For any non-square integer multiplier \(k\), there is an infinity of triangular numbers multiple of other triangular numbers. We analyze the congruence properties of indices \(\xi\) of triangular numbers multiple of triangular numbers. Remainders in congruence relations \(\xi\) modulo \(k\) come always in pairs whose sum always equal \((k-1)\), always include 0 and \((k-1)\), and only 0 and \((k-1)\) if \(k\) is prime, or an odd power of a prime, or an even square plus one or an odd square minus one or minus two. If the multiplier \(k\) is twice the triangular number of \(n\), the set of remainders includes also \(n\) and \((n^{2}-1)\) and if \(k\) has integer factors, the set of remainders include multiples of a factor following certain rules. Algebraic expressions are found for remainders in function of \(k\) and its factors, with several exceptions. This approach eliminates those \(\xi\) values not providing solutions.
Triangular numbers \(T_{t}=\frac{t\left(t+1\right)}{2}\) are one of the figurate numbers enjoying many properties; see, e.g., [1,2] for relations and formulas. Triangular numbers \(T_{\xi}\) that are multiples of other triangular number \(T_{t}\)
In this paper, we present a method based on the congruent properties of \(\xi\left(\text{mod}\,k\right)\), searching for expressions of the remainders in function of \(k\) or its factors. This approach accelerates the numerical search of the values of \(t_{n}\) and \(\xi_{n}\) that solve (1), as it eliminates values of \(\xi\) that are known not to provide solutions to (1). The gain is typically in the order of \(k/\upsilon\) where \(\upsilon\) is the number of remainders, which is usually such that \(\upsilon\ll k\).
Among all solutions, \(t=0\) is always a first solution of (1) for all non-square integer value of \(k\), yielding \(\xi=0\).
\(k\) | 2 | 3 | 5 | 6 | 7 | 8 | 10 |
---|---|---|---|---|---|---|---|
\(t\) | A053141 | A061278 | A077259 | A077288 | A077398 | A336623 | A341893 |
\(\xi\) | A001652 | A001571 | A077262 | A077291 | A077401 | A336625 | A341895 |
\(T_{t}\) | A075528 | A076139 | A077260 | A077289 | A077399 | A336624 | A068085 |
\(T_{\xi}\) | A029549 | A076140 | A077261 | A077290 | A077400 | A336626 |
Let’s consider the two cases of \(k=2\) and \(k=7\) yielding the successive solution pairs as shown in Table 2. We indicate also the ratios \(t_{n}/t_{n-1}\) for both cases and \(t_{n}/t_{n-2}\) for \(k=7\). It is seen that for \(k=2\), the ratio \(t_{n}/t_{n-1}\) varies between close values, from 7 down to 5.829, while for \(k=7\), the ratio \(t_{n}/t_{n-1}\) alternates between values 2.5 … 2.216 and 7.8 … 7.23, while the ratio \(t_{n}/t_{n-2}\) decreases regularly from 19.5 to 16.023 (corresponding approximately to the product of the alternating values of the ratio \(t_{n}/t_{n-1}\)). We call rank \(r\) the integer value such that \(t_{n}/t_{n-r}\) is approximately constant or, better, decreases regularly without jumps (a more precise definition is given further). So, here, the case \(k=2\) has rank \(r=1\) and the case \(k=7\) has rank \(r=2\).
n | \(k=2\) | \(k=7\) | |||||
---|---|---|---|---|---|---|---|
\(t_{n}\) | \(\xi_{n}\) | \(\frac{t_{n}}{t_{n-1}}\) | \(t_{n}\) | \(\xi_{n}\) | \(\frac{t_{n}}{t_{n-1}}\) | \(\frac{t_{n}}{t_{n-2}}\) | |
0 | 0 | 0 | 0 | 0 | |||
1 | 2 | 3 | — | 2 | 6 | — | — |
2 | 14 | 20 | 7 | 5 | 14 | 2.5 | — |
3 | 84 | 119 | 6 | 39 | 104 | 7.8 | 19.5 |
4 | 492 | 696 | 5.857 | 87 | 231 | 2.231 | 17.4 |
5 | 2870 | 4059 | 5.833 | 629 | 1665 | 7.230 | 16.128 |
6 | 16730 | 23660 | 5.829 | 1394 | 3689 | 2.216 | 16.023 |
In [9], we showed that the rank \(r\) is the index of \(t_{r}\) and \(\xi_{r}\) solutions of (1) such that
Four recurrent equations for \(t_{n},\xi_{n},T_{t_{n}}\) and \(T_{\xi_{n}}\) are given in [9] for each non-square integer value of \(k\)
Proposition 1. For \(\forall s,k\in\mathbb{Z}^{+}\), \(k\) non-square, \(\exists\ \ \xi,\mu,\upsilon,i,j\in\mathbb{Z}^{+}\), such that if \(\xi_{i}\) are solutions of (1), then for \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\) with \(1\leq j\leq\upsilon\), the number \(\upsilon\) of remainders is always even, \(\upsilon\equiv0\left(\text{mod}\,2\right)\), the remainders come in pairs whose sum is always equal to \(\left(k-1\right)\), and the sum of all remainders is always equal to the product of \(\left(k-1\right)\) and the number of remainder pairs, \(\sum\limits_{j=1}^{\upsilon}\mu_{j}=\left(k-1\right)\upsilon/2\).
Proof. Let \(s,i,j,k,\xi,\mu,\upsilon,\alpha,\beta\in\mathbb{Z}^{+}\), \(k\) non-square, and \(\xi_{i}\) solutions of (1). Rewriting (1) as \(T_{t_{i}}=T_{\xi_{i}}/k\), for \(T_{t_{i}}\) to be integer, \(k\) must divide exactly \(T_{\xi_{i}}=\xi_{i}\left(\xi_{i}+1\right)/2\), i.e., among all possibilities, \(k\) divides either \(\xi_{i}\) or \(\left(\xi_{i}+1\right)\), yielding two possible solutions \(\xi_{i}\equiv0\left(\text{mod}\,k\right)\) or \(\xi_{i}\equiv-1\left(\text{mod}\,k\right)\), i.e., \(\upsilon=2\) and the set of \(\mu_{j}\) includes \(\left\{ 0,\left(k-1\right)\right\} \). This means that \(\xi_{i}\) are always congruent to either \(0\) or \(\left(k-1\right)\) modulo \(k\) for all non-square values of \(k\).
Furthermore, if some \(\xi_{i}\) are congruent to \(\alpha\) modulo \(k\), then other \(\xi_{i}\) are also congruent to \(\beta\) modulo \(k\) with \(\beta=\left(k-\alpha-1\right)\). As \(\xi_{i}\equiv\alpha\left(\text{mod}\,k\right)\), then \(\xi_{i}\left(\xi_{i}+1\right)/2\equiv\left(\alpha\left(\alpha+1\right)/2\right)\left(\text{mod}\,k\right)\) and replacing \(\alpha\) by \(\alpha=\left(k-\beta-1\right)\) yields \(\left(\alpha\left(\alpha+1\right)/2\right)=\left(\left(k-\beta-1\right)\left(k-\beta\right)/2\right)\), giving \(\xi_{i}\left(\xi_{i}+1\right)/2\equiv\left(\left(k-\beta-1\right)\left(k-\beta\right)/2\right)\left(\text{mod}\,k\right)\equiv\left(\beta\left(\beta+1\right)/2\right)\left(\text{mod}\,k\right)\). In this case, \(\upsilon=4\) and the set of \(\mu_{j}\) includes, but not necessarily limits to, \(\left\{ 0,\alpha,\left(k-\alpha-1\right),\left(k-1\right)\right\} \).
Note that in some cases, \(\upsilon>4\), as for \(k=66,70,78,105,…\), \(\nu=8\). However, in some other cases, \(\upsilon=2\) only and the set of \(\mu_{j}\) contains only \(\left\{ 0,\left(k-1\right)\right\} \), as shown in the next proposition. In this proposition, several rules (R) are given constraining the congruence characteristics of \(\xi_{i}\).
Proposition 2. For \(\forall\ \ s,k,\alpha,n\in\mathbb{Z}^{+}\), \(k\) non-square, \(\alpha>1\), \(\exists\ \ \xi,\mu,\upsilon,i\in\mathbb{Z}^{+}\), such that if \(\xi_{i}\) are solutions of (1), then \(\xi_{i}\) are always only congruent to \(0\) and \(\left(k-1\right)\) modulo \(k\), and \(\upsilon=2\) if either
Proof. Let \(s,s^{\prime},k,\alpha>1,n,i,\xi,\mu,\upsilon\in\mathbb{Z}^{+}\), \(k\) non-square, and \(\xi_{i}\) are solutions of (1).
(R1)+(R2): If \(k\) is prime or if \(k=\alpha^{n}\) (with \(\alpha\) prime and \(n\) odd as \(k\) is non-square), then, in both cases, \(k\) can only divide either \(\xi_{i}\) or \(\left(\xi_{i}+1\right)\), yielding the two congruences \(\xi_{i}\equiv0\left(\text{mod}\,k\right)\) and \(\xi_{i}\equiv-1\left(\text{mod}\,k\right)\).
(R3): If \(k=s^{2}+1\) with \(s\) even, the rank \(r\) is always \(r=2\) [11], and the only two sets of solutions are
(R4): For \(k=s^{\prime2}-1\) with \(s^{\prime}\) odd, the rank \(r=2\) [11], and the only two sets of solutions are
(R5): For \(k=s^{\prime2}-2\) with \(s^{\prime}\) odd, the rank \(r=2\) [11], and the only two sets of solutions are
There are other cases of interest as shown in the next two Propositions:
Proposition 3. For \(\forall\ \ n\in\mathbb{Z}^{+}\), \(\exists\ \ k,\xi,\mu< k,i,j\in\mathbb{Z}^{+}\), \(k\) non-square, such that if \(\xi_{i}\) are solutions of (1) with \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\), and (R6) if \(k\) is twice a triangular number \(k=n\left(n+1\right)=2T_{n}\), then the set of \(\mu_{j}\) includes \(\left\{ 0,n,\left(n^{2}-1\right),\left(k-1\right)\right\} \), with \(1\leq j\leq\upsilon\).
Proof. Let \(n,k,\xi,\mu< k,i,j\in\mathbb{Z}^{+}\), \(k\) non-square, and \(\xi_{i}\) solutions of (1). Let \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\) with \(1\leq j\leq\upsilon\). As the ratio \(\xi_{i}\left(\xi_{i}+1\right)/k\) must be integer, \(\xi_{i}\left(\xi_{i}+1\right)\equiv0\left(\text{mod}\,k\right)\) or \(\mu_{j}\left(\mu_{j}+1\right)\equiv0\left(\text{mod}\,n\left(n+1\right)\right)\) which is obviously satisfied if \(\mu_{j}=n\) or \(\mu_{j}=\left(n^{2}-1\right)\).
Finally, this last proposition gives a general expression of the congruence \(\xi_{i}\left(\text{mod}\,k\right)\) for most cases to find the remainders \(\mu_{j}\) other than \(0\) and \(\left(k-1\right)\).
Proposition 4. For \(\forall n>1\in\mathbb{Z}^{+}\), \(\exists k,f,\xi,\nu< n< k,\mu< k,m< n,i,j\in\mathbb{Z}^{+}\), \(k\) non-square, let \(\xi_{i}\) be solutions of (1) with \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\), let \(f\) be a factor of \(k\) such that \(f=k/n\) with \(f\equiv\nu\left(\text{mod}\,n\right)\) and \(k\equiv\nu n\left(\text{mod}\,n^{2}\right)\), then the set of \(\mu_{j}\) includes either \(\left\{ 0,mf,\left(\left(n-m\right)f-1\right),\left(k-1\right)\right\} \) or \(\left\{ 0,\left(mf-1\right),\left(n-m\right)f,\left(k-1\right)\right\} \), where \(m\) is an integer multiplier of \(f\) in the congruence relation and such that \(m< n/2\) or \(m< \left(n+1\right)/2\) for \(n\) being even or odd respectively, and \(1\leq j\leq\upsilon\).
Proof. Let \(n>1,k,f,\xi,\mu< k,m< n,i,j< n< k\in\mathbb{Z}^{+}\), \(k\) non-square, and \(\xi_{i}\) a solution of (1). Let \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\) with \(1\leq j\leq\upsilon\). As the ratio \(\xi_{i}\left(\xi_{i}+1\right)/k\) must be integer, \(\xi_{i}\left(\xi_{i}+1\right)\equiv0\left(\text{mod}\,k\right)\) or \(\mu_{j}\left(\mu_{k}+1\right)\equiv0\left(\text{mod}\,fn\right)\). For a proper choice of the factor \(f\) of \(k\), let \(\mu_{j}\) be a multiple of \(f\), \(\mu_{j}=mf\), then \(m\left(mf+1\right)\equiv0\left(\text{mod}\,n\right)\). As \(f\equiv\nu\left(\text{mod}\,n\right)\), one has
An appropriate combination of integer parameters \(m\) and \(\nu\) guarantees that (14) and (15) are satisfied. Proposition 1 yields the other remainder value as \(mf+\left(n-m\right)f-1=k-1\) and \(\left(mf-1\right)+\left(n-m\right)f=k-1\).
The appropriate combinations of integer parameters \(m\) and \(\nu\) are given in Table 3 for \(2\leq n\leq12\). The sign \(-\) in subscript corresponds to the remainder \(\left(mf-1\right)\); the sign \(/\) indicates an absence of combination.
One deduces from Table 3 the following simple rules:
\(m\) | \(\nu\) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\searrow\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
\(n\) | 2 | 1_ | ||||||||||
3 | 1_ | 1 | ||||||||||
4 | 1_ | / | 1 | |||||||||
5 | 1_ | 2 | 2_ | 1 | ||||||||
6 | 1_ | / | / | / | 1 | |||||||
7 | 1_ | 3 | 2 | 2_ | 3_ | 1 | ||||||
8 | 1_ | / | 3_ | / | 3 | / | 1 | |||||
9 | 1_ | 4 | / | 2 | 2_ | / | 4_ | 1 | ||||
10 | 1_ | / | 3 | / | 5_ | / | 3_ | / | 1 | |||
11 | 1_ | 5 | 4_ | 3_ | 2 | 2_ | 3 | 4 | 5_ | 1 | ||
12 | 1_ | / | / | / | 3 | / | 4_ | / | / | / | 1 |
Expressions of \(\mu_{i}\) are given in Table 4 for \(2\leq n\leq12\) (with codes E\(n\nu\)). For example, for \(k\equiv12\nu\left(\text{mod}\,12^{2}\right)\) and \(\nu=5\) (code E125), i.e. \(k=60,204,348,…\), \(\xi_{i}\equiv\mu_{j}\left(\text{mod}\,k\right)\) with the set of remainders \(\mu_{j}\) including \(\left\{ 0,mf,\left(\left(n-m\right)f-1\right),\left(k-1\right)\right\} \) with \(m=3\) (see Table 3) and \(f=k/12=5,17,29…\)respectively.
\(n\) | \(\nu\) | \(m\) | \(k\equiv\) | \(f\) | \(\mu_{j}\) | Code |
---|---|---|---|---|---|---|
2 | 1 | 1 | \(2\left(\text{mod}\,4\right)\) | \(k/2\) | \(0,(k/2)-1,k/2,k-1\) | E21 |
3 | 1 | 1 | \(3\left(\text{mod}\,9\right)\) | \(k/3\) | \(0,\left(k/3\right)-1,2k/3,k-1\) | E31 |
2 | 1 | \(6\left(\text{mod}\,9\right)\) | \(0,k/3,\left(2k/3\right)-1,k-1\) | E32 | ||
4 | 1 | 1 | \(4\left(\text{mod}\,16\right)\) | \(k/4\) | \(0,\left(k/4\right)-1,3k/4,k-1\) | E41 |
3 | 1 | \(12\left(\text{mod}\,16\right)\) | \(0,k/4,\left(3k/4\right)-1,k-1\) | E43 | ||
5 | 1 | 1 | \(5\left(\text{mod}\,25\right)\) | \(k/5\) | \(0,\left(k/5\right)-1,4k/5,k-1\) | E51 |
2 | 2 | \(10\left(\text{mod}\,25\right)\) | \(0,2k/5,\left(3k/5\right)-1,k-1\) | E52 | ||
3 | 2 | \(15\left(\text{mod}\,25\right)\) | \(0,\left(2k/5\right)-1,3k/5,k-1\) | E53 | ||
4 | 1 | \(20\left(\text{mod}\,25\right)\) | \(0,k/5,\left(4k/5\right)-1,k-1\) | E54 | ||
6 | 1 | 1 | \(6\left(\text{mod}\,36\right)\) | \(k/6\) | \(0,\left(k/6\right)-1,5k/6,k-1\) | E61 |
5 | 1 | \(30\left(\text{mod}\,36\right)\) | \(0,k/6,\left(5k/6\right)-1,k-1\) | E65 | ||
7 | 1 | 1 | \(7\left(\text{mod}\,49\right)\) | \(k/7\) | \(0,\left(k/7\right)-1,6k/7,k-1\) | E71 |
2 | 2 | \(14\left(\text{mod}\,49\right)\) | \(0,3k/7,\left(4k/7\right)-1,k-1\) | E72 | ||
3 | 3 | \(21\left(\text{mod}\,49\right)\) | \(0,2k/7,\left(5k/7\right)-1,k-1\) | E73 | ||
4 | 3 | \(28\left(\text{mod}\,49\right)\) | \(0,\left(2k/7\right)-1,5k/7,k-1\) | E74 | ||
5 | 2 | \(35\left(\text{mod}\,49\right)\) | \(0,\left(3k/7\right)-1,4k/7,k-1\) | E75 | ||
6 | 1 | \(42\left(\text{mod}\,49\right)\) | \(0,k/7,\left(6k/7\right)-1,k-1\) | E76 | ||
8 | 1 | 1 | \(8\left(\text{mod}\,64\right)\) | \(k/8\) | \(0,\left(k/8\right)-1,7k/8,k-1\) | E81 |
3 | 3 | \(24\left(\text{mod}\,64\right)\) | \(0,\left(3k/8\right)-1,5k/8,k-1\) | E83 | ||
5 | 3 | \(40\left(\text{mod}\,64\right)\) | \(0,3k/8,\left(5k/8\right)-1,k-1\) | E85 | ||
7 | 1 | \(56\left(\text{mod}\,64\right)\) | \(0,k/8,\left(7k/8\right)-1,k-1\) | E87 | ||
9 | 1 | 1 | \(9\left(\text{mod}\,81\right)\) | \(k/9\) | \(0,(k/9)-1,8k/9,k-1\) | E91 |
2 | 4 | \(18\left(\text{mod}\,81\right)\) | \(0,4k/9,(5k/9)-1,k-1\) | E92 | ||
4 | 2 | \(36\left(\text{mod}\,81\right)\) | \(0,2k/9,(7k/9)-1,k-1\) | E94 | ||
5 | 2 | \(45\left(\text{mod}\,81\right)\) | \(0,(2k/9)-1,7k/9,k-1\) | E95 | ||
7 | 4 | \(63\left(\text{mod}\,81\right)\) | \(0,(4k/9)-1,5k/9,k-1\) | E97 | ||
8 | 1 | \(72\left(\text{mod}\,81\right)\) | \(0,k/9,(8k/9)-1,k-1\) | E98 | ||
10 | 1 | 1 | \(10\left(\text{mod}\,100\right)\) | \(k/10\) | \(0,(k/10)-1,9k/10,k-1\) | E101 |
3 | 3 | \(30\left(\text{mod}\,100\right)\) | \(0,3k/10,(7k/10)-1,k-1\) | E103 | ||
7 | 3 | \(70\left(\text{mod}\,100\right)\) | \(0,(3k/10)-1,7k/10,k-1\) | E107 | ||
9 | 1 | \(90\left(\text{mod}\,100\right)\) | \(0,k/10,(9k/10)-1,k-1\) | E109 | ||
11 | 1 | 1 | \(11\left(\text{mod}\,121\right)\) | \(k/11\) | \(0,(k/11)-1,10k/11,k-1\) | E111 |
2 | 5 | \(22\left(\text{mod}\,121\right)\) | \(0,5k/11,(6k/11)-1,k-1\) | E112 | ||
3 | 4 | \(33\left(\text{mod}\,121\right)\) | \(0,(4k/11)-1,7k/11,k-1\) | E113 | ||
4 | 3 | \(44\left(\text{mod}\,121\right)\) | \(0,(3k/11)-1,8k/11,k-1\) | E114 | ||
5 | 2 | \(55\left(\text{mod}\,121\right)\) | \(0,2k/11,(9k/11)-1,k-1\) | E115 | ||
6 | 2 | \(66\left(\text{mod}\,121\right)\) | \(0,(2k/11)-1,9k/11,k-1\) | E116 | ||
7 | 3 | \(77\left(\text{mod}\,121\right)\) | \(0,3k/11,(8k/11)-1,k-1\) | E117 | ||
8 | 4 | \(88\left(\text{mod}\,121\right)\) | \(0,4k/11,(7k/11)-1,k-1\) | E118 | ||
9 | 5 | \(99\left(\text{mod}\,121\right)\) | \(0,(5k/11)-1,6k/11,k-1\) | E119 | ||
10 | 1 | \(110\left(\text{mod}\,121\right)\) | \(0,k/11,(10k/11)-1,k-1\) | E1110 | ||
12 | 1 | 1 | \(12\left(\text{mod}\,144\right)\) | \(k/12\) | \(0,(k/12)-1,11k/12,k-1\) | E121 |
5 | 3 | \(60\left(\text{mod}\,144\right)\) | \(0,3k/12,(9k/12)-1,k-1\) | E125 | ||
7 | 4 | \(84\left(\text{mod}\,144\right)\) | \(0,(4k/12)-1,8k/12,k-1\) | E127 | ||
11 | 1 | \(132\left(\text{mod}\,144\right)\) | \(0,k/12,(11k/12)-1,k-1\) | E1211 |
\(k\) | \(\mu_{j}\) | References | \(k\) | \(\mu_{j}\) | References |
---|---|---|---|---|---|
2 | 0,1 | R1,R6,E21 | 63 | 0,27,35,62 | E72,E97 |
3 | 0,2 | R1,E31 | 65 | 0,64 | R3 |
5 | 0,4 | R1,R3,E51 | 66 | 0,11,21,32,33,44,54,65 | E21+E31+E65+E116 |
6 | 0,2,3,5 | R6,E21,E32,E61 | 67 | 0,66 | R1 |
7 | 0,6 | R1,R5,E71 | 68 | 0,16,51,67 | E41 |
8 | 0,7 | R2,R4,E81 | 69 | 0,23,45,68 | E32 |
10 | 0,4,5,9 | E21,E52,E101 | 70 | 0,14,20,34,35,49,55,69 | E21+E54+E73+E107 |
11 | 0,10 | R1,E111 | 71 | 0,70 | R1 |
12 | 0,3,8,11 | R6,E31,E43,E121 | 72 | 0,8,63,71 | R6,E81,E98 |
13 | 0,12 | R1 | 73 | 0,72 | R1 |
14 | 0,6,7,13 | E21,E72 | 74 | 0,73 | ? |
15 | 0,5,9,14 | E32,E53 | 75 | 0,24,50,74 | E31 |
17 | 0,16 | R1,R3 | 76 | 0,19,56,75 | E43 |
18 | 0,8,9,17 | E21,E92 | 77 | 0,21,55,76 | E74,E117 |
19 | 0,18 | R1 | 78 | 0,12,26,38,39,51,65,77 | E21+E32+E61 |
20 | 0,4,15,19 | R6,E41,E54 | 79 | 0,78 | R1,R5 |
21 | 0,6,14,20 | E31,E73 | 80 | 0,79 | R4 |
22 | 0,10,11,21 | E21,E112 | 82 | 0,40,41,81 | E21 |
23 | 0,22 | R1,R5 | 83 | 0,82 | R1 |
24 | 0,23 | R4 | 84 | 0,27,56,83 | E31,E127 |
26 | 0,12,13,25 | E21 | 85 | 0,34,50,84 | E52 |
27 | 0,26 | R2 | 86 | 0,42,43,85 | E21 |
28 | 0,7,20,27 | E43,E74 | 87 | 0,29,57,86 | E32 |
29 | 0,28 | R1 | 88 | 0,32,55,87 | E83,E118 |
30 | 0,5,24,29 | R6,E51,E65 | 89 | 0,88 | R1 |
31 | 0,30 | R1 | 90 | 0,9,80,89 | R6,E91,E109 |
32 | 0,31 | R2 | 91 | 0,13,77,90 | E75 |
33 | 0,11,21,32 | E32,E113 | 92 | 0,23,68,91 | E43 |
34 | 0,16,17,33 | E21 | 93 | 0,30,62,92 | E31 |
35 | 0,14,20,34 | E52,E75 | 94 | 0,46,47,93 | E21 |
37 | 0,36 | R1,R3 | 95 | 0,19,75,94 | E54 |
38 | 0,18,19,37 | E21 | 96 | 0,32,63,95 | E32 |
39 | 0,12,26,38 | E31 | 97 | 0,96 | R1 |
40 | 0,15,24,39 | E53,E85 | 98 | 0,48,49,97 | E21 |
41 | 0,40 | R1 | 99 | 0,44,54,98 | E92,E119 |
42 | 0,6,35,41 | R6,E61,E76 | 101 | 0,100 | R1,R3 |
43 | 0,42 | R1 | 102 | 0,50,51,102 | E21 |
44 | 0,11,32,43 | E43,E114 | 103 | 0,102 | R1 |
45 | 0,9,35,44 | E54,E95 | 104 | 0,103 | ? |
46 | 0,22,23,245 | E21 | 105 | 0,14,20,35,69,84,90,104 | E32+E51+E71 |
47 | 0,46 | R1,R5 | 106 | 0,52,53,105 | E21 |
48 | 0,47 | R4 | 107 | 0,106 | R1 |
50 | 0,24,25,49 | E21 | 108 | 0,27,80,107 | E43 |
51 | 0,17,33,50 | E32 | 109 | 0,108 | R1 |
52 | 0,12,39,51 | E41 | 110 | 0,10,99,109 | R6,E101,E1110 |
53 | 0,52 | R1 | 111 | 0,36,74,110 | E31 |
54 | 0,26,27,53 | E21 | 112 | 0,48,63,111 | E72 |
55 | 0,10,44,54 | E51,E115 | 113 | 0,112 | R1 |
56 | 0,7,48,55 | R6,E71,E87 | 114 | 0,56,57,113 | E21 |
57 | 0,18,38,56 | E31 | 115 | 0,45,69,114 | E53 |
58 | 0,28,29,57 | E21 | 116 | 0,28,87,115 | E41 |
59 | 0,58 | R1 | 117 | 0,26,90,116 | E94 |
60 | 0,15,44,59 | E43,E125 | 118 | 0,58,59,117 | E21 |
61 | 0,60 | R1 | 119 | 0,118 | R1,R5 |
62 | 0,30,31,61 | E21 | 120 | 0,15,104,119 | E87 |
Values of the remainders \(\mu_{j}\) are given in Table 5 for \(2\leq k\leq120\), with rule (R) and expression (E) codes as references. R and E codes separated by commas imply that all references apply simultaneously to the case; E codes separated by + mean that all expressions apply to the case; some expression references are sometimes missing. One observes that in two cases (for \(k=74\) and 104), expressions could not be found (indicated by question marks).
Table 5 gives correctly the values of the remainder pairs in most of the cases. There are although some exceptions and some values missing.
Among the exceptions to the values given in Table 5, for \(n=2\), remainders values for \(k=30,42,74,90,110,\ldots\) are different from the theoretical ones in Table 4. Furthermore, for \(k=66,70,78,105,…\), additional remainders exist. Expressions are missing for \(k=74\) (E21) and 104 (E85). Finally, one observes also that for 16 cases, some Rules or Expressions supersede some other Expressions (indicated by Ra > Exy or Exy > Ezt), as reported in Table 6. For example, Rule 6 supersedes Expression 21 (R6 > E21) for \(k=30,42,90,110\), i.e., \(k=2T_{5},2T_{6},2T_{9},2T_{10},…\) and more generally for all \(k=2T_{i}\) for \(i\equiv1,2\left(\text{mod}4\right)\).
\(k\) | |
---|---|
24 | R4 > E32; R4 > E83 |
30 | R6 > E21; R6 > E31; R6 > E103; E51 > E103; E65 > E103 |
42 | R6 > E21; R6 > E32 |
48 | R4 > E31 |
56 | R6 > E43 |
60 | E43 > E32; E43 > E52 |
65 | R3 > E53 |
72 | R6 > E43 |
80 | R4 > E51 |
84 | E31 > E41; E31 > E75 |
90 | R6 > E21; R6 > E53 |
102 | E21 > E31; E21 > E65 |
110 | R6 > E21; R6 > E52 |
114 | E21 > E32; E21 > E61 |
119 | R1 > E73; R5 > E73 |
120 | E87 > R4; E87 > E31; E87 > E54 |
Note that 11 of these 16 values of \(k\) are multiples of 6, the others are 2 mod 6 and 5 mod 6 for, respectively three and two cases. One notices as well, that generally, Ra and Exy supersede Ezt with \(x< z\) and \(t< y\), except for \(k=60\) and \(120\).
This approach allows eliminating in numerical searches those \(\left(k-\upsilon\right)\) values of \(\xi_{i}\) that are known not to provide solutions of (1), where \(\upsilon\) is the even number of remainders. The gain is typically in the order of \(k/\upsilon\), with \(\upsilon\ll k\) for large values of \(k\).