1. Introduction
The study differential equations arise in variety of different areas of
applied mathematics, physics and many applications of engineering
and sciences. For example, the deformations of an elastic beam are
described by a differential equation, often referred as the beam
equation, see [1, 2, 3] and references therein for more
details. Wuest [4] derived a model for beams and pipes that leads to a
sixth-order differential equation.
Many authors studied the existence of positive solutions for
sixth-order boundary value problem using different methods, for example,
minimization theorem, global bifurcation theorem, operator spectral
theorem and fixed point theorem in cone, see [5, 6, 7, 8, 9, 10] and the references therein.
Also, in papers [11, 12, 13, 14, 15] the authors proved the
existence of solutions for higher-order (\(2m\)-th-order) \(m\)-point
boundary value problem
\begin{gather*}
u^{(2m)}(t)
=f(t,u(t),u^{‘}(t),….,u^{(2m-2)}(t),u^{(2m-1)}(t)),\quad\text
0\leq t\leq 1,
\\
u^{(2i)}(0)=u^{(2i)}(1)=0.\quad \quad 0\leq i \leq m-1,
\end{gather*}
where \((-1)^{n}f:(0,1)\times\mathbb{R}^{n}\rightarrow [0,\infty).\)
Recently in 2016, Mirzei [16]studied the existence and
nonexistence of positive solution for sixth-order boundary value
problems (SBVP):
\begin{gather*}
-u^{(6)}(t)=\lambda f(t,u(t)),\quad\text 0< t< 1. \\
u(0)=u^{'}(0)=u^{''}(0)=0,\quad u(1)=u^{'}(1)=u^{''}(1)=0,
\end{gather*}
where \(\lambda\) is a parameter, \(f:[0,1]\times[0,\infty)\rightarrow
[0,\infty)\). The method used is the fixed point theorem in cones.
The aim of this paper is to establish
some sufficient conditions for the existence of positive solutions
for boundary value problem of sixth-order elastic beam equation
(SBVP):
\begin{equation}
-u^{(6)}(t)=q(t)f(t,u(t),u^{‘}(t),u^{”}(t),u^{”’}(t),u^{(4)}(t),u^{(5)}(t)),\quad\text 0< t< 1.
\end{equation}
(1)
\begin{equation}
u(0)=u^{‘}(1)=u^{”}(0)=u^{”’}(1)=u^{(4)}(0)=u^{(5)}(1)=0,
\end{equation}
(2)
where \(q:[0,1]\rightarrow [0,\infty)\),
\(f:[0,1]\times[0,\infty)\times[0,\infty)\times(-\infty,0]\times(-\infty,0]\times[0,\infty)\times[0,\infty)\rightarrow[0,\infty)\),
are continuous.
This article is organized as follows. In Section 2, we present
some definitions that will be used to prove the main results. In
Section 3, we prove our main results which consists of
existence theorems for positive solution of the BVP (1-2)
without imposing any nonnegativity condition on \(f\). Also, we
establish some existence criteria of at least one positive solution
by using the Leray-Schauder nonlinear alternative and Leray-Schauder
fixed point theorem. Finally, in Section 4, as an application, we
give an example to illustrate the results we obtained.
2. Preliminaries
In this section, we present some definitions, Leray-Schauder
nonlinear alternative and Leray-Schauder fixed point theorem.
Definition 1.
Let \(E\) be a real Banach space. A nonempty
closed convex set \(P\subset E\) is called a cone of \(E\) if it
satisfies the following two conditions:
\((1)\quad x\in P, \lambda>0\) implies \(\lambda x\in P,\)
\((2)\quad x\in P, -x\in P\) implies \(x=0\).
Definition 2.
An operator is called completely continuous
if it is continuous and maps bounded sets into precompact
sets.
Definition 3.
Suppose \(P\) is a cone
in a Banach space \(E\). The map \(\alpha\) is a nonnegative continuous
concave functional on \(P\) provided \(\alpha: P\rightarrow [0,\infty)\)
is continuous and $$\alpha(rx+(1-r)y)\geq
r\alpha(x)+(1-r)\alpha(y)$$ for all \(x,y\in P\) and \(r\in [0,1]\).
Similarly, a map \(\beta\) is nonnegative continuous convex
functional on \(P\) provided \(\beta: P\rightarrow [0,\infty)\) is
continuous and $$\beta(rx+(1-r)y)\leq r\beta(x)+(1-r)\beta(y)$$ for
all \(x,y\in P\) and \(r\in [0,1]\).
We shall use the well-known Leray-Schauder fixed point theorem and
Leray-Schauder nonlinear alternative to search for positive solution
of the problem (1-2).
Theorem 1. [17, 18]
Let \(E\) be Banach space and
\(\Omega\) be a bounded open subset of \(E\), \(0\in\Omega\).
Let \(T:\overline{\Omega}\rightarrow E\) be a completely continuous
operator. Then, either
\((i)\) there exists \(u\in \partial \Omega\) and \(\lambda>1\) such that
\(T(u)=\lambda u\), or
\((ii)\) there exists a fixed point \(u^{\ast}\in \overline{\Omega}\).
3. Mains results
In this section, we shall impose growth conditions on \(f\), which
allow us to apply Leray-Schauder nonlinear alternative, and
Leray-Schauder fixed point theorem to establish the existence of at
least one positive solution to the SBVP (1-2), and we assume
that \(q(t)\equiv1.\)
Lemma 1. Let \(E=\{u\in C^{5}([0,1]):u(0)=u^{‘}(1)=u^{”}(0)=u^{”’}(1)=u^{(4)}(0)=0\}\) be the Banach
space equipped with the maximum norm
$$\|u\|=\max\{|u|_{0},|u^{‘}|_{0},|u^{”}|_{0},|u^{”’}|_{0},|u^{(4)}|_{0},|u^{(5)}|_{0}\},$$ where \(|u|_{0}=\max_{0\leq t\leq1}|u(t)|\). Then for any \(u\in E\), we
have
$$\|u\|=|u^{(5)}|_{0}~and~|u|_{0}\leq \frac{2}{15}\|u\|,~|u^{‘}|_{0}\leq\frac{5}{24}\|u\|,~|u^{”}|_{0}\leq\frac{1}{3}\|u\|,~|u^{”’}|_{0}\leq\frac{1}{2}\|u\|,
~|u^{(4)}|_{0}\leq\|u\|.$$
Proof. Let \(G(t,s)\) be the Green’s function of fifth-order homogeneous boundary value problem
$$u^{(5)}(t)=0,\quad 0 < t< 1,$$
with \(u(0)=u^{'}(1)=u^{''}(0)=u^{'''}(1)=u^{(4)}(0)=0.\) Then
\begin{equation}\label{zakri}
G(t,s) =\frac{1}{24}\left\{
\begin{array}{ll}
(t^{4}+s^{4})+[6s^{2}t-12s^{2}+4(2-t^{2})]s, & 0\leq s\leq t\leq
1,\\
~~~~\\
[4s^{3}+4t^{2}s-12s^{2}+4(2-t^{2})]t, & 0\leq t\leq s\leq 1.
\end{array}\right.
\end{equation}
(3)
By (3), it is easy to see that
\begin{equation}\label{eq4}
G(t,s)\geq0,~\frac{\partial G(t,s)}{\partial
t}\geq0,~\frac{\partial^{2}G(t,s)}{\partial
t^{2}}\leq0,~\frac{\partial^{3}G(t,s)}{\partial
t^{3}}\leq0,~\frac{\partial^{4}G(t,s)}{\partial t^{4}}\geq0,
\end{equation}
(4)
and
\begin{eqnarray*}\int_{0}^{1}|G(t,s)|ds&=&\int_{0}^{1}G(t,s)ds=\frac{1}{120}t^{5}-\frac{1}{12}t^{3}+\frac{5}{24}t,\\
\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}|ds&=&\int_{0}^{1}\frac{\partial G(t,s)}{\partial t}ds=\frac{1}{24}t^{4}-\frac{1}{4}t^{2}+\frac{5}{24},\\
\int_{0}^{1}|\frac{\partial^{2}G(t,s)}{\partial t^{2}}|ds&=&-\int_{0}^{1}\frac{\partial^{2}G(t,s)}{\partial t^{2}}ds=-\frac{1}{6}t^{3}+\frac{1}{2}t,\\
\int_{0}^{1}|\frac{\partial^{3}G(t,s)}{\partial t^{3}}|ds&=&-\int_{0}^{1}\frac{\partial^{3}G(t,s)}{\partial t^{3}}ds=-\frac{1}{2}t^{2}+\frac{1}{2},\\
\int_{0}^{1}|\frac{\partial^{4}G(t,s)}{\partial t^{4}}|ds&=&\int_{0}^{1}\frac{\partial^{4}G(t,s)}{\partial t^{4}}ds=t.\end{eqnarray*}
From which we get
\begin{eqnarray*}\max_{0\leq t\leq1}\int_{0}^{1}|G(t,s)|ds&=&\frac{2}{15},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}|ds&=&\frac{5}{24},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{2}G(t,s)}{\partial t^{2}}|ds&=&\frac{1}{3},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{3}G(t,s)}{\partial t^{3}}|ds&=&\frac{1}{2},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{4}G(t,s)}{\partial t^{4}}|ds&=&1.\end{eqnarray*}
Let \(u\in E\) and \(\|u\|=r\). Then
\begin{eqnarray*}u(t)&=&\int_{0}^{1}G(t,s)[u^{(5)}(s)]ds,\\
u^{‘}(t)&=&\int_{0}^{1}\frac{\partial G(t,s)}{\partial t}[u^{(5)}(s)]ds,\\
u^{”}(t)&=&\int_{0}^{1}\frac{\partial^{2}G(t,s)}{\partial t^{2}}[u^{(5)}(s)]ds,\\
u^{”’}(t)&=&\int_{0}^{1}\frac{\partial^{3}G(t,s)}{\partial t^{3}}[u^{(5)}(s)]ds,\\
u^{(4)}(t)&=&\int_{0}^{1}\frac{\partial^{4}G(t,s)}{\partial t^{4}}[u^{(5)}(s)]ds.\end{eqnarray*}
Thus
\begin{eqnarray*}|u|_{0}&\leq& \max_{0\leq t\leq1}\int_{0}^{1}|G(t,s)||u^{(5)}(s)|ds\leq |u^{(5)}|_{0}\max_{0\leq t\leq1}\int_{0}^{1}|G(t,s)|ds=\frac{2}{15}|u^{(5)}|_{0},\\
|u^{‘}|_{0}&\leq& \max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}||u^{(5)}(s)|ds\leq |u^{(5)}|_{0}\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}|ds=\frac{5}{24}|u^{(5)}|_{0},\\
|u^{”}|_{0}&\leq& \max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{2} G(t,s)}{\partial t^{2}}||u^{(5)}(s)|ds\leq |u^{(5)}|_{0}\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{2} G(t,s)}{\partial t^{2}}|ds=\frac{1}{3}|u^{(5)}|_{0},\\
|u^{”’}|_{0}&\leq& \max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{3} G(t,s)}{\partial t^{3}}||u^{(5)}(s)|ds\leq |u^{(5)}|_{0}\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{3} G(t,s)}{\partial t^{3}}|ds=\frac{1}{2}|u^{(5)}|_{0},\\
|u^{(4)}|_{0}&\leq& \max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{4} G(t,s)}{\partial t^{4}}||u^{(5)}(s)|ds\leq |u^{(5)}|_{0}\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{4} G(t,s)}{\partial t^{4}}|ds=|u^{(5)}|_{0}.\end{eqnarray*}
So, \(|u^{(5)}|_{0}=\|u\|=r\) and the proof is completed.
Theorem 2.
Suppose that \(f\in C([0,1]\times[0,\infty)\times[0,\infty)\times(-\infty,0]\times(-\infty,0]\times[0,\infty)\times[0,\infty),[0,\infty))\)
and \(f(t,0,0,0,0,0,0)\neq0,~t\in[0,1]\). Suppose there exist
nonnegative functions \(a_{i}\in L^{1}[0,1],~i=0,1,2,3,4,5,6,\) such
that
\begin{equation}\label{eq5}
B=\frac{2}{15}\int_{0}^{1}a_{0}(s)ds+\frac{5}{24}\int_{0}^{1}a_{1}(s)ds+\frac{1}{3}\int_{0}^{1}a_{2}(s)ds+\frac{1}{2}\int_{0}^{1}a_{3}(s)ds+\int_{0}^{1}a_{4}(s)ds+\int_{0}^{1}a_{5}(s)ds< 1,
\end{equation}
(5)
and for any
\((t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})\in[0,1]\times[0,\frac{2}{15}\rho]\times[0,\frac{5}{24}\rho]\times[-\frac{1}{3}\rho,0]\times[-\frac{1}{2}\rho,0]\times[0,\rho]\times[0,\rho],\)
\(f\) satisfies
\begin{equation}\label{eq6}
f(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})\leq
a_{0}(t)u_{0}+a_{1}(t)u_{1}-a_{2}(t)u_{2}-a_{3}(t)u_{3}+a_{4}(t)u_{4}+a_{5}(t)u_{5}+a_{6}(t),
\end{equation}
(6)
where \(\rho=A(1-B)^{-1}\), \(A=\int_{0}^{1}a_{6}(s)ds\). Then problem
(1-2) has at least one positive solution \(u^{\ast}\in
C^{6}([0,1])\) such that
\(\frac{15}{2}\max_{0\leq t\leq1} u^{\ast}(t)\leq\frac{24}{5}\max_{0\leq t\leq1} (u^{\ast})^{‘}(t)\leq 3\max_{0\leq t\leq1}[-(u^{\ast})^{”}(t)]\leq 2\max_{0\leq t\leq1}[-(u^{\ast})^{”’}(t)]\leq \max_{0\leq t\leq1}(u^{\ast})^{(4)}(t)\leq \max_{0\leq t\leq1}(u^{\ast})^{(5)}(t)\leq\rho.\)
Proof. Since \(f(t,0,0,0,0,0,0)\neq0\) and \(|f(t,0,0,0,0,0,0)|\leq a_{6}(t),~t\in[0,1]\), we have \(A=\int_{0}^{1}a_{6}(s)ds>0\), so, it follows from (5) that
\(\rho>0\). From Equation (1) and boundary condition \(u^{(5)}(1)=0\),
we have
$$u^{(5)}(t)=\int_{t}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau),u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau,$$
which implies that
$$u(t)=\int_{0}^{1}G(t,s)\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau),u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau ds,~t\in[0,1],$$
where \(G(t,s)\) is defined by (3). Let \(\Omega_{\rho}=\{u\in E,
\|u\|< \rho\}\), then \(\Omega_{\rho}\) is a bounded closed convex set
of \(E\) and \(0\in \Omega_{\rho}\). For \(u\in \Omega_{\rho}\), define
the operator \(T\) by
\begin{equation}\label{eq7}
(Tu)(t)=\int_{0}^{1}G(t,s)\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau),u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau
ds.
\end{equation}
(7)
Then
\begin{eqnarray*}(Tu)^{‘}(t)&=&\int_{0}^{1}\frac{\partial G(t,s)}{\partial t}\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau), u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau ds,\\
(Tu)^{”}(t)&=&\int_{0}^{1}\frac{\partial^{2}G(t,s)}{\partial t^{2}}\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau), u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau ds\\
(Tu)^{”’}(t)&=&\int_{0}^{1}\frac{\partial^{3}G(t,s)}{\partial t^{3}}\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau), u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau ds,\\
(Tu)^{(4)}(t)&=&\int_{0}^{1}\frac{\partial^{4}G(t,s)}{\partial t^{4}}\int_{s}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau), u^{”’}(\tau),u^{(4)}(\tau),u^{(5)}(\tau))d\tau ds,\\
(Tu)^{(5)}(t)&=&\int_{t}^{1}f(\tau,u(\tau),u^{‘}(\tau),u^{”}(\tau),u^{”’}(\tau),u^{(4)}(\tau), u^{(5)}(\tau))d\tau,\quad t\in[0,1].\end{eqnarray*}
So,
\((Tu)(0)=(Tu)^{‘}(1)=(Tu)^{”}(0)=(Tu)^{”’}(1)=(Tu)^{(4)}(0)=(Tu)^{(5)}(1)=0\).
Therefore, \(T:\Omega_{\rho}\rightarrow E\). By Ascoli-Arzela Theorem,
it is easy to know that this operator \(T:\Omega_{\rho}\rightarrow E\)
is a completely continuous operator. So, the problem (1-2) has a
solution \(u=u(t)\) if and only if \(u\) solves the operator equation
\(Tu=u.\)
Suppose there exists \(u\in \partial \Omega_{\rho}\), \(\lambda>1\) such
that \(Tu=\lambda u\). Noticing that \(\|u\|=\rho\), it follows from
Lemma 1 that
$$|u|_{0}\leq \frac{2}{15}\rho,~~|u^{‘}|_{0}\leq\frac{5}{24}\rho,~~|u^{”}|_{0}\leq\frac{1}{3}\rho,~~|u^{”’}|_{0}\leq\frac{1}{2}\rho,~~|u^{(4)}|_{0}\leq\rho,~~|u^{(5)}|_{0}=\rho.$$
Thus from (5), (6) and (7), we have
\begin{eqnarray*}
\lambda\rho&=&\lambda\|u\|=\|Tu\|=\max_{0\leq t\leq1}|u^{(5)}(t)|\\
&=&\max_{0\leq t\leq1}\left|\int_{t}^{1}f(s,u(s),u^{‘}(s),u^{”}(s),u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds\right|\\
&=&\max_{0\leq t\leq1}\int_{t}^{1}f(s,u(s),u^{‘}(s),u^{”}(s),u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds\\
&=&\int_{0}^{1}f(s,u(s),u^{‘}(s),u^{”}(s),u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds\\
&\leq&\int_{0}^{1}\left[a_{0}(s)u(s)+a_{1}(s)u^{‘}(s)-a_{2}(s)u^{”}(s)-a_{3}(s)u^{”’}(s)+a_{4}(s)u^{(4)}(s)+a_{5}(s)u^{(5)}(s)+a_{6}(s)\right]ds\\
&\leq&\int_{0}^{1}\left[\frac{2}{15}a_{0}(s)\rho+\frac{5}{24}a_{1}(s)\rho+\frac{1}{3}a_{2}(s)\rho+\frac{1}{2}a_{3}(s)\rho+a_{4}(s)\rho+a_{5}(s)\rho+a_{6}(s)\right]ds\\
&=&\left[\frac{2}{15}\int_{0}^{1}a_{0}(s)ds+\frac{5}{24}\int_{0}^{1}a_{1}(s)ds+\frac{1}{3}\int_{0}^{1}a_{2}(s)ds+\frac{1}{2}\int_{0}^{1}a_{3}(s)ds+\int_{0}^{1}a_{4}(s)ds+
\int_{0}^{1}a_{5}(s)ds\right]\rho\\&&+\int_{0}^{1}a_{6}(s)ds\\
&=&B\rho+A=B\rho+(1-B)\rho=\rho,
\end{eqnarray*}
a contradiction. So, by Theorem 1, \(T\) has a fixed point
\(u^{\ast}\in E\), which is a solution of the problem (1-2).
Noticing that \(f(t,0,0,0,0,0,0)\neq0\), we assert that \(u=0\) is not a
solution of the (1-2), therefore, \(|u^{\ast}|_{0}>0\). It follows
from (4) that \(u^{\ast}(t)\) is nondecreasing and concave on
\([0,1]\), thus \(u^{\ast}(t)\geq t|u^{\ast}|_{0}>0\) for \(t\in[0,1]\),
i.e., \(u^{\ast}(t)\) is a positive solution of the problem (1-2).
This completes the proof.
Lemma 1. The Green’s function of the sixth-order homogeneous equation
\(-u^{(6)}(t)=0,~t\in[0,1]\), with boundary conditions (2) is
\begin{equation}\label{eq8}
G(t,s)=\frac{1}{120}\left\{
\begin{array}{ll}
[s^{2}(s^{2}+10t^{2}-20t)+20t(2-t^{2})+5t^{4}]s,~0\leq s\leq t\leq 1,\\
~~~~~\\
[t^{2}(t^{2}+10s^{2}-20s)+20s(2-s^{2})+5s^{4}]t,~0\leq t\leq s\leq 1,
\end{array}\right.
\end{equation}
(8)
and for any \(t,s \in[0,1],\)
\begin{equation} \label{eq9}
G(t,s)\geq0,~\frac{\partial G(t,s)}{\partial
t}\geq0,~\frac{\partial^{2}G(t,s)}{\partial
t^{2}}\leq0,~\frac{\partial^{3}G(t,s)}{\partial
t^{3}}\leq0,~\frac{\partial^{4}G(t,s)}{\partial
t^{4}}\geq0,~\frac{\partial^{5}G(t,s)}{\partial t^{5}}\geq0.
\end{equation}
(9)
Theorem 3.
Assume that \(f\in C([0,1]\times[0,\infty)\times[0,\infty)\times(-\infty,0]\times(-\infty,0]\times[0,\infty)\times[0,\infty),[0,\infty))\)
and \(f(t,0,0,0,0,0,0)\neq0,~~t\in[0,1]\). Suppose that there exists
positive number \(d>0\) such that
\begin{eqnarray}\label{eq10}
&&\max\left\{f(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5}):(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})\in[0,1]\times[0,d]\times\left[0,\frac{96}{61}d\right]\right.\nonumber\\
&&\left.\times\left[-\frac{150}{61}d,0\right]\times\left[-\frac{240}{61}d,0\right]\times\left[0,\frac{360}{61}d\right]\times\left[0,\frac{720}{61}d\right]\right\}\leq\frac{720}{61}d.
\end{eqnarray}
(10)
Then the problem (1-2) has at least one positive solution
\(u^{\ast}\in C^{6}([0,1])\) such that
$$0\leq u^{\ast}(t)\leq d,~0\leq (u^{\ast})^{‘}(t)\leq \frac{96}{61}d,~-\frac{150}{61}d\leq (u^{\ast})^{”}(t)\leq 0,\quad\quad\quad\quad$$
$$-\frac{240}{61}d\leq (u^{\ast})^{”’}(t)\leq 0,~0\leq (u^{\ast})^{(4)}(t)\leq \frac{360}{61}d,~0\leq (u^{\ast})^{(5)}(t)\leq \frac{720}{61}d,~t\in [0,1].$$
Proof. From (8) and after direct computations, we easily get
\begin{eqnarray*}\int_{0}^{1}|G(t,s)|ds&=&\int_{0}^{1}G(t,s)ds=-\frac{1}{720}t^{6}+\frac{1}{120}t^{5}-\frac{1}{18}t^{3}+\frac{2}{15}t,\\
\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}|ds&=&\int_{0}^{1}\frac{\partial G(t,s)}{\partial t}ds=-\frac{1}{120}t^{5}+\frac{1}{24}t^{4}-\frac{1}{6}t^{2}+\frac{2}{15},\\
\int_{0}^{1}|\frac{\partial^{2}G(t,s)}{\partial t^{2}}|ds&=&-\int_{0}^{1}\frac{\partial^{2}G(t,s)}{\partial t^{2}}ds=\frac{1}{24}t^{4}-\frac{1}{6}t^{3}+\frac{1}{3}t,\\
\int_{0}^{1}|\frac{\partial^{3}G(t,s)}{\partial t^{3}}|ds&=&-\int_{0}^{1}\frac{\partial^{3}G(t,s)}{\partial t^{3}}ds=\frac{1}{6}t^{3}-\frac{1}{2}t^{2}+\frac{1}{3},\\
\int_{0}^{1}|\frac{\partial^{4}G(t,s)}{\partial t^{4}}|ds&=&\int_{0}^{1}\frac{\partial^{4}G(t,s)}{\partial t^{4}}ds=-\frac{1}{2}t^{2}+t,\\
\int_{0}^{1}|\frac{\partial^{5}G(t,s)}{\partial t^{5}}|ds&=&\int_{0}^{1}\frac{\partial^{5}G(t,s)}{\partial t^{5}}ds=1-t.\end{eqnarray*}
So,
\begin{eqnarray*}\max_{0\leq t\leq1}\int_{0}^{1}|G(t,s)|ds&=&\frac{61}{720},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial G(t,s)}{\partial t}|ds&=&\frac{2}{15},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{2}G(t,s)}{\partial t^{2}}|ds&=&\frac{5}{24},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{3}G(t,s)}{\partial t^{3}}|ds&=&\frac{1}{3},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{4}G(t,s)}{\partial t^{4}}|ds&=&\frac{1}{2},\\
\max_{0\leq t\leq1}\int_{0}^{1}|\frac{\partial^{5}G(t,s)}{\partial t^{5}}|ds&=&1.\end{eqnarray*}
Now, we consider
the Banach space \(E=C^{5}([0,1])\) equipped with the norm
\begin{equation}\label{eq11}
\|u\|=\max\left\{|u|_{0},~\frac{61}{96}|u^{‘}|_{0},~\frac{61}{150}|u^{”}|_{0},~\frac{61}{240}|u^{”’}|_{0},~\frac{61}{360}|u^{(4)}|_{0},~\frac{61}{720}|u^{(5)}|_{0}\right\},
\end{equation}
(11)
where \(|u|_{0}=\max_{0\leq t\leq1}|u(t)|\), for \(u\in E\) define the
operator \(T\) by
\begin{equation}\label{eq12}
(Tu)(t)=\int_{0}^{1}G(t,s)f(s,u(s),u^{‘}(s),u^{”}(s),u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds.
\end{equation}
(12)
Then
$$(Tu)^{‘}(t)=\int_{0}^{1}\frac{\partial G(t,s)}{\partial t}f(s,u(s),u^{‘}(s),u^{”}(s), u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds,~t\in[0,1],$$
$$(Tu)^{”}(t)=\int_{0}^{1}\frac{\partial^{2}G(t,s)}{\partial t^{2}}f(s,u(s),u^{‘}(s),u^{”}(s), u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds,~t\in[0,1],$$
$$(Tu)^{”’}(t)=\int_{0}^{1}\frac{\partial^{3}G(t,s)}{\partial t^{3}}f(s,u(s),u^{‘}(s),u^{”}(s), u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds,~t\in[0,1],$$
$$(Tu)^{(4)}(t)=\int_{0}^{1}\frac{\partial^{4}G(t,s)}{\partial t^{4}}f(s,u(s),u^{‘}(s),u^{”}(s), u^{”’}(s),u^{(4)}(s),u^{(5)}(s))ds,~t\in[0,1],$$
$$(Tu)^{(5)}(t)=\int_{0}^{1}\frac{\partial^{5}G(t,s)}{\partial t^{5}}f(s,u(s),u^{‘}(s),u^{”}(s),u^{”’}(s),u^{(4)}(s), u^{(5)}(s))ds,~t\in[0,1].$$
So,
\((Tu)(0)=(Tu)^{‘}(1)=(Tu)^{”}(0)=(Tu)^{”’}(1)=(Tu)^{(4)}(0)=(Tu)^{(5)}(1)=0\).
Therefore, by Ascoli-Arzela Theorem, it is easy to see that this
operator \(T: E\rightarrow E\) is a completely continuous operator.
Problem (1-2) has a solution \(u=u(t)\) if and only if \(u\) is a
fixed point of operator \(T\) defined by (12).
Let
\(\Omega_{d}=\{u\in E,~\|u\|0\). From (9) we know that \(u^{\ast}(t)\) is
nondecreasing and concave on \([0,1]\), thus \(u^{\ast}(t)\geq
t|u^{\ast}|_{0}>0\) for \(t\in [0,1]\). So, \(u^{\ast}(t)\) is a positive
solution of the problem (1-2). This completes the proof.
4. Examples
In order to illustrate the above results, we consider an example.
Example 1.Consider the following problem SBVP
\begin{equation}\label{e1}
\begin{array}{ll}
-u^{(6)}=\frac{\sqrt{t}}{26}u+\frac{t^{15}}{2}u^{‘}-\frac{t^{11}}{4}u^{”}-\frac{\sqrt[3]{t}}{59}u^{”’}+\frac{t^{4}}{7}u^{(4)}+\frac{2\sqrt[5]{t}}{5}u^{(5)}+t^{3}+1,\\
~~~~\\
u(0)=u^{‘}(1)=u^{”}(0)=u^{”’}(1)=u^{(4)}(0)=u^{(5)}(1)=0.
\end{array}
\end{equation}
(13)
Set
$$f(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})=\frac{\sqrt{t}}{26}u_{0}+\frac{t^{15}}{2}u_{1}-\frac{t^{11}}{4}u_{2}-\frac{\sqrt[3]{t}}{59}u_{3}+\frac{t^{4}}{7}u_{4}+\frac{2\sqrt[5]{t}}{5}u_{5}+t^{3}+1,$$
and
$$a_{0}(t)=\frac{\sqrt{t}}{26},~a_{1}(t)=t^{15},~a_{2}(t)=\frac{t^{11}}{4},~a_{3}(t)=\frac{\sqrt[3]{t}}{59},~a_{4}(t)=\frac{t^{4}}{7},~a_{5}(t)=\frac{2\sqrt[5]{t}}{5},
~a_{6}(t)=t^{3}+2.$$ It is easy to prove that \(a_{i}\in
L^{1}[0,1],~i=0,1,2,3,4,5,6,\) are nonnegative functions,
\(f(t,0,0,0,0,0,0)=t^{3}+1\neq 0\). Moreover, we have
\begin{eqnarray*}B&=&\frac{2}{15}\int_{0}^{1}a_{0}(s)ds+\frac{5}{24}\int_{0}^{1}a_{1}(s)ds+\frac{1}{3}\int_{0}^{1}a_{2}(s)ds+\frac{1}{2}\int_{0}^{1}a_{3}(s)ds+\int_{0}^{1}a_{4}(s)ds+
\int_{0}^{1}a_{5}(s)ds,\\
&=&\frac{2}{15}\int_{0}^{1}\frac{\sqrt{s}}{26}ds+\frac{5}{24}\int_{0}^{1}s^{15}ds+\frac{1}{3}\int_{0}^{1}\frac{s^{11}}{2}ds+\frac{1}{2}\int_{0}^{1}\frac{\sqrt[3]{s}}{59}ds+\int_{0}^{1}\frac{s^{4}}{7}ds+\int_{0}^{1}\frac{2\sqrt[5]{s}}{5}ds,\\
&=&\frac{2}{585}+\frac{5}{384}+\frac{1}{144}+\frac{3}{472}+\frac{1}{35}+\frac{1}{3}\simeq0,38592443631<1,\end{eqnarray*}
and for any
$$(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})\in[0,1]\times[0,\frac{2}{15}\rho]\times[0,\frac{5}{24}\rho]\times[-\frac{1}{3}\rho,0]\times[-\frac{1}{2}\rho,0]\times[0,\rho]\times[0,\rho],$$
and \(f\) satisfies
$$f(t,u_{0},u_{1},u_{2},u_{3},u_{4},u_{5})\leq a_{0}(t)u_{0}+a_{1}(t)u_{1}-a_{2}(t)u_{2}-a_{3}(t)u_{3}+a_{4}(t)u_{4}+a_{5}(t)u_{5}+a_{6}(t).$$
where
$$A=\int_{0}^{1}a_{6}(s)ds=\frac{9}{4},~\rho=A(1-B)^{-1}\simeq 3,66404418779.$$
Hence, by Theorem 2, the SBVP (13) has at least one positive
solution \(u^{\ast}\) in \(C^{6}([0,1])\) such that
\(\frac{15}{2}\max_{0\leq t\leq1}u^{\ast}(t)\leq\frac{24}{5}\max_{0\leq t\leq1}(u^{\ast})^{'}(t)\leq 3\max_{0\leq t\leq1}[-(u^{\ast})^{''}(t)]\leq2\max_{0\leq t\leq1}[-(u^{\ast})^{'''}(t)]\leq
\max_{0\leq t\leq1}(u^{\ast})^{(4)}(t)\leq \max_{0\leq t\leq1}(u^{\ast})^{(5)}(t)\leq\rho.\)
Acknowledgments
The authors want to thank the anonymous referee for the throughout reading of the manuscript and several suggestions
that help us improve the presentation of the paper.
Author Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Competing Interests
The author(s) do not have any competing interests in the manuscript.