This paper investigates the existence results and uniqueness of solutions for a class of boundary value problems for fractional differential equations with the Hilfer fractional derivative. The reasoning is mainly based upon Mönch’s fixed point theorem associated with the technique of measure of noncompactness. We illustrate our main findings, with a particular case example, included to show the applicability of our outcomes. The boundary conditions introduced in this work are of quite general nature and reduce to many special cases by fixing the parameters involved in the conditions.
Fractional differential equations have recently been applied in various areas of engineering, mathematics, physics and bio-engineering, and other applied sciences [1,2]. For some fundamental results in the theory of fractional calculus and fractional differential equations, we refer the reader to the monographs of Abbas, Benchohra and N’Guérékata [3], Samko, Kilbas and Marichev [4], Kilbas, Srivastava and Trujillo [5] and Zhou [6], the papers by Abbas et al., [7,8,9] and the references therein.
In 2000, a generalization of derivatives of both Riemann-Liouville and Caputo was given by Hilfer in [1] when he studied fractional time evolution in physical phenomena. He named it as generalized fractional derivative of order \(\alpha\in(0,1)\) and a type \(\beta\in[0,1]\) which can be reduced to the Riemann-Liouville and Caputo fractional derivatives when \(\beta=0\) and \(\beta=1\), respectively. Many authors call it the Hilfer fractional derivative. Such derivative interpolates between the Riemann-Liouville and Caputo derivative in some sense. Some properties and applications of the Hilfer derivative are given in [1,10] and references cited therein.
Recently, considerable attention has been given to the existence of solutions of initial and boundary value problems for fractional differential equations with Hilfer fractional derivative; see [1,2,10,11,12,13,14] and the references therein. In [15,16,17,18], the measure of noncompactness was applied to some classes of functional Riemann-Liouville or Caputo fractional differential equations in Banach spaces.
In this paper, we consider the existence of solutions of the following boundary value problem for a nonlinear fractional differential equation,
The organization of this work is as follows; in Section 2, we introduce some notations, definitions, and lemmas that will be used later. Section 3 treats the existence of solutions in Banach spaces by using the Mönch’s fixed point theorem combined with the technique of measures of noncompactness. In Section 4, we illustrate the obtained results by an example. Finally, the paper concludes with some interesting observations.
Let \(C(J,E)\) be the Banach space of continuous functions \(y : J\rightarrow E\), with the usual supremum norm
\[\|y\|_{\infty} = \sup\{\|y(t)\|, t \in J \},\] and \(L^{1}(J,E)\) be the Banach space of measurable functions \(y : J \rightarrow E\) which are Bochner integrable, equipped with the norm \[\|y\|_{L^{1}} =\int_{J} y(t) dt.\] Further, let \(AC^{1}(J,E)\) be the space of functions \(y : J \rightarrow E\), whose first derivative is absolutely continuous.Definition 1. [23] Let \(J=[0,T]\) be a finite interval and \(1\leq\gamma< 2\). We introduce the weighted space \(C_{1-\gamma}(J,E)\) of continuous functions \(f\) on \((0,T]\) by \[C_{1-\gamma}(J,E)=\{f:(0,T] \rightarrow E: (t-a)^{1-\gamma}f(t)\in C(J,E)\}.\] In the space \(C_{1-\gamma}(J,E)\), we define the norm \[\|f\|_{C_{1-\gamma}}= \|(t-a)^{1-\gamma}f (t)\|_{C}.\]
Definition 2. [23] Let \(1< \alpha< 2, 0 \leq \beta \leq 1\). The weighted space \(C^{\alpha,\beta}_{1-\gamma}(J,E)\) is defined by \[C^{\alpha,\beta}_{1-\gamma}(J,E)=\{f:(0, T]\rightarrow \mathbb{R} : D^{\alpha,\beta}_{0^{+}}f\in C_{1-\gamma}(J,E)\}, \gamma=\alpha+\beta-\alpha\beta,\] and \[C^{1}_{1-\gamma}(J,E)=\{f:(0, T]\rightarrow \mathbb{R} : f'\in C_{1-\gamma}(J,E)\}, \gamma=\alpha+\beta-\alpha\beta,\] with the norm
Now, we give some results and properties of fractional calculus.
Definition 3. [24] Let \((0,T]\) and \(f : (0, \infty) \rightarrow \mathbb{R}\) is a real valued continuous function. The Riemann-Liouville fractional integral of a function \(f\) of order \(\alpha \in \mathbb{R^{+}}\) is denoted as \(I^{\alpha}_{0^{+}}f\) and defined by
Definition 4. [5] Let \((0,T]\) and \(f : (0, \infty) \rightarrow \mathbb{R}\) is a real valued continuous function. The Riemann-Liouville fractional derivative of a function \(f\) of order \(\alpha \in \mathbb{R}^{+}_{0}=[0,+\infty)\) is denoted as \(D^{\alpha}_{0^{+}}f\) and defined by
Definition 5. [5] The Caputo fractional derivative of function \(f\) with order \(\alpha>0, n-1< \alpha< n, n\in\mathbb{N}\) is defined by
Definition 6. [1] The Hilfer fractional derivative \(D^{\alpha,\beta}_{0^{+}}\) of order \(\alpha\) \((n-1< \alpha< n)\) and type \(\beta\) \((0\leq\beta\leq 1)\) is defined by
Remark 1. ([25]) Hilfer fractional derivative interpolates between the Riemann-Liouville ((4), if \(\beta=0\)) and Caputo ((5), if \(\beta=1\)) fractional derivatives since \begin{equation} D_{0^{+}}^{\alpha,0}= ^{R-L}D^{\alpha}_{0^{+}} and D^{\alpha,1}= ^{C}D^{\alpha}_{0^{+}}. \end{equation}
Lemma 1. Let \(1< \alpha< 2\), \(0\leq\beta\leq1\), \(\gamma =\alpha +\beta-\alpha\beta\), and \(f\in L^{1}(J,E)\). The operator \(D^{\alpha,\beta}_{0^{+}}\) can be written as \begin{align*} D^{\alpha,\beta}_{0^{+}}f(t) & =\left(I^{\beta(1-\alpha)}_{0^{+}}\frac{d}{dt}I^{(1-\gamma)}_{0^{+}}f\right)(t)=I^{\beta(1-\alpha)}_{0^{+}}D^{\gamma}f(t), t\in J. \end{align*}
Lemma 2. Let \(1< \alpha< 2\), \(0\leq\beta\leq1\) and \(\gamma=\alpha+\beta-\alpha\beta\). If \(D^{\beta(1-\alpha)}_{0^{+}}f\) exists and is in \(L^{1}(J,E)\), then \begin{equation} D^{\alpha,\beta}_{0^{+}}I^{\alpha}_{0^{+}}f(t)=I^{\beta(1-\alpha)}_{0^{+}}D^{\beta(1-\alpha)}_{0^{+}}f(t), t \in J. \end{equation} Furthermore, if \(f \in C_{1-\gamma}(J,E)\) and \(I^{1-\beta(1-\alpha)}_{0^{+}}f\in C^{1}_{1-\gamma}(J,E)\), then \begin{equation} D^{\alpha,\beta}_{0^{+}}I^{\alpha}_{0^{+}}f(t)=f(t), t\in J. \end{equation}
Lemma 3. Let \(1< \alpha< 2\), \(0\leq\beta\leq1\), \(\gamma =\alpha +\beta-\alpha\beta\), and \(f \in L^{1}(J,E)\). If \(D^{\gamma}_{0^{+}}f\) exists and is in \(L^{1}(J,E)\), then \begin{align*} I^{\alpha}_{0^{+}}D^{\alpha,\beta}_{0^{+}}f(t)&=I^{\gamma}_{0^{+}}D^{\gamma}_{0^{+}}f(t)=f(t)-\frac{I^{1-\gamma}_{0^{+}}f (0^{+})}{\Gamma(\gamma)}t^{\gamma-1}, t\in J. \end{align*}
Lemma 4. [5] For \(t > a\), we have
Lemma 5. Let \(\alpha > 0\) and \(0 \leq \beta \leq 1\). Then the homogeneous differential equation with Hilfer fractional order
Notation 1. For a given set \(V\) of functions \(v : J\rightarrow E\), let us denote by \[V (t) = \{v(t) : v \in V \}, t \in J,\] and \[V (J ) = \{v(t) : v \in V, t \in J \}.\]
Definition 7. A map \(f : J \times E\rightarrow E\) is said to be Caratheodory if
Definition 8. ([16,19]). Let \(E\) be a Banach space and \(\Omega_{E}\) the bounded subsets of \(E\). The Kuratowski measure of noncompactness is the map \(\mu : \Omega_{E} \rightarrow [0, \infty]\) defined by \begin{equation} \mu(B) = \inf \{\epsilon> 0 : B \subseteq \cup^{n}_{i=1}B_{i} and diam(B_{i}) \leq \epsilon \}; here B \in \Omega_{E}. \end{equation} This measure of noncompactness satisfies following important properties [16,19]:
Theorem 1. ([15,22]). Let \(D\) be a bounded, closed and convex subset of a Banach space such that \(0\in D\), and let \(N\) be a continuous mapping of \(D\) into itself. If the implication
Lemma 6. ([22]). Let \(D\) be a bounded, closed and convex subset of the Banach space \(C(J,E)\), \(“G”\) a continuous function on \(J\times J\) and \(“f”\) a function from \(J\times E\longrightarrow E\) which satisfies the Caratheodory conditions, and suppose there exists \(p\in L^{1}(J,\mathbb{R^{+}})\) such that, for each \(t\in J\). Then for each bounded set \(B \subset E\), we have \begin{equation} \lim_{h\rightarrow 0^{+}}\mu(f(J_{t,h}\times B)) \leq p(t)\mu(B); here J_{t,h}=[t-h,t] \cap J. \end{equation} If \(V\) is an equicontinuous subset of \(D\), then \[\mu\left(\left\{\int_{J}G(s, t)f(s,y(s))ds : y \in V\right\}\right) \leq\int_{J}\|G(t, s)\|p(s)\mu(V(s))ds.\]
Definition 9. A function \(y \in C_{1-\gamma}(J,E)\) is said to be a solution of the Problem (1) if \(y\) satisfies the equation \(D^{\alpha,\beta}_{0^{+}}y(t)=f(t,y(t))\) on \(J\), and the conditions \( a_{1}I^{1-\gamma}y(0)+b_{1}I^{1-\gamma+q_{1}}y(\eta_{1})=\lambda_{1}\) and \(a_{2}I^{1-\gamma}y(T)+b_{2}I^{1-\gamma+q_{2}}y(\eta_{2})=\lambda_{2}\) .
Lemma 7. Let \(f : J \times E\times E\times E\rightarrow E\) be a function such that \(f \in C_{1-\gamma}(J,E)\) for any \(y \in C_{1-\gamma}(J,E)\). Then the unique solution of the linear Hilfer fractional boundary value problem
Proof. Assume \(y\) satisfies (12), then Lemma 5 implies that
In order to present and prove our main results, we consider the following theorem:
Theorem 2. Assume that the following conditions hold:
and
\( K=\frac{T^{2\beta-1}(|w_{1}\lambda_{2}|+|w_{3}\lambda_{1}|)+(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)}{|w|}. \)Now, we shall prove the following theorem concerning the existence of solutions of (1). Let \(p^{*}=\sup_{t\in J}p(t).\)
Theorem 3. Assume that the hypotheses (H1)-(H3) hold. If
Proof. Transform the Problem (1) into a fixed point problem. Consider the operator \(\aleph:C_{1-\gamma}(J,E)\rightarrow C_{1-\gamma}(J,E)\) defined by
Take
\[D=\left\{ y\in C_{1-\gamma}(J,E) : \|y\|\leq R \right\},\] where \(R\) satisfies inequality (16). Notice that the subset \(D\) is closed, convex, and equicontinuous. We shall show that the operator \(\aleph\) satisfies all the assumptions of Mönch’s fixed point theorem. The proof will be given in three steps.Step 1. \(\aleph\) is continuous.
Let \({y_{n}}\) be a sequence such that \(y_{n} \rightarrow y\) in \(C_{1-\gamma}(J, E )\). Then for each \(t \in J\) ,
\begin{align*} & \|t^{1-\gamma}(\aleph(y_{n})(t)-\aleph(y)(t))\|\leq \frac{t^{1-\gamma}}{\Gamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha-1}\|f(s,y_{n}(s))-f(s, y (s))\|ds\\ &+\frac{|b_{1}|(|w_{3}|t^{2\beta-1}+|w_{4}|)}{|w|\Gamma(\alpha-\gamma+q_{1}+1)}\int_{0}^{\eta_{1}}(\eta_{1}-s)^{\alpha-\gamma+q_{1}}\|f(s,y_{n}(s))-f(s, y (s))\|ds \\ &+\frac{|a_{2}|(|w_{2}|+|w_{1}|t^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+1)}\int_{0}^{T}(T-s)^{\alpha-\gamma}\|f(s,y_{n}(s))-f(s, y (s))\|ds\\ &+\frac{|b_{2}|(|w_{2}|+|w_{1}|t^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+q_{2}+1)}\int_{0}^{\eta_{2}}(\eta_{2}-s)^{\alpha-\gamma+q_{2}}\|f(s,y_{n}(s))-f(s,y(s))\|ds\\ &\leq \left\{\frac{T^{\alpha-\gamma+1}}{\Gamma(\alpha+1)} +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|\Gamma(\alpha-\gamma+q_{1}+2)}\eta_{1}^{\alpha-\gamma+q_{1}+1} +\frac{|a_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+2)}T^{\alpha-\gamma+1}\right.\\ &\left.+\frac{|b_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+q_{2}+2)}\eta_{2}^{\alpha-\gamma+q_{2}+1}\right\}\|f(s,y_{n}(s))-f(s,y(s))\|. \end{align*} Since \(f\) is of Caratheodory type, then by the Lebesgue dominated convergence theorem, we have \[\|\aleph(y_{n})-\aleph(y)\|_{\infty}\rightarrow 0\;\;\; \text{as}\;\;\;n \rightarrow \infty.\]Step 2. We show that \(\aleph\) maps \(D\) into \(D\).
Take \(y \in D\), \(t \in J\) and assume that \(\aleph y(t)\neq0\).,
\begin{align*} &\|t^{1-\gamma}(\aleph y)(t)\|\leq t^{1-\gamma}\left[I^{\alpha}f(s,y(s))(t) +\frac{(|w_{3}|t^{\gamma+2\beta-2}+|w_{4}|t^{\gamma-1})}{|w|}|b_{1}|I^{\alpha-\gamma+q_{1}+1}f(s,y(s))(\eta_{1})\right.\\ &+\frac{(|w_{2}|t^{\gamma-1}+|w_{1}|t^{\gamma+2\beta-2})}{|w|}\left(|a_{2}|I^{\alpha-\gamma+1}f(s,y(s))(T)+|b_{2}|I^{\alpha-\gamma+q_{2}+1}f(s,y(s))(\eta_{2})\right)\\ &\left.+\frac{t^{\gamma-1}}{|w|}(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)+\frac{t^{\gamma+2\beta-2}}{|w|}(|w_{1}\lambda_{2}|+|w_{3}\lambda_{1}|)\right]\\ &\leq \left[t^{1-\gamma}I^{\alpha}|f(s,y(s))(t)| +\frac{|b_{1}|(|w_{3}|t^{2\beta-1}+|w_{4}|)}{|w|}I^{\alpha-\gamma+q_{1}+1}|f(s,y(s))(\eta_{1})|\right.\\ &+\frac{(|w_{2}|+|w_{1}|t^{2\beta-1})}{|w|}\left(|a_{2}|I^{\alpha-\gamma+1}|f(s,y(s))(T)| +|b_{2}|I^{\alpha-\gamma+q_{2}+1}|f(s,y(s))(\eta_{2})|\right)\\ &\left.+\frac{(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)}{|w|}+\frac{t^{2\beta-1}}{|w|}(|w_{1}\lambda_{2}|+|w_{3}\lambda_{1}|)\right]\\ &\leq \left[T^{1-\gamma}I^{\alpha}\|y\|p(s)(T) +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|}I^{\alpha-\gamma+q_{1}+1}\|y\|p(s)(\eta_{1})\right.\\ &\left.+\frac{(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|}\left(|a_{2}|I^{\alpha-\gamma+1}p(s)(T) +|b_{2}|I^{\alpha-\gamma+q_{2}+1}\|y\|p(s)(\eta_{2})\right)\right]\\ &+\frac{T^{2\beta-1}(|w_{1}\lambda_{2}|+|w_{3}\lambda_{1}|)+(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)}{|w|}\\ &\leq p^{*}R\left[\frac{T^{\alpha-\gamma+1}}{\Gamma(\alpha+1)} +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|\Gamma(\alpha-\gamma+q_{1}+2)}\eta_{1}^{\alpha-\gamma+q_{1}+1} +\frac{|a_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+2)}T^{\alpha-\gamma+1}\right.\\ &\left.+\frac{|b_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+q_{2}+2)}\eta_{2}^{\alpha-\gamma+q_{2}+1} \right]+\frac{T^{2\beta-1}(|w_{1}\lambda_{2}-w_{3}\lambda_{1}|)+(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)}{|w|}\\ &=p^{*}R L +\frac{T^{2\beta-1}(|w_{1}\lambda_{2}|+|w_{3}\lambda_{1}|)+(|w_{4}\lambda_{1}|+|w_{2}\lambda_{2}|)}{|w|}\leq R. \end{align*} Next, we show that \(\aleph(D)\) is equicontinuous. By Step 2, it is obvious that \(\aleph(D)\subset C_{1-\gamma}(J, E )\) is bounded. For the equicontinuity of \(\aleph(D)\), let \(t_{1}, t_{2}\in J\) , \(t_{1}< t_{2}\) and \(y\in D\), so \(t_{2}^{1-\gamma}\aleph y(t_{2})-t_{1}^{1-\gamma}\aleph y(t_{1})\neq0\). Hence, \begin{align*} & \|t_{2}^{1-\gamma}\aleph y(t_{2})-t_{1}^{1-\gamma}\aleph y(t_{1})\|\leq I^{\alpha}(t_{2}^{1-\gamma}f(s,x(s))(t_{2})-t_{1}^{1-\gamma}f(s,x(s))(t_{1})\\ &+\frac{|b_{1}w_{3}|(t_{2}^{2\beta-1}-t_{1}^{2\beta-1})}{|w|}I^{\alpha-\gamma+q_{1}+1}f(s,y(s))(\eta_{1})+|w_{1}|\frac{(t_{1}^{2\beta-1}-|t_{2}^{2\beta-1})}{|w|}\left(|a_{2}|I^{\alpha-\gamma+1}f(s,y(s))(T)\right.\\ &\left.+|b_{2}|I^{\alpha-\gamma+q_{2}+1}f(s,y(s))(\eta_{2})\right) +\frac{t_{2}^{2\beta-1}-t_{1}^{2\beta-1}}{|w|}(|w_{1}\lambda_{2}-w_{3}\lambda_{1}|)\\ &\leq\frac{p^{*}R}{\Gamma(\alpha)}\left[t_{2}^{1-\gamma}\int_{0}^{t_{1}}(t_{2}-s)^{\alpha-1}ds -t_{1}^{1-\gamma}\int_{0}^{t_{1}}(t_{1}-s)^{\alpha-1}ds\right.\left.+t_{2}^{1-\gamma}\int_{t_{1}}^{t_{2}}(t_{2}-s)^{\alpha-1}ds\right]\\ &+p^{*}R\left[\frac{|w_{3}b_{1}|(t_{2}^{2\beta-1}-t_{1}^{2\beta-1})}{|w|}I^{\alpha-\gamma+q_{1}+1}(1)(\eta_{1})\right.\\ &\left.+\frac{|w_{1}|(t_{1}^{2\beta-1}-t_{2}^{2\beta-1})}{|w|}\left(|a_{2}|I^{\alpha-\gamma+1}(1)(T) +|b_{2}|I^{\alpha-\gamma+q_{2}+1}(1)(\eta_{2})\right)\right] +\frac{t_{2}^{2\beta-1}-t_{1}^{2\beta-1}}{|w|}(|w_{1}\lambda_{2}-w_{3}\lambda_{1}|)\\ &\leq p^{*}R\left[\frac{(t_{2}^{\alpha-\gamma+1}-t_{1}^{\alpha-\gamma+1})}{\Gamma(\alpha+1)} +\frac{|b_{1}w_{3}|(t_{2}^{2\beta-1}-t_{1}^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+q_{1}+2)}\eta_{1}^{\alpha-\gamma+q_{1}+1}\right.\\ &\left.+\frac{|w_{1}|(t_{1}^{2\beta-1}-t_{2}^{2\beta-1})}{|w|}\left(\frac{|a_{2}|T^{\alpha-\gamma+1}}{\Gamma(\alpha-\gamma+2)} +\frac{|b_{2}|\eta_{2}^{\alpha-\gamma+q_{2}+1}}{\Gamma(\alpha-\gamma+q_{2}+2)}\right)\right]+\frac{t_{2}^{2\beta-1}-t_{1}^{2\beta-1}}{|w|}(|w_{1}\lambda_{2}-w_{3}\lambda_{1}|). \end{align*} As \(t_{1}\rightarrow t_{2}\), the right hand side of the above inequality tends to zero. Hence \(\aleph(D)\subset D\).Step 3. The implication (9) holds.
Now let \(V\) be a bounded and equicontinuous subset of \(D\). Hence \(t\mapsto v(t)=\mu(V(t))\) is continuous on \(J\) such that \(V\subset \overline{conv}({0}\cup \aleph(V))\). Clearly, \(V(t)\subset \overline{conv}(\{0\}\cup \aleph(V))\) for all \(t\in J\) . Hence \(\aleph V(t)\subset \aleph D(t)\), \(t\in J\) is bounded in \(E\) . By assumption (H3), and the properties of measure \(\mu\) , we have, for each \(t\in J\),
\begin{align*} t^{1-\gamma}v(t)&\leq \mu(t^{1-\gamma}N(V)(t)\cup \{0\})) \leq \mu(t^{1-\gamma}(NV)(t))\\ &\leq \mu\left\{t^{1-\gamma}\left[I^{\alpha}f(t,V(t))+\frac{(w_{3}t^{\gamma+2\beta-2}-w_{4}t^{\gamma-1})}{w}b_{1}I^{\alpha-\gamma+q_{1}+1}f(s,V(s))(\eta_{1}) +\frac{t^{\gamma-1}}{w}(w_{4}\lambda_{1}-w_{2}\lambda_{2})\right.\right.\\ &\;\;+\frac{a_{2}(w_{2}t^{\gamma-1}-w_{1}t^{\gamma+2\beta-2})}{w}I^{\alpha-\gamma+1}f(s,V(s))(T) +\frac{b_{2}(w_{2}t^{\gamma-1}-w_{1}t^{\gamma+2\beta-2})}{w}I^{\alpha-\gamma+q_{2}+1}f(s,V(s))(\eta_{2})\\ &\;\;\left.\left.+\frac{t^{\gamma+2\beta-2}}{w}(w_{1}\lambda_{2}-w_{3}\lambda_{1})\right]\right\}\\ &\leq t^{1-\gamma}I^{\alpha}\mu\left(f(s,V(s))\right)(t) +\frac{|b_{1}|(|w_{3}|t^{2\beta-1}+|w_{4}|)}{|w|}I^{\alpha-\gamma+q_{1}+1}\mu\left(f(s,V(s))\right)(\eta_{1})\\ &\;\;+\frac{|a_{2}|(|w_{2}|+|w_{1}|t^{2\beta-1})}{|w|}I^{\alpha-\gamma+1}\mu\left(f(s,V(s))\right)(T) +\frac{|b_{2}|(|w_{2}|+|w_{1}|t^{2\beta-1})}{|w|}I^{\alpha-\gamma+q_{2}+1}\mu\left(f(s,V(s))\right)(\eta_{2})\\ &\leq t^{1-\gamma}I^{\alpha}\left(p(s)v(s)\right)(t) +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|}I^{\alpha-\gamma+q_{1}+1}\left(p(s)v(s)\right)(\eta_{1})\\ &\;\;+\frac{|a_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|}I^{\alpha-\gamma+1}\left(p(s)v(s)\right)(T) +\frac{|b_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|}I^{\alpha-\gamma+q_{2}+1}\left(p(s)v(s)\right)(\eta_{2})\\ &\leq p^{*}\|v\|_{\infty}\left[T^{1-\gamma}I^{\alpha}\left(1\right)(T) +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|}I^{\alpha-\gamma+q_{1}+1}\left(1\right)(\eta_{1})\right.\\ &\;\;\left.+\frac{|a_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|}I^{\alpha-\gamma+1}\left(1\right)(T) +\frac{|b_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|}I^{\alpha-\gamma+q_{2}+1}\left(1\right)(\eta_{2})\right]\\ &\leq p^{*}\|v\|_{\infty}\left[\frac{T^{\alpha-\gamma+1}}{\Gamma(\alpha+1)} +\frac{|b_{1}|(|w_{3}|T^{2\beta-1}+|w_{4}|)}{|w|\Gamma(\alpha-\gamma+q_{1}+2)}\eta_{1}^{\alpha-\gamma+q_{1}+1} +\frac{|a_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+2)}T^{\alpha-\gamma+1}\right.\\ &\;\;\left.+\frac{|b_{2}|(|w_{2}|+|w_{1}|T^{2\beta-1})}{|w|\Gamma(\alpha-\gamma+q_{2}+2)}\eta_{2}^{\alpha-\gamma+q_{2}+1}\right]\\ &= p^{*}\|v\|_{\infty} L. \end{align*} which gives \( \|v\|_{\infty} (1-p^{*} L)\leq 0. \) From (17), we get \(\|v\|=0\), that is, \(v(t)=\mu(V(t))=0\), for each \(t\in J\). Then \(V\) is relatively compact in \(E\). In view of the Ascoli-Arzela theorem, \(V\) is relatively compact in \(D\). Applying now Theorem 1, we conclude that \(\aleph\) has a fixed point which is a solution of (1).Example 1. Let us consider the following Hilfer fractional boundary value problem;
Let \(E=l^{1}=\{ x = (x_{1}, x_{2}, …, x_{n}, …) :\sum_{n=1}^{\infty}|x_{n}| \frac{K}{1-Lp^{*}},\) so \(R>\frac{10053}{2000}\). Consequently, Theorem 3 implies that Problem (19) has a solution defined on \(J\).
In case we choose \(a_{1}=a_{2}=T=\beta=1\), \(b_{1}=b_{2}=-1\) and \(\lambda_{1}=\lambda_{2}=0\) the Problem (1) reduces to the case considered in [26] in the scalar case using the standard tools of fixed point theory and Leray-Schauder nonlinear alternative. Here we extend the results of [26] to cover the abstract case. We remark the cases when considered in conclusion in [26] also exist here.