weight, the function \({\omega}(x) = {\vert x \vert}^{\alpha}\), \(x{\in}\mathbb{R}^n\), is in \(A_p\) if and only if \(-n< {\alpha}< n(p-1)\) (see Corollary 4.4, Chapter IX in [10]).
If \({\omega}{\in}A_p\), then \[{\biggl(} \dfrac{{\vert E \vert}}{{\vert B \vert}} {\biggr)}^p \,{\leq}\,C \dfrac{{\mu}(E)}{{\mu}(B)},\] whenever \(B\) is a ball in \(\mathbb{R}^n\) and \(E\) is a measurable subset of \(B\) (see 15.5 strong doubling property in [12]). Therefore, if \({\mu}(E) =0\) then \({\vert E \vert}=0\). The measure \(\mu\) and the Lebesgue measure \(\vert . \vert\) are mutually absolutely continuous, i.e., they have the same zero sets (\({\mu}(E)=0\) if and only if \({\vert E \vert}=0\)); so there is no need to specify the measure when using the ubiquitous expression almost everywhere and almost every, both abbreviated a.e..Definition 1. Let \(\omega\) be a weight, and let \(\Omega\,{\subset}\,\mathbb{R}^n\) be open. For \(0< p< {\infty}\) we define \(L^p(\Omega , \omega)\) as the set of measurable functions \(f\) on \(\Omega\) such that \[{\Vert f \Vert}_{L^p(\Omega ,\omega)} = {\bigg(}\int_{\Omega} {\vert f(x) \vert}^p{\omega}(x)dx{\bigg)}^{1/p}< {\infty}.\] If \({\omega}\,{\in}\,A_p\), \(1< p< {\infty}\), then \({\omega}^{-1/(p-1)}\) is locally integrable and we have \(\displaystyle{L^p(\Omega , \omega)\,{\subset}\,L^1_{loc}(\Omega)}\) for every open set \(\Omega\) (see Remark 1.2.4 in [17]). It thus makes sense to talk about weak derivatives of functions in \(L^p(\Omega , \omega)\).
Definition 2. Let \({\Omega}\, {\subset}\,\mathbb{R}^n\) be a bounded open set, \(1< p< {\infty}\), \(k\) be a nonnegative integer and \({\omega}\, {\in}\,A_p\). We shall denote by \(W^{k,p}(\Omega , \omega)\), the weighted Sobolev spaces, the set of all functions \(u\, {\in}\, L^p(\Omega , \omega)\) with weak derivatives \(D^{\alpha}u\, {\in}\, L^p(\Omega , \omega)\), \(1\, {\leq}\, {\vert\,\alpha\vert}\, {\leq}\,k\). The norm in the space \(W^{k,p}(\Omega , \omega)\) is defined by
The space \(W_0^{1,p}(\Omega , \omega)\) is the closure of \(C_0^{\infty}(\Omega)\) with respect to the norm (1). Equipped with this norm, \(W_0^{1,p}(\Omega , \omega)\) is a reflexive Banach space (see [18] for more information about the spaces \(W^{1,p}(\Omega , \omega)\)). The dual of space \(W_0^{1,p}(\Omega , \omega)\) is the space
\begin{eqnarray*} [W_0^{1,p}(\Omega , \omega)]^* = \{ T = f_0 – {\mathrm{div}}(F), \ F=(f_1,…,f_n): \ {\dfrac{f_j}{\omega}}\, {\in}\, L^{p\,’}(\Omega , \omega), j=0,1,…,n\}. \end{eqnarray*} It is evident that a weight function \(\omega\) which satisfies \(0< c_1\,{\leq}\,{\omega}(x)\,{\leq}\,c_2\) for \(x\,{\in}\,{\Omega}\) (where \(c_1\) and \(c_2\) are constants), give nothing new (the space \({W}_0^{1,p}(\Omega ,\omega)\) is then identical with the classical Sobolev space \({W}_0^{1,p}(\Omega)\)). Consequently, we shall be interested above all in such weight functions \(\omega\) which either vanish somewhere in \({\bar{\Omega}}\) or increase to infinity (or both).In this paper we use the following results.
Theorem 2. Let \({\omega}\,{\in}\,A_p\), \(1< p< {\infty}\), and let \(\Omega\) be a bounded open set in \(\mathbb{R}^n\). If \(u_m{\rightarrow}\,u\) in \(L^p(\Omega , \omega)\) then there exist a subsequence \(\{ u_{m_k} \}\) and a function \({\Phi}\,{\in}\,L^p(\Omega , \omega)\) such that
Proof. The proof of this theorem follows the lines of Theorem 2.8.1 in [19].
Theorem 3. (The weighted Sobolev inequality) Let \(\Omega\) be an open bounded set in \(\mathbb{R}^n\) and \({\omega}{\in}A_p\) (\(1< p< {\infty}\)). There exist constants \(C_{\Omega}\) and \(\delta\) positive such that for all \(u\,{\in}\,W_0^{1,p}(\Omega, \omega)\) and all \(k\) satisfying \(1\,{\leq}\,k\,{\leq}\,n/(n-1) + {\delta}\),
Proof. Its suffices to prove the inequality for functions \(u\, {\in}\, C_0^{\infty}(\Omega)\) (see Theorem 1.3 in [20]). To extend the estimates (2) to arbitrary \(u\, {\in}\, W_0^{1,p}(\Omega , \omega)\), we let \(\{u_m\}\) be a sequence of \(C_0^{\infty}(\Omega)\) functions tending to \(u\) in \(W_0^{1,p}(\Omega , \omega)\). Applying the estimates (2) to differences \(u_{m_1}-u_{m_2}\), we see that \(\{u_m\}\) will be a Cauchy sequence in \(L^{kp}(\Omega , \omega)\). Consequently the limit function \(u\) will lie in the desired spaces and satisfy (2).
Lemma 1. Let \(1< p< {\infty}\).
Proof. See [14], Proposition 17.2 and Proposition 17.3.
Definition 3. We denote by \(X = W^{2,p}(\Omega, \omega)\, {\cap}\, W_0^{1,p}(\Omega , \omega)\) with the norm \[{\Vert u \Vert}_X = {\bigg(}\int_{\Omega} {\vert{\nabla}u\vert}^p\, {\omega}\, dx + \int_{\Omega}{\vert{\Delta}u\vert}^p\, {\omega}\, dx{\bigg)}^{1/p}.\]
Definition 4. We say that an element \(u\,{\in}\,X = W^{2,p}(\Omega , \omega)\, {\cap}\,W_0^{1,p}(\Omega , ,\omega)\) is a (weak) solution of problem (P) if \begin{eqnarray*} & & \int_{\Omega}{\vert {\Delta}u\vert}^{p-2}\, {\Delta}u\, {\Delta}{\varphi}\, {\omega}\, dx + \int_{\Omega}{\vert {\Delta}u\vert}^{q-2}\, {\Delta}u\, {\Delta}{\varphi}\, {\omega}\, dx + \ \sum_{j=1}^n\int_{\Omega} {\mathcal{A}}_j(x, u(x), {\nabla}u(x))D_j{\varphi}(x)\,{\omega}(x)\,dx\\ & & = \int_{\Omega}f_0(x){\varphi}(x)dx + \sum_{j=1}^n\int_{\Omega}f_j(x)D_j{\varphi}(x)dx, \end{eqnarray*} for all \({\varphi}\,{\in}\,X\).
Remark 1. If \(0< {\eta}< p< {\infty}\) then, by Hölder's inequality, \[{\Vert u \Vert}_{L^{\eta}(\Omega , \omega)}\, {\leq}\,C_{p,{\eta}}{\Vert u \Vert}_{L^p(\Omega , \omega)},\] where \(\displaystyle C_{p,{\eta}} = {\bigg(}\int_{\Omega} {\omega}\, dx{\bigg)}^{(p-\eta)/p\,{\eta}}= {\Vert \omega \Vert}_{L^{p/(p-\eta)}(\Omega)}^{1/\eta}\). In fact, \begin{eqnarray*} {\Vert u \Vert}_{L^{\eta}(\Omega , {\omega})}^{\eta} & = & \int_{\Omega}{\vert u \vert}^{\eta}\,{\omega}\, dx\\ & {\leq}& {\bigg(}\int_{\Omega} {\vert u \vert}^{{\eta}\, p/{\eta}}\, {\omega}\, dx{\bigg)}^{{\eta}/p}{\bigg(}\int_{\Omega} {\omega}^{p/(p-\eta)}\, dx{\bigg)}^{(p-\eta)/p}\\ & = & {\Vert u \Vert}_{L^p(\Omega , {\omega})}^{\eta} \, {\Vert \omega\Vert}_{L^{p/(p-\eta)}(\Omega)}. \end{eqnarray*}
Theorem 4. Let \(A:X{\rightarrow} X^*\) be a monotone, coercive and hemicontinuous operator on the real, separable, reflexive Banach space \(X\). Then the following assertions hold:
Proof. See Theorem 26.A in [21].
To prove Theorem 1, we define \(\displaystyle B, B_1, B_2, B_3:X\,{\times}\,X\, {\rightarrow}\, \mathbb{R}\) and \(T:X\, {\rightarrow}\,\mathbb{R}\) by
\begin{eqnarray*} B(u,\varphi) &=& B_1(u,\varphi) + B_2(u,\varphi)+ B_3(u, \varphi),\\ B_1(u, \varphi) & = & \sum_{j=1}^n\int_{\Omega} {\mathcal{A}}_j(x, u, {\nabla}u)D_j{\varphi}\,{\omega}\,dx = \int_{\Omega}{\mathcal{A}}(x,u,{\nabla}u). {\nabla}{\varphi}\,{\omega}\,dx \\ B_2(u, \varphi) & = & \int_{\Omega}{\vert {\Delta}u\vert}^{p-2}{\Delta}u\, {\Delta}{\varphi}\, {\omega}\, dx\\ B_3(u, \varphi) & = & \int_{\Omega}{\vert {\Delta}u\vert}^{q-2}{\Delta}u\, {\Delta}{\varphi}\, {\omega}\, dx\\ T(\varphi) & = & \int_{\Omega}f_0(x)\,{\varphi}(x)\,dx + \sum_{j=1}^n\int_{\Omega}f_j(x)\,D_j{\varphi}(x)\,dx. \end{eqnarray*} Then \(u\,{\in}\,X\) is a (weak) solution to problem (P) if, for all \({\varphi}\, {\in}\, X\), \[B(u, \varphi) = B_1(u, \varphi) + B_2(u, \varphi) + B_3(u , \varphi) = T(\varphi).\]Step 1. For \(j=1,…,n\) we define the operator \( F_j :X\,{\rightarrow}L^{p\,’}(\Omega , \omega)\) as \[(F_ju)(x) = {\mathcal{A}}_j(x, u(x), {\nabla}u(x)).\] We now show that the operator \(F_j\) is bounded and continuous.
Step 2. We define the operator \(G_1:X\, {\rightarrow}\, L^{p\,’}(\Omega, \omega)\) by \[(G_1 u)(x) = {\vert {\Delta}u(x)\vert}^{p-2}\, {\Delta}u(x).\] This operator is continuous and bounded. In fact,
Step 3. We define the operator \(G_2:X{\rightarrow}\, L^{p\,’}(\Omega , \omega)\) by \[(G_2u)(x) = {\vert{\Delta}u(x)\vert}^{q-2}{\Delta}u(x).\] We also have that the operator \(G_2\) is continuous and bounded. In fact,
In the case \(2=q< p< {\infty}\), we have \((G_2u)(x) = {\Delta}u(x)\) and
\begin{eqnarray*} {\Vert G_2u_{m_k} – G_2u\Vert}_{L^{p\,’}(\Omega , \omega)}^{p\,’} & = & \int_{\Omega}{\vert {\Delta}u_{m_k} – {\Delta}u\vert}^{p\,’}\, {\omega}\, dx\\ & {\leq}& {\bigg(}\int_{\Omega}{\vert{\Delta}u_{m_k} – {\Delta}u \vert}^p\, {\omega}\, dx{\bigg)}^{p\,’/p}{\bigg(}\int_{\Omega}{\omega}\, dx{\bigg)}^{(p-2)/(p-1)}\\ & {\leq} & {\Vert u_{m_k} – u \Vert}_X^{p\,’} {\bigg(}\int_{\Omega}{\omega}\, dx{\bigg)}^{(p-2)/(p-1)}. \end{eqnarray*} Therefore, for \(2\, {\leq}\, q < p< {\infty}\), by the Dominated Convergence Theorem we obtain (when \(m_k \to \infty\)) \[{\Vert G_2u_{m_k} – G_2u\Vert}_{L^{p\,'}(\Omega , \omega)}{\rightarrow}\, 0,\] that is, \(G_2u_{m_k} {\rightarrow}\, G_2u\) in \(L^{p\,'}(\Omega , \omega)\). By the Convergence Principle in Banach spaces, we haveStep 4. Since \(\displaystyle {\dfrac{f_j}{\omega}}\, {\in}\, L^{p\,’}(\Omega , \omega)\) (\(j=0,1,…,n\)), then \(T\,{\in}\, [W_0^{1.p}(\Omega , \omega)]^*\, {\subset}\, X^*\). Moreover, we have by Theorem 3 (with \(k=1\)), \begin{eqnarray*} {\vert T(\varphi) \vert} & {\leq}& \int_{\Omega} {\vert f_0 \vert}{\vert\varphi\vert}\,dx + \sum_{j=1}^n\int_{\Omega}{\vert f_j\vert}{\vert D_j{\varphi}\vert}\,dx \\ & = & \int_{\Omega} {\dfrac{\vert f_0 \vert} {\omega}}{\vert\varphi\vert}{\omega}\,dx + \sum_{j=1}^n \int_{\Omega}{\dfrac{\vert f_j \vert}{\omega}} {\vert D_j{\varphi}\vert}\,{\omega}\,dx \\ & {\leq}&{\Vert f_0/{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)}{\Vert {\varphi} \Vert}_{L^p(\Omega , \omega)} + \sum_{j=1}^n {\Vert f_j/{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)}{\Vert D_j\varphi \Vert}_{L^p(\Omega , \omega)} \\ & {\leq}& C_{\Omega}\,{\Vert f_0 /{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)}{\Vert{\nabla}{\varphi}\Vert}_{L^p(\Omega , \omega)} + {\bigg(}\sum_{j=1}^n{\Vert f_j/{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)}{\bigg)} {\Vert \nabla\varphi \Vert}_{L^p(\Omega , \omega)}\\ & {\leq}&{\biggl(} C_{\Omega}\,{\Vert f_0 /{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)} + \sum_{j=1}^n{\Vert f_j/{\omega} \Vert}_{L^{p\,’}(\Omega , \omega)} {\biggr)} {\Vert \varphi \Vert}_X. \end{eqnarray*} Moreover, we also have
Step 5. Using condition (H2) and Lemma 1(b), we have \begin{eqnarray*} & & {\langle}Au_1 – Au_2, u_1 – u_2{\rangle} = B(u_1,u_1 – u_2) – B(u_2, u_1 – u_2) \\ & & = \int_{\Omega} {\mathcal{A}}(x, u_1, {\nabla}u_1).{\nabla}(u_1-u_2)\,{\omega}\,dx + \int_{\Omega}{\vert\,{\Delta}u_1\vert}^{p-2} \,{\Delta}u_1\, {\Delta}(u_1-u_2)\, {\omega}\, dx \\ && + \int_{\Omega}{\vert\,{\Delta}u_1\vert}^{q-2} \,{\Delta}u_1\, {\Delta}(u_1-u_2)\, {\omega}\, dx – \int_{\Omega} {\mathcal{A}}(x, u_2, {\nabla}u_2). {\nabla}(u_1-u_2)\,{\omega}\, dx\\&& – \int_{\Omega} {\vert\, {\Delta}u_2\vert}^{p-2}\, {\Delta}u_2\, {\Delta}(u_1-u_2)\,{\omega}\, dx – \int_{\Omega}{\vert\,{\Delta}u_2\vert}^{q-2} \,{\Delta}u_2\, {\Delta}(u_1-u_2)\, {\omega}\, dx \\ && = \int_{\Omega} {\biggl(}{\mathcal{A}}(x, u_1, {\nabla}u_1) – {\mathcal{A}}(x, u_2, {\nabla}u_2){\biggr)}.{\nabla}(u_1-u_2)\,{\omega}\,dx \\ && + \int_{\Omega}({\vert\,{\Delta}u_1\vert}^{p-2}\, {\Delta}u_1 – {\vert\,{\Delta}u_2\vert}^{p-2}\,{\Delta}u_2)\, {\Delta}(u_1-u_2)\, {\omega}\, dx\\ && + \int_{\Omega}({\vert\,{\Delta}u_1\vert}^{q-2}\, {\Delta}u_1 – {\vert\,{\Delta}u_2\vert}^{q-2}\,{\Delta}u_2)\, {\Delta}(u_1-u_2)\, {\omega}\, dx\\ &&{\geq}{\theta}_1\int_{\Omega} {\vert{\nabla}(u_1-u_2)\vert}^p\,{\omega}\, dx + {\beta}_p \int_{\Omega}({\vert\,{\Delta}u_1\vert} + {\vert\,{\Delta}u_2\vert})^{p-2}\, {\vert {\Delta}u_1-{\Delta}u_2\vert}^2\, {\omega}\, dx\\ && + {\beta}_q \int_{\Omega}({\vert\,{\Delta}u_1\vert} + {\vert\,{\Delta}u_2\vert})^{q-2}\, {\vert {\Delta}u_1-{\Delta}u_2\vert}^2\, {\omega}\, dx\\ &&{\geq}{\theta}_1\int_{\Omega} {\vert{\nabla}(u_1-u_2)\vert}^p\,{\omega}\, dx + {\beta}_p \int_{\Omega}({\vert\,{\Delta}u_1 – {\Delta}u_2\vert})^{p-2}\, {\vert {\Delta}u_1-{\Delta}u_2\vert}^2\, {\omega}\, dx\\ && + {\beta}_q \int_{\Omega}({\vert\,{\Delta}u_1 – {\Delta}u_2\vert})^{q-2}\, {\vert {\Delta}u_1-{\Delta}u_2\vert}^2\, {\omega}\, dx\\ && = {\theta}_1\int_{\Omega} {\vert{\nabla}(u_1-u_2)\vert}^p\,{\omega}\, dx + {\beta}_p \int_{\Omega} {\vert {\Delta}u_1-{\Delta}u_2\vert}^p\, {\omega}\, dx + {\beta}_q \int_{\Omega} {\vert {\Delta}u_1-{\Delta}u_2\vert}^q\, {\omega}\, dx\\ && {\geq} {\theta}_1\int_{\Omega} {\vert{\nabla}(u_1-u_2)\vert}^p\,{\omega}\, dx + {\beta}_p \int_{\Omega} {\vert {\Delta}u_1-{\Delta}u_2\vert}^p\, {\omega}\, dx\\ && {\geq} {\theta}\, {\Vert u_1 – u_2\Vert}_X^p \end{eqnarray*} where \({\theta} = \min\,\{{\theta}_1, {\beta}_p\}\). Therefore, the operator \(A\) is strongly monotone, and this implies that \(A\) is strictly monotone. Moreover, from (H3), we obtain \begin{eqnarray*} {\langle}Au,u{\rangle} &=& B(u,u) = B_1(u,u) + B_2(u,u)+ B_3(u,u)\\ &=& \int_{\Omega} {\mathcal{ A}}(x,u,{\nabla}u).{\nabla}u\,{\omega}\,dx + \int_{\Omega}{\vert\, {\Delta}u\vert}^{p-2}\, {\Delta}u\, {\Delta}u\, {\omega}\, dx + \int_{\Omega}{\vert\, {\Delta}u \vert}^{q-2}\, {\Delta}u\, {\Delta}u\, {\omega}\, dx\\ &{\geq}& \int_{\Omega} {\lambda}_1{\vert {\nabla} u \vert}^p \, {\omega}\, dx + \int_{\Omega} {\vert\, {\Delta}u\vert}^p\, {\omega}\, dx + \int_{\Omega} {\vert\, {\Delta}u\vert}^q\, {\omega}\, dx\\ &{\geq}& \int_{\Omega} {\lambda}_1{\vert {\nabla} u \vert}^p \, {\omega}\, dx + \int_{\Omega} {\vert\, {\Delta}u\vert}^p\, {\omega}\, dx\\ & {\geq}& {\gamma} \, {\Vert u \Vert}_X^p, \end{eqnarray*} where \( {\gamma} = \min\, \{{\lambda}_1,1 \}\). Hence, since \(2\, {\leq}\, q< p < \infty\), we have \[{\dfrac{{\langle}Au,u{\rangle}}{{\Vert u \Vert}_X}}\, {\rightarrow}+{\infty}, \ {as} \ {\Vert u \Vert}_X\,{\rightarrow}+{\infty},\] that is, \(A\) is coercive.
Step 6. We need to show that the operator \(A\) is continuous. Let \(u_m{\rightarrow}\,u\) in \(X\) as \(m\to\infty\). We have \begin{eqnarray*} {\vert B_1(u_m , \varphi) – B_1(u , \varphi) \vert} & {\leq}& \sum_{j=1}^n\int_{\Omega} {\vert {\mathcal{A}}_j(x,u_m, {\nabla}u_m) – {\mathcal{A}}_j(x,u,{\nabla}u) \vert}{\vert D_j{\varphi} \vert}\,{\omega}\,dx \\ & = & \sum_{j=1}^n \int_{\Omega} {\vert F_ju_m – F_ju \vert}{\vert D_j{\varphi} \vert}\,{\omega}\,dx\\ &{\leq}& \sum_{j=1}^n {\Vert F_ju_m – F_ju \Vert}_{L^{p\,’}(\Omega , \omega)}{\Vert D_j{\varphi} \Vert}_{L^p(\Omega , \omega)}\\ &{\leq}& {\bigg(}\sum_{j=1}^n{\Vert F_ju_m – F_ju \Vert}_{L^{p\,’}(\Omega , \omega)}{\bigg)}{\Vert \varphi \Vert}_X, \end{eqnarray*} and \begin{eqnarray*} {\vert B_2(u_m, {\varphi}) – B_2(u, \varphi)\vert} & =& {\bigg\vert}\int_{\Omega}{\vert\,{\Delta}u_m\vert}^{p-2}{\Delta}u_m \, {\Delta}{\varphi}\, {\omega}\, dx – \int_{\Omega}{\vert\,{\Delta}u\vert}^{p-2}{\Delta}u \, {\Delta}{\varphi}\, {\omega}\, dx\,{\bigg\vert}\\ &{\leq}& \int_{\Omega}{\bigg\vert}\,{\vert\,{\Delta}u_m\vert}^{p-2}\, {\Delta}u_m – {\vert\,{\Delta}u\vert}^{p-2}{\Delta}u\, {\bigg\vert}\, {\vert\, {\Delta}{\varphi}\vert}\, {\omega}\, dx\\ &=& \int_{\Omega}{\vert G_1u_m – G_1u\vert}\, {\vert {\Delta}{\varphi}\vert}\, {\omega}\, dx\\ &{\leq}& {\Vert G_1u_m -G_1u\Vert}_{L^p\,'(\Omega , \omega)}{\Vert{\Delta}{\varphi}\Vert}_{L^p(\Omega , \omega)}\\ &{\leq}&\, {\Vert G_1u_m – G_1u\Vert}_{L^{p\,’}(\Omega , \omega)}\, {\Vert \varphi\Vert}_X. \end{eqnarray*} and \begin{eqnarray*} {\vert B_3(u_m, {\varphi}) – B_3(u, \varphi)\vert}& =& {\bigg\vert}\int_{\Omega}{\vert\,{\Delta}u_m\vert}^{q-2}{\Delta}u_m \, {\Delta}{\varphi}\, {\omega}\, dx – \int_{\Omega}{\vert\,{\Delta}u\vert}^{q-2}{\Delta}u \, {\Delta}{\varphi}\, {\omega}\, dx\,{\bigg\vert}\\ &{\leq}& \int_{\Omega}{\bigg\vert}\,{\vert\,{\Delta}u_m\vert}^{q-2}\, {\Delta}u_m – {\vert\,{\Delta}u\vert}^{q-2}{\Delta}u\, {\bigg\vert}\, {\vert\, {\Delta}{\varphi}\vert}\, {\omega}\, dx\\ &=& \int_{\Omega}{\vert G_2u_m – G_2u\vert}\, {\vert {\Delta}{\varphi}\vert}\, {\omega}\, dx\\ &{\leq}&\, {\Vert G_2u_m – G_2u\Vert}_{L^{p\,’}(\Omega , \omega)}\, {\Vert \varphi\Vert}_X\,, \end{eqnarray*} for all \({\varphi}\,{\in}\,X\). Hence \begin{eqnarray*} {\vert B(u_m , \varphi) – B(u, \varphi)\vert} & {\leq}&\, {\vert B_1(u_m,\varphi) – B_1(u, \varphi)\vert} + {\vert B_2(u_m , \varphi) – B_2(u, \varphi)\vert} + {\vert B_3(u_m , \varphi) – B_3(u, \varphi)\vert}\\ &{\leq}&\, {\bigg[}\sum_{j=1}^n{\Vert F_ju_m – F_ju \Vert}_{L^{p\,’}(\Omega , \omega)} + \, {\Vert G_1u_m-G_1u\Vert}_{L^{p\,’}(\Omega , \omega)}+ \ {\Vert G_2u_m-G_2u\Vert}_{L^{p\,’}(\Omega , \omega)} {\bigg]} {\Vert \varphi \Vert}_X. \end{eqnarray*} Then we obtain \begin{eqnarray*} {\Vert Au_m – Au \Vert}_*\, {\leq} \, \sum_{j=1}^n {\Vert F_ju_m – F_ju \Vert}_{L^{p\,’}(\Omega , \omega)} + {\Vert G_1u_m-G_1u\Vert}_{L^{p\,’}(\Omega , \omega)}+ \ {\Vert G_2u_m – G_2u\Vert}_{L^{p\,’}(\Omega , \omega)}. \end{eqnarray*} Therefore, using (4), (7) and (9) we have \({\Vert Au_m – Au \Vert}_*{\rightarrow}\,0\) as \(m\to +{\infty}\), that is, \(A\) is continuous and this implies that \(A\) is hemicontinuous.
Therefore, by Theorem 4, the operator equation \(Au = T\) has a unique solution \(u\,{\in}\,X\) and it is the unique solution for problem (P).
Step 7. In particular, by setting \({\varphi}=u\) in Definition 4, we have
Example 1. Let \({\Omega} = \{ (x,y)\, {\in}\, \mathbb{R}^2: x^2+y^2< 1\}\), the weight function \({\omega}(x,y) = (x^2 + y^2)^{-1/2}\) (\({\omega}\,{\in}\, A_4\), \(p=4\) and \(q=3\)), and the function \begin{eqnarray*} & & {\mathcal{A}}: {\Omega}\, {\times}\,\mathbb{R}\, {\times}\, \mathbb{R}^2 {\rightarrow}\, \mathbb{R}^2\;\;\text{defined by}\\ & & {\mathcal{A}}((x,y), \eta,\xi) = h_2(x,y)\, {\vert \xi\vert}\, {\xi}, \end{eqnarray*} where \(h(x,y) = 2\, {e}^{(x^2+y^2)}\). Let us consider the partial differential operator \[Lu(x,y) = {\Delta}{\big[}(x^2+y^2)^{-1/2}{\big(}{\vert{\Delta}u \vert}^2\,{\Delta} u + {\vert{\Delta}u\vert}{\Delta}u{\big)}{\big]} – { div}\,((x^2+y^2)^{-1/2}\,{\mathcal{A}}((x,y), u , {\nabla}u)).\] Therefore, by Theorem 1, the problem \[ \begin{cases}Lu(x) = {\dfrac{\cos(xy)}{(x^2+y^2)}} – {\dfrac{\partial}{\partial x}}{\bigg(}{\dfrac{\sin(xy)}{(x^2+y^2)}}{\bigg)} – {\dfrac{\partial}{\partial y}}{\bigg(}{\dfrac{\sin(xy)}{(x^2+y^2)}}{\bigg)},& \ \ { in} \ \ {\Omega} \\ u(x) = 0, &\ \ { on} \ \ {\partial\Omega} \end{cases} \] has a unique solution \(u\, {\in}\, X = W^{2,4}(\Omega , \omega)\, {\cap}\, W_0^{1,4}(\Omega , \omega)\).