The purpose of this paper is the study of the growth of solutions of higher order linear differential equations \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)
}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=0\) and \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=F\left( z\right),\) where \(A_{j,i}\left( z\right) \left( \not\equiv 0\right) \left(j=0,…,k-1;i=1,2\right) ,\) \(F\left( z\right) \) are meromorphic functions of finite order and \(P_{j}\left( z\right) ,Q_{j}\left( z\right) \) \((j=0,1,…,k-1;i=1,2)\) are polynomials with degree \(n\geq 1\). Under some others conditions, we extend the previous results due to Hamani and Belaïdi [1].
Throughout this work, we assume that the reader knows the standard notations and the fundamental results of the Nevanlinna value distribution theory of meromorphic functions as the order and the hyper-order of growth, the convergence exponents of the zero-sequence and of distinct zeros, the hyper convergence exponents of the zero-sequence and the distinct zeros of a meromorphic function \(f,\) see [2-5].
We recall also the following definitions. The linear measure of a set \(E\subset \left[ 0,+\infty \right)\) is defined as \(m\left( E\right) =\int_{0}^{+\infty }\chi _{E}\left( t\right) dt\) and the logarithmic measure of a set \(F\subset \left[ 1,+\infty \right)\) is defined by \(lm\left( F\right) =\int_{1}^{+\infty }\frac{\chi _{F}\left( t\right) }{t}% dt,\) where \(\chi _{H}\left( t\right)\) is the characteristic function of a set \(H\).
For results on the growth of solutions of the complex linear differential equation \[f^{\left( k\right) }+A_{k-1}\left( z\right) e^{P_{k-1}\left( z\right) }f^{\left( k-1\right) }+\cdots +A_{1}\left( z\right) e^{P_{1}\left( z\right) }f^{\prime }+A_{0}\left( z\right) e^{P_{0}\left( z\right) }f=0,\] where \(P_{j}\left( z\right) =a_{j,n}z^{n}+\cdots +a_{j,0}\) are polynomials with degree \(n\geq 1\), \(a_{j,q}\) \((j=0,1,…,k-1;q=0,1,…,n)\) are complex numbers and \(A_{j}(z)\) \((\not\equiv 0)\), \(\mathit{\ }(j=0,1,…,k-1)\) are entire or meromorphic functions of finite order less than \(n,\) the reader is referred to [1,6-8].
Recently, Hamani and Belaı̈di [1] studied the order of transcendental meromorphic solutions of the homogeneous and the non-homogeneous linear differential equations \[\ f^{\left( k\right) }+h_{k-1}\left( z\right) e^{P_{k-1}\left( z\right) }f^{\left( k-1\right) }+\cdots +h_{1}\left( z\right) e^{P_{1}\left( z\right) }f^{\prime }+h_{0}\left( z\right) e^{P_{0}\left( z\right) }f=0, \label{1.1}, \tag{1}\] \[\ f^{\left( k\right) }+h_{k-1}\left( z\right) e^{P_{k-1}\left( z\right) }f^{\left( k-1\right) }+\cdots +h_{1}\left( z\right) e^{P_{1}\left( z\right) }f^{\prime }+h_{0}\left( z\right) e^{P_{0}\left( z\right) }f=F, \label{1.2}, \tag{2}\] and have proved the following results;
Theorem 1. [1] Let \(k\geq 2\) be an integer and \(P_{j}\left( z\right) =\underset{i=0}{% \overset{n}{\sum }}a_{j,i}z^{i}\) \((j=0,1,…,k-1)\) be nonconstant polynomials with degree \(n\geq 1,\) where \(a_{j,0},\) \(a_{j,1},…,\) \(a_{j,n}\) \((j=0,1,…,k-1)\) are complex numbers. Let \(% h_{j}(z)\) \((j=0,1,…,k-1)\) be meromorphic functions \(% \rho \left( h_{j}\right) <n.\) Suppose that there exists \(% s,d\in \left\{ 0,1,…,k-1\right\}\) such that \(h_{s}\) \(% h_{d}\not\equiv 0,a_{s,n}=\left\vert a_{s,n}\right\vert e^{i\theta _{s}},\) \(a_{d,n}=\left\vert a_{d,n}\right\vert e^{i\theta _{d}},\theta _{s},\theta _{d}\in \lbrack 0,2\pi ),\theta _{s}\neq \theta _{d}\) then for \(j\in \left\{ 0,1,…,k-1\right\} \diagdown \left\{ s,d\right\} ,\) \(a_{j,n}\) satisfies either \(a_{j,n}=c_{j}a_{s,n}\) or \(a_{j,n}=c_{j}a_{d,n}\) \((0<c_{j}<1).\) Then every transcendental meromorphic solution \(f\) whose poles are of uniformly bounded multiplicities of Eq. (1) is of infinite order and satisfies \(\rho _{2}(f)=n.\)
Theorem 2. [1] Let \(k\geq 2\) be an integer, \(h_{j}\left( z\right) ,P_{j}\left( z\right)\) and \(a_{n,j}\) satisfy the hypotheses of Theorem . Let \(F\left( \not\equiv 0\right)\) be a meromorphic function of order \(\rho \left( F\right) <n.\) Then every transcendental meromorphic solution \(f\) whose poles are of uniformly bounded multiplicities of Equation (2) is of infinite order and satisfies \(\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) =n,\) with at most one exceptional solution \(f_{0}\) of finite order.
In this paper, we continue to study the oscillation problem of solutions, we improve and extend Theorem 2 and Theorem 2 for equations of the form \[\ f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left( z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right) f^{\left( k-1\right) } +\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right) }+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=0, \label{1.3}, \tag{3}\] and \[\ f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left( z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right) f^{\left( k-1\right) } +\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right) }+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=F. \label{1.4}, \tag{4}\] We obtain the following results;
Theorem 3. Let \(k\geq 2\) be an integer and \(P_{j}\left( z\right) =a_{j,n}z^{n}+\cdots +a_{j,0}\), \(% Q_{j}\left( z\right) =b_{j,n}z^{n}+\cdots +b_{j,0}\) be polynomials with degree \(n\geq 1\), where \(a_{j,q},b_{j,q}\) \(% (j=0,1,…,k-1;q=0,1,…,n)\) are complex numbers such that \(% a_{j,n}b_{j,n}\neq 0.\) Let \(A_{j,i}(z)\) \((\not\equiv 0)\) \((j=0,1,…,k-1;i=1,2)\) be meromorphic functions such that \(\max \{\rho \left( A_{j,i}\right) :j=0,1,…,k-1;i=1,2\}<n\). Suppose that there exist \(s,d\in \left\{ 0,1,…,k-1\right\}\) such that \(A_{s,1}\) \(A_{d,1}\not\equiv 0,A_{s,2}\mathit{\ }% A_{d,2}\not\equiv 0,a_{s,n}=\left\vert a_{s,n}\right\vert e^{i\theta _{s}},\) \(a_{d,n}=\left\vert a_{d,n}\right\vert e^{i\theta _{d}}\), \(% b_{s,n}=\left\vert b_{s,n}\right\vert e^{i\varphi }\), \(\theta _{s}\), \(\theta _{d}\), \(\varphi \in \lbrack 0,2\pi )\), \(\theta _{s}\neq \theta _{d},\) then for \(j\in \left\{ 0,1,…,k-1\right\} \diagdown \left\{ s,d\right\} ,\) \(a_{n,j}\) and \(b_{j,n}\) satisfies either \(a_{j,n}=c_{j}a_{s,n}\) or \(% a_{j,n}=c_{j}a_{d,n},b_{j,n}=c_{j}^{\prime }b_{s,n}\) \(% (0<c_{j}<1,0<c_{j}^{\prime }<1).\) Then every transcendental meromorphic solution \(f\) whose poles are of uniformly bounded multiplicities of Equation (3) is of infinite order and satisfies \(\rho _{2}(f)=n.\)
Corollary 1. Let \(k\geq 2\) be an integer and \(P_{j}\left( z\right) =a_{j,n}z^{n}+\cdots +a_{j,0}\), \(% Q_{j}\left( z\right) =b_{j,n}z^{n}+\cdots +b_{j,0}\) be polynomials with degree \(n\geq 1\), where \(a_{j,q},b_{j,q}\) \(% (j=0,1,…,k-1;q=0,1,…,n)\) are complex numbers such that \(% a_{j,n}b_{j,n}\neq 0.\) Let \(A_{j,i}(z)\) \((\not\equiv 0)\) \((j=0,1,…,k-1;i=1,2)\) be entire functions such that \(% \max \{\rho \left( A_{j,i}\right) :j=0,1,…,k-1;i=1,2\}<n\). Suppose that there exist \(s,d\in \left\{ 0,1,…,k-1\right\}\) such that \(% A_{s,1}\) \(A_{d,1}\not\equiv 0,A_{s,2}\mathit{\ }A_{d,2}\not\equiv 0,a_{s,n}=\left\vert a_{s,n}\right\vert e^{i\theta _{s}},\) \(% a_{d,n}=\left\vert a_{d,n}\right\vert e^{i\theta _{d}}\), \(b_{s,n}=\left\vert b_{s,n}\right\vert e^{i\varphi }\), \(\theta _{s}\), \(\theta _{d}\), \(\varphi \in \lbrack 0,2\pi )\), \(\theta _{s}\neq \theta _{d},\) then for \(% j\in \left\{ 0,1,…,k-1\right\} \diagdown \left\{ s,d\right\} ,\) \(% a_{j,n}\) and \(b_{j,n}\) satisfies either \(% a_{j,n}=c_{j}a_{s,n}\) or \(a_{j,n}=c_{j}a_{d,n},b_{j,n}=c_{j}^{% \prime }b_{s,n}\) \((0<c_{j}<1,0<c_{j}^{\prime }<1).\) Then every transcendental solution \(f\) of Equation (3) is of infinite order and satisfies \(\rho _{2}(f)=n.\)
Example 1. Consider the following differential equation \[\ f^{\left( 4\right) }+\left( -2ize^{iz^{2}}+\frac{z^{2}}{2}% e^{-2iz^{2}}\right) f^{\left( 3\right) }+\left( 2z^{2}e^{-2iz^{2}}-iz^{3}e^{-iz^{2}}\right) f^{\prime \prime } +\left( \left( -24iz^{4}+12iz^{3}\right) e^{2iz^{2}}\right.\notag\\ \left.+\left( 4iz^{5}+\left( 6-4i\right) z^{3}\right) e^{-iz^{2}}\right) f^{\text{ }\prime } +\left( -10e^{iz^{2}}+\left( 4iz^{5}+8z^{4}+6z^{3}-4iz^{2}\right) e^{-iz^{2}}\right) f=0. \label{1.5}, \tag{5}\] Set \[\begin{cases} A_{0,1}\left( z\right)&=-10,\text{ }A_{0,2}\left( z\right) =4iz^{5}+8z^{4}+6z^{3}-4iz^{2}, \\ A_{1,1}\left( z\right) &=-24iz^{4}+12iz^{3},\text{ }A_{1,2}\left( z\right) =4iz^{5}+\left( 6-4i\right) z^{3}, \\ A_{2,1}\left( z\right) &=2z^{2},\text{ }A_{2,2}\left( z\right) =-iz^{3}, \\ A_{3,1}\left( z\right) &=-2iz,\text{ }A_{2,1}\left( z\right) =\frac{z^{2}}{2}% \end{cases}\] and \[\begin{cases} P_{0}\left( z\right) =P_{3}\left( z\right) =iz^{2}, \\ P_{1}\left( z\right) =2iz^{2}, \\ P_{2}\left( z\right) =-2iz^{2}, \\ Q_{0}\left( z\right) =Q_{1}\left( z\right) =Q_{2}\left( z\right) =-iz^{2}, \\ Q_{3}\left( z\right) =-2iz^{2}.% \end{cases}\] We have \(a_{0,2}=i\), \(a_{1,2}=2i=a_{s,2},\) \(a_{2,2}=-2i=a_{d,2},\) \(% a_{3,2}=i,\) we can see that \[\begin{cases} a_{0,2}=i=\frac{1}{2}a_{s,2},\text{ }c_{0}=\frac{1}{2},\text{ }0<c_{0}<1, \\ a_{3,2}=i=\frac{1}{2}a_{s,2},\text{ }c_{3}=\frac{1}{2},\text{ }0<c_{3}<1, \\ \arg a_{s,2}\neq \arg a_{d,2},% \end{cases}\] and \(b_{0,2}=b_{1,2}=\) \(b_{2,2}=-i,b_{3,2}=-2i,\) we can see that \[\begin{cases} b_{0,2}=-i=\frac{1}{2}b_{3,2}, \\ b_{1,2}=-i=\frac{1}{2}b_{3,2}, \\ b_{2,2}=-i=\frac{1}{2}b_{3,2}, \\ c_{j}=\frac{1}{2},\text{ }0<c_{j}<1,\text{ }j=0,1,2% \end{cases}\] and \(\max \left\{ \rho \left( A_{j,i}\right) :j=0,…,3;i=1,2\right\} <2.\) Then, according to Corollary 1, every transcendental solution \(f\) of Eq. (5) satisfies \(\rho (f)=+\infty\) and \(\rho _{2}(f)=2\). We can see that \(f\left( z\right) =e^{e^{iz^{2}}}\) represents a solution of Eq. (5) that satisfies \(\rho (f)=+\infty\) and \(\rho _{2}(f)=2\).
For the case of non-homogeneous equation, we have the following result;
Theorem 4. Let \(k\geq 2\) be an integer, \(P_{j}\left( z\right)\), \(Q_{j}\left( z\right) ,\) \(A_{j,i}\), \(a_{j,n}\), \(b_{j,n}\), \(\left( j=0,1,…,k-1\right)\) satisfy the hypotheses of Theorem 3. Let \(F\left( \not\equiv 0\right)\) be a meromorphic function of order \(\rho (f)<n\). Then every transcendental meromorphic solution \(f\) whose poles are of uniformly bounded multiplicities of Equation (4) satisfies \(\overline{\lambda }\left( f\right) =\lambda \left( f\right) =\rho \left( f\right) =+\infty\) and \(\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) =n,\) with at most one exceptional solution \(f_{0}\) of finite order.
Corollary 2. Let \(k\geq 2\) be an integer, \(P_{j}\left( z\right)\), \(Q_{j}\left( z\right) ,\) \(A_{j,i}\), \(a_{j,n}\), \(b_{j,n}\), \(\left( j=0,1,…,k-1\right)\) satisfy the hypotheses of Corollary 1. Let \(F\left( \not\equiv 0\right)\) be an entire function of order \(\rho (f)<n\). Then every transcendental solution \(f\) of Equation (4) satisfies \(\overline{\lambda }\left( f\right) =\lambda \left( f\right) =\rho \left( f\right) =+\infty\) and \(\overline{\lambda }% _{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) =n,\) with at most one exceptional solution \(f_{0}\) of finite order.
Example 2. Consider the following differential equation \[\ f^{\left( 3\right) }+\left( \left( z-1\right) e^{-z}+\left( z^{2}+z+2+% \frac{1}{z}\right) e^{-2z}\right) f^{\prime \prime } +\left( \left( z^{2}+z\right) e^{2z}+\left( -2z^{2}-4z-\frac{2}{z}% -1\right) e^{-z}\right) f^{\text{ }\prime }\notag\\ +\left( \left( z^{2}-z+1\right) e^{z}-\left( z^{2}+z+2+\frac{1}{z}\right) e^{-z}\right) f=2z^{3}+2z^{2}+z+1. \label{1.6}, \tag{6}\] Set \[\begin{cases} A_{0,1}\left( z\right) =z^{2}-z+1,\text{ }A_{0,2}\left( z\right) =-z^{2}-z-2-% \frac{1}{z}, \\ A_{1,1}\left( z\right) =z^{2}+z,\text{ }A_{1,2}\left( z\right) =-2z^{2}-4z-% \frac{2}{z}-1, \\ A_{2,1}\left( z\right) =z-1,\text{ }A_{2,2}\left( z\right) =z^{2}+z+2+\frac{1% }{z}% \end{cases}\] and \[\begin{cases} P_{0}\left( z\right) =z,\text{ }P_{1}\left( z\right) =2z, \\ P_{2}\left( z\right) =-z, \\ Q_{0}\left( z\right) =Q_{1}\left( z\right) =-z,\text{ }Q_{2}\left( z\right) =-2z, \\ F\left( z\right) =2z^{3}+2z^{2}+z+1.% \end{cases}\] We have \(a_{0,1}=1\), \(a_{1,1}=2=a_{S,1},\) \(a_{2,1}=-1=a_{d,1},\) we can see that \[\begin{cases} a_{0,1}=1=\frac{1}{2}a_{s,1},\text{ }c_{0}=\frac{1}{2},\text{ }0<c_{0}<1, \\ \arg a_{s,1}\neq \arg a_{d,1},% \end{cases}\] and \(b_{0,1}=b_{1,1}=\) \(-1,b_{2,1}=-2,\) we can see that \[\begin{cases} b_{0,1}=-1=\frac{1}{2}b_{2,1}, \\ b_{1,1}=-1=\frac{1}{2}b_{2,1}, \\ c_{j}=\frac{1}{2},0<c_{j}<1,j=0,1.% \end{cases}\] and \(\max \left\{ \rho \left( A_{j,i}\right) :j=0,…,2;i=1,2,\rho \left( F\right) \right\} <1.\) Then, according to Corollary 2, every transcendental solution \(f\) of Eq. (6) satisfies \(\rho (f)=+\infty\) and \(\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}(f)=1\) with at most one exceptional solution \(% f_{0}\) of finite order. We can see that \(f\left( z\right) =z+e^{e^{z}}\) represents a solution of Eq. (6) that satisfies \(\rho (f)=+\infty\) and \(\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}(f)=1\).
To prove our theorems, we need the following lemmas;
Lemma 1. [9] Let \(% P_{j}\left( z\right) \left( j=0,1,…,k\right)\) be polynomials with \(\deg P_{0}=n\) \(\left( n\geq 1\right)\) and \(\deg P_{j}\leq n\) \(\left( j=1,…,k\right) .\) Let \(A_{j}(z)\) \((j=0,1,…,k)\) be meromorphic functions with finite order and \(\max \left\{ \rho \left( A_{j}\right) :\text{ }% j=0,1,…,k\right\} <n\) such that \(A_{0}\left( z\right)\) \(\not\equiv 0.\) We denote \[F\left( z\right) =A_{k}e^{P_{k}\left( z\right) }+A_{k-1}e^{P_{k-1}\left( z\right) }+…+A_{1}e^{P_{1}\left( z\right) }+A_{0}e^{P_{0}\left( z\right) }.\] If \(\deg \left( P_{0}\left( z\right) -P_{j}\left( z\right) \right) =n\) for all \(j=1,…,k,\) then \(F\) is a nontrivial meromorphic function with finite order that satisfies \(\rho \left( F\right) =n.\)
Lemma 2. [10] Let \(f\) be a transcendental meromorphic function, and let \(\alpha >1\) and \(\varepsilon >0\) be given constants. Then there exist a set \(E_{1}\) \(\subset (1,+\infty )\) having finite logarithmic measure and a constant \(B>0\), that depends only on \(% \alpha\) and \(\left( n,m\right)\) \(\left( n,m\text{ positive integers with }n>m\geq 0\right)\) such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{1}\) , we have \[\left\vert \frac{f^{\left( n\right) }\left( z\right) }{f^{\left( m\right) }\left( z\right) }\right\vert \leq B\left( \frac{T\left( \alpha r,f\right) }{% r}\left( \log ^{\alpha }r\right) \log T\left( \alpha r,f\right) \right) ^{n-m}.\]
Lemma 3. [11] Let \(f(z)=% \frac{g(z)}{d(z)}\) be a meromorphic function with \(\rho (f)=\rho \leq +\infty\), where \(g(z)\) and \(d(z)\) are entire functions satisfying one of the following conditions:
\(g\) being transcendental and \(d\) being polynomial,
\(g\), \(d\) all being transcendental and \(\lambda \left( d\right) =\rho \left( d\right) =\beta <\rho \left( g\right) =\rho .\)
For each sufficiently large \(|z|=r\), let \(% z_{r}=re^{i\theta _{r}}\) be a point satisfying \(\left\vert g(z_{r})\right\vert\) \(=M(r,g)\). Then there exist a constant \(\delta _{r}\) \(\left( >0\right) ,\) a sequence \(% \left\{ r_{m}\right\} _{m\in \mathbb{N} },\) \(r_{m}\rightarrow +\infty\) and a set \(E_{2}\) of finite logarithmic measure such that the estimation \[\left\vert \frac{f(z)}{f^{\left( n\right) }(z)}\right\vert \leq r_{m}^{2n}\left( n\geq 1\text{ {is an integer}}\right)\] holds for all \(z\) satisfying \(\left\vert z\right\vert =r_{m}\) \(\notin E_{2},\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\).
Lemma 4. [12] Let \(P\left( z\right) =\left( \alpha +i\beta \right) z^{n}+\cdots\) \((\alpha ,\beta\) are real numbers\(,|\alpha |+|\beta |\neq 0)\) be a polynomial with degree\(\ n\geq 1\) and \(A(z)\) be a meromorphic function with \(\rho \left( A\right) <n\). Set \(f\left( z\right) =A(z)e^{P\left( z\right) },\) \(\left( z=re^{i\theta }\right) ,\) \(\delta \left( P,\theta \right) =\alpha \cos n\theta -\beta \sin n\theta .\) Then for any given \(\varepsilon >0,\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for any \(\theta \in \lbrack 0,2\pi )\diagdown H\) \((H=\{\theta \in \lbrack 0,2\pi ):\delta \left( P,\theta \right) =0\})\) for \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty ,\) we have
if \(\delta \left( P,\theta \right) >0,\) then \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P,\theta \right) r^{n}\right\} \leq |f\left( re^{i\theta }\right) |\leq \exp \left\{ \left( 1+\varepsilon \right) \delta \left( P,\theta \right) r^{n}\right\} ,\]
if \(\delta \left( P,\theta \right) <0,\) then \[\exp \left\{ \left( 1+\varepsilon \right) \delta \left( P,\theta \right) r^{n}\right\} \leq |f\left( re^{i\theta }\right) |\leq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P,\theta \right) r^{n}\right\} .\]
Lemma 5. [13] Let \(\varphi :[0,+\infty )\rightarrow \mathbb{R}\) and \(\psi\) \(:[0,+\infty )\rightarrow \mathbb{R}\) be monotone nondecreasing functions such that \(\varphi (r)\leq \psi (r)\) for all \(r\notin \left( E_{4}\cup \lbrack 0,1]\right) ,\) where \(E_{4}\) is a set of finite logarithmic measure. Let \(\alpha >1\) be a given constant. Then there exists an \(% r_{1}=r_{1}(\alpha )>0\) such that \(\varphi (r)\leq \psi (\alpha r)\) for all \(r>r_{1}\).
Lemma 6. [11,14] Suppose that \(k\geq 2\) and \(A_{0},\) \(A_{1},…,A_{k-1},\) \(F\) \((F\not\equiv 0\) or \(F\equiv 0)\) are meromorphic functions such that \(\rho =\max \left\{ \rho \left( A_{j}\right) ,\rho \left( F\right) :j=0,1,…k-1\right\} <\infty\). Let \(f\) be a transcendental meromorphic solution whose poles are of uniformly bounded multiplicities of the equation \[\ f^{\left( k\right) }+A_{k-1}f^{\left( k-1\right) }+\cdots +A_{1}f^{\prime }+A_{0}f=F. \label{2.1}, \tag{7}\] Then \(\rho _{2}\left( f\right) \leq \rho .\)
Lemma 7. [15,16] Let \(A_{j}(z)(\not\equiv 0)\), \(j=0,1,\cdots ,k-1,\) \(% F(z)\not\equiv 0\) be finite order meromorphic functions.
If \(f\) is a meromorphic solution of Eq. (7) with \(\rho \left( f\right) =+\infty ,\) then \(f\) satisfies \[\overline{\lambda }\left( f\right) =\lambda \left( f\right) =\rho \left( f\right) =+\infty .\]
If \(f\) is a meromorphic solution of Equation (7) with \(\rho \left( f\right) =+\infty\) and \(\rho _{2}\left( f\right) =\rho ,\) then \(f\) satisfies \[\overline{\lambda }\left( f\right) =\lambda \left( f\right) =\rho \left( f\right) =+\infty ,\text{ }\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) =\rho .\]
Lemma 8. [17] Let \(f\) be a meromorphic function of order \(\rho \left( f\right) =\rho <\infty .\) Then for any given \(\varepsilon >0\), there exists a set \(% E_{5}\subset (1,+\infty )\) that has finite linear measure and finite logarithmic measure such that when \(|z|=r\notin \lbrack 0,1]\cup E_{5},\) \(r\rightarrow +\infty ,\) we have \(\left\vert f(z)\right\vert \leq \exp \left( r^{\rho +\varepsilon }\right) .\)
First we prove that every transcendental meromorphic solution \(f\) of Eq. (3) is of order \(\rho \left( f\right) \geq n\) . Assume that \(f\) is a transcendental meromorphic solution of Eq. (3) with \(\rho \left( f\right) <n.\) We can rewrite Eq. (3) in the form \begin{equation} \left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left( z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right) f^{\left( k-1\right) } +\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right) }+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=-f^{\left( k\right) }. \tag{8}\end{equation}
Since \[\max \left\{ \rho \left( A_{j,i}\right) :j=0,1,…,k-1;i=1,2\right\} <n\] and \(\rho \left( f\right) <n,\) then \(A_{j,i}f^{\left( j\right) }\) \(\left( j=0,1,…,k-1;i=1,2\right)\) and \(f^{\left( k\right) }\) are meromorphic functions of finite order with \(\rho \left( A_{j,i}f^{\left( j\right) }\right)\) \(<n\) and \(\rho \left( f^{\left( k\right) }\right) <n.\) We have \(% A_{s,i}f^{\left( s\right) }\not\equiv 0\left( i=1,2\right)\). Indeed, if \(% A_{s,i}f^{\left( s\right) }\equiv 0\), it follows that \(f^{\left( s\right) }\equiv 0\). Then \(f\) has to be a polynomial of degree less than \(s\). This is a contradiction. Since \(a_{s,n}\neq b_{s,n}\) and \(% a_{j,n}=c_{j}a_{s,n},b_{j,n}=c_{j}^{\prime }b_{s,n},(0<c_{j}<1),(0<c_{j}^{\prime }<1),(j\neq s),a_{j,n}=c_{j}a_{s,n}\) or \(a_{j,n}=c_{j}a_{d,n}(0<c_{j}<1),\) then \(a_{j,n}\neq b_{j,n}\), \(a_{s,n}\neq a_{j,n}\), \(b_{s,n}\neq b_{j,n}\) and therefore \(\deg \left( P_{s}-P_{j}\right) =\deg \left( Q_{s}-Q_{j}\right) =n.\) Thus, by (8) and Lemma 1, we find that \(\rho \left( -f^{\left( k\right) }\right) =n,\) this contradicts the fact \(\rho \left( f^{\left( k\right) }\right) <n.\) Consequently, every meromorphic solution \(f\) of Eq. (3) is transcendental with order \(\rho \left( f\right) \geq n\).
Assume that \(f\) is a transcendental meromorphic solution whose poles are of uniformly bounded multiplicities of Eq. (3). By Lemma 2, there exist a set \(E_{1}\) \(\subset (1,+\infty )\) having finite logarithmic measure and a constant \(B>0\), such that for all \(% z\) satisfying \(|z|=r\notin \lbrack 0,1]\diagdown E_{1}\), we have \[\begin{equation} \left\vert \frac{f^{\left( j\right) }\left( z\right) }{f\left( z\right) }% \right\vert \leq B\left( T\left( 2r,f\right) \right) ^{k+1},\text{ }% j=1,2,…,k,\text{ }j\neq s. \end{equation}\tag{9}\]
By (3), it follows that the poles of \(f\) can only occur at the poles of \(A_{j,i}(z)\) \(\left( j=0,1,…,k-1;i=1,2\right)\). Note that the poles of \(f\) are of uniformly bounded multiplicities. Hence \[\lambda \left( \frac{1}{f}\right) \leq \max \left\{ \rho \left( A_{j,i}\right) :j=0,1,…,k-1;i=1,2\right\} <n.\] By Hadamard factorization theorem, we know that \(f\) can be written as \(f(z)=% \frac{g(z)}{d(z)},\) where \(g(z)\) and \(d(z)\) are entire functions with \[\lambda \left( d\right) =\rho \left( d\right) =\lambda \left( \frac{1}{f}% \right) <n\leq \rho \left( f\right) =\rho \left( g\right) .\] For each sufficiently large \(|z|=r\), let \(z_{r}=re^{i\theta _{r}}\) be a point satisfying \(\left\vert g(z_{r})\right\vert\) \(=M(r,g)\). By Lemma 3, there exist a constant \(\delta _{r}\) \(\left( >0\right) ,\) a sequence \(% \left\{ r_{m}\right\} _{m\in \mathbb{N} },\) \(r_{m}\rightarrow +\infty\) and a set \(E_{2}\) of finite logarithmic measure such that the estimation \[\left\vert \frac{f(z)}{f^{\left( s\right) }(z)}\right\vert \leq r_{m}^{2s} \label{3.3}, \tag{10}\] holds for all \(z\) satisfying \(\left\vert z\right\vert =r_{m}\) \(% \notin E_{2},\) \(r_{m}\rightarrow \infty\) and \(\arg z=\) \(\theta \in\) \(% \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\).
Set \(z=re^{i\theta },\) \(a_{s,n}=\left\vert a_{s,n}\right\vert e^{i\theta _{s}},\) \(a_{d,n}=\left\vert a_{d,n}\right\vert e^{i\theta _{d}}\), \(b_{s,n}=\left\vert b_{s,n}\right\vert e^{i\varphi }\), \(% \theta _{s}\), \(\theta _{d}\), \(\varphi \in \lbrack 0,2\pi )\), \(\theta _{s}\neq \theta _{d}.\) Then \[\ delta \left( P_{s},\theta \right) =\left\vert a_{s,n}\right\vert \cos \left( n\theta +\theta _{s}\right) , \\ \delta \left( Q_{s},\theta \right) =\left\vert b_{s,n}\right\vert \cos \left( n\theta +\varphi \right) , \\ \delta \left( P_{d},\theta \right) =\left\vert a_{d,n}\right\vert \cos \left( n\theta +\theta _{d}\right) . \tag{11}\] Since \(a_{j,n}=c_{j}a_{s,n},\) \(b_{j,n}=c_{j}^{\prime }b_{s,n},(0<c_{j}<1),(0<c_{j}^{\prime }<1),(j\neq s)\) and \(% c_{j},c_{j}^{\prime }\) \(\left( j=0,1,…,k-1\right)\) are distinct numbers, then \[\delta \left( P_{j},\theta \right) =c_{j}\delta \left( P_{s},\theta \right) \text{ or }\delta \left( P_{j},\theta \right) =c_{j}\delta \left( P_{d},\theta \right) ,\text{ }\delta \left( Q_{j},\theta \right) =c_{j}^{\prime }\delta \left( Q_{s},\theta \right). \tag{12}\] Set \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\}\) and \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}.\) For any given \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},% \mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\right)\), we have \(\delta \left( P_{s},\theta \right) \neq 0,\) \(\delta \left( P_{d},\theta \right) \neq 0\) and \[\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) \text{ or }\delta \left( P_{s},\theta \right) <\delta \left( P_{d},\theta \right) .\]
\(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right)\). Here we also divide our proof in three subcases: \(\left( \varphi =\theta _{s}\right)\) or \(\left( \varphi =\theta _{d}\right)\) or (\(\varphi \neq \theta _{s}\) and \(\varphi \neq \theta _{d}\)).
Subcase 1.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0,\delta \left( Q_{s},\theta \right) >0.\) If \(% \delta \left( P_{s},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >0,\) then we suppose \(\delta \left( P_{s},\theta \right) >\delta \left( Q_{s},\theta \right)\) without loss of generality. Set \(\delta _{3}=\max \left\{ \delta \left( P_{j},\theta \right) ,\delta \left( Q_{j},\theta \right) ;j\neq s\right\}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \},\) then \(0<\delta _{3}<\delta \left( P_{s},\theta \right) .\) Thus, by Lemma 4, for any given \[0<2\varepsilon <\min \left\{ \frac{\delta \left( P_{s},\theta \right) -\delta _{3}}{\delta \left( P_{s},\theta \right) +\delta _{3}},\frac{\delta \left( P_{s},\theta \right) -\delta \left( Q_{s},\theta \right) }{\delta \left( P_{s},\theta \right) +\delta \left( Q_{s},\theta \right) }\right\} ,\] where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s\right\} ,\text{ }% c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\) \[\begin{align} \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert &\geq \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert -\left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert\notag\\ &\geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1+\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} , \end{align}\tag{13}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1+\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1+\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) \delta _{3}r^{n}\right\} ,% \text{ }j=0,1,2,…,k-1,\text{ }j\neq s. \end{align}\tag{14}\]
From (3), we have \[\left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert \leq \left\vert \frac{f}{f^{\left( s\right) }}\right\vert \left( \left\vert \frac{f^{\left( k\right) }}{f}\right\vert +\underset{j=0,j\neq s}{\overset{% k-1}{\sum }}\left\{ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \left\vert \frac{f^{\left( j\right) }}{f}\right\vert \right\} \right) . \tag{15}\] By substituting (9),(10),(13),(14), into (15), for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup \left( E_{1}\cup E_{2}\cup E_{3}\right) ,\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},% \mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we have \[\frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ \left( 1+\varepsilon \right) \delta _{3}r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}\exp \left\{ \left( 1+\varepsilon \right) \delta _{3}r_{m}^{n}\right\} .\] Since \(0<2\varepsilon <\frac{\delta \left( P_{s},\theta \right) -\delta _{3}% }{\delta \left( P_{s},\theta \right) +\delta _{3}},\) then we can get \[\ exp \left\{ \frac{\delta \left( P_{s},\theta \right) -\delta _{3}}{2}% r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{16}\] By Lemma 5 and (16), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] By Lemma 6 and Eq. (3), we have \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.2. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0,\delta \left( Q_{s},\theta \right) <0.\) We have \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{s},\theta \right)\) and \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0<\delta \left( P_{s},\theta \right) ,\) Put \[d=\max \left\{ c_{j}:j=0,1,…,k-1,j\neq s\right\} ,\text{ }d_{s}=1.\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\frac{1}{2}% \left( \frac{1-d}{1+d}\right) ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \[\begin{align} \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert &\geq \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert -\left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert\notag\\ &\geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} , \end{align}\tag{17}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1+\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) d\text{ }\delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,j\neq s. \end{align}\tag{18}\]
By substituting (9),(10),(17),(18), into(15), for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup \left( E_{1}\cup E_{2}\cup E_{3}\right) ,\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\) \(\diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we have \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}\exp \left\{ \left( 1+\varepsilon \right) d\text{ }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} .\] Since \(0<\varepsilon <\frac{1}{2}\left( \frac{1-d}{1+d}\right) ,\) then the last inequalities leads to \[\ exp \left\{ \frac{\left( 1-d\right) }{2}\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{19}\] By Lemma 5 and (19), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.3. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) >0.\) We suppose \(\delta \left( P_{s},\theta \right) >\delta \left( Q_{s},\theta \right)\) without loss of generality. By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{% 1-\nu }{1+\nu }\right) ,\frac{1}{2}\left( \frac{\delta \left( P_{s},\theta \right) -\delta \left( Q_{s},\theta \right) }{\delta \left( P_{s},\theta \right) +\delta \left( Q_{s},\theta \right) }\right) \right\} ),\) where \[\nu =\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,\text{ }\nu _{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},\) \(r\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \[\begin{align} \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert& \geq \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert -\left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert\notag\\ &\geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1+\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} , \end{align}\tag{20}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert& \leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1+\varepsilon \right) c_{j}\delta \left( P_{s},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1+\varepsilon \right) c_{j}^{\prime }\delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) \nu \delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,\text{ }j\neq s. \end{align}\tag{21}\]
By substituting (9),(10),(20) and (21),into (15), for all \(% z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\) \(\diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) we have \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}\exp \left\{ \left( 1+\varepsilon \right) \nu \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} .\] Since \(0<\varepsilon <\frac{1}{2}\left( \frac{1-\nu }{1+\nu }\right) ,\) then \[\ exp \left\{ \frac{\left( 1-\nu \right) }{2}\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{22}\] By Lemma 5 and (22), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, then by Lemma 6 and from Eq. (3), we have \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.4. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) <0.\) We have \(\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0,\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0,\) then \(\delta \left( Q_{s},\theta \right) <\) \(% \delta \left( P_{s},\theta \right) .\) Put \[\nu ^{\prime }=\max \left\{ c_{j}:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,\nu _{s}^{\prime }=1.\] By Lemma 3, for any given \(0<\varepsilon <\frac{1}{2}\left( \frac{1-\nu ^{\prime }}{1+\nu ^{\prime }}\right) ,\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \[ \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert \geq \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert -\left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert\notag\\ \geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ \geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} , \tag{23}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1+\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) \nu ^{\prime }\text{ }\delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,j\neq s. \end{align}\tag{24}\]By substituting (9),(10),(23),(24) into(15), for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup \left( E_{1}\cup E_{2}\cup E_{3}\right) ,\) \(r_{m}\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] we have \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ \left( 1+\varepsilon \right) \nu ^{\prime }\text{ }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} .\] Since \(0<\varepsilon <\frac{1}{2}\left( \frac{1-\nu ^{\prime }}{1+\nu ^{\prime }}\right) ,\) then \[\exp \left\{ \frac{\left( 1-\nu ^{\prime }\right) }{2}\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2k}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1}. \tag{25}\] By Lemma 5 and (25) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.5. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) >0.\) We have \(\delta \left( P_{d},\theta \right) <\delta \left( P_{s},\theta \right) <0<\delta \left( Q_{s},\theta \right) .\) Put \[d^{\prime }=\max \left\{ c_{j}^{\prime }:j=0,1,…,k-1,j\neq s\right\} ,% \text{ }d_{s}^{\prime }=1.\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\frac{1}{2}% \left( \frac{1-d^{\prime }}{1+d^{\prime }}\right) ),\) there is a set \(% E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \[\begin{align} \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert &\geq \left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert -\left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert\notag\\ &\geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\}\notag\\ &\geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\} , \end{align}\tag{26}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1+\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) d^{\prime }\delta \left( Q_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,\text{ }j\neq s. \end{align}\tag{27}\] By using a similar proof as that of subcase 1.2\(,\) since \(0<\varepsilon <% \frac{1}{2}\left( \frac{1-d^{\prime }}{1+d^{\prime }}\right) ,\) we can obtain for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }% \theta _{r}+\delta _{r}\right]\) \[\exp \left\{ \frac{\left( 1-d^{\prime }\right) }{2}\delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1}. \tag{28}\] So, by Lemma 5 and (28) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.6. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) <0.\) Set \[\lambda =\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} .\] By Lemma 3, for any given \(0<\varepsilon <1,\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \[\ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ \leq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ \leq 2\exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1. \tag{29}\] From (3), we have \[\ 1\leq \left\vert \frac{f}{f^{\left( k\right) }}\right\vert \underset{j=0}{% \overset{k-1}{\sum }}\left\{ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \left\vert \frac{f^{\left( j\right) }}{f}\right\vert \right\} . \tag{30}\] By substituting (9),(10),(29) into (30), for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we have \[1\leq 2kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( \varepsilon -1\right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{31}\] Since \(0<\varepsilon <1\) and \(\lambda \delta \left( P_{s},\theta \right) <0,\) then by Lemma 2.5 and (31), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 2.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0.\) Because of \(a_{s,n}\neq b_{s,n}\), we suppose \(\left\vert a_{s,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by \(\left( 3.4\right)\) and \(% \left( 3.5\right)\) we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Put \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1.\] Then, \(0<c<1.\) By Lemma 3, for any given \(\varepsilon\) with \[0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,\frac{1% }{2}\left( \frac{\delta \left( Q_{s},\theta \right) -\delta \left( P_{s},\theta \right) }{\delta \left( Q_{s},\theta \right) +\delta \left( P_{s},\theta \right) }\right) \right\} ,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\ \theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have \[ \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert \geq \left\vert A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert -\left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }\right\vert\notag\\ \geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1+\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\}\notag\\ \geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\} , \tag{32}\] \[ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ \leq \exp \left\{ \left( 1+\varepsilon \right) c\delta \left( P_{s},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1+\varepsilon \right) c\delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ \leq 2\exp \left\{ \left( 1+\varepsilon \right) c\delta \left( Q_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,\text{ }j\neq s. \tag{33}\] By substituting (9),(10),(32),(33) into (15), since \(% 0<\varepsilon <\frac{1}{2}\left( \frac{1-c}{1+c}\right) ,\) for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we obtain \[\exp \left\{ \frac{\left( 1-c\right) }{2}\delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{34}\] Thus, by Lemma 5 and (34) we get \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 2.2. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) .\) Because of \(a_{s,n}\neq b_{s,n}\), we suppose \(\left\vert a_{s,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11)and(12) we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Put \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1.\] Using the same reasoning as in Subcase 2.1 , we can also obtain \(% \rho \left( f\right) =+\infty\) and \(\rho _{2}\left( f\right) =n.\)
Subcase 2.3. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) .\) We have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <\delta \left( P_{s},\theta \right) <0,\) \(\delta \left( P_{s},\theta \right) <\delta \left( P_{j},\theta \right) <0\). Put \[\lambda =\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} .\] By Lemma 3, for any given \(0<\varepsilon <1,\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have \[ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert ;\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ \leq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ \leq 2\exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1. \tag{35}\] By substituting (9),(10)and(35)into(30), for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we have \[1\leq 2kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( \varepsilon -1\right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{36}\] Since \(0<\varepsilon <1\) and \(\lambda \delta \left( P_{s},\theta \right) <0,\) then by Lemma 5 and (36) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 3.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0.\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11) and (12), we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Then, \(% 0<c<1.\) By Lemma 3, for any given \(\varepsilon\) with \[0<\varepsilon <\min \frac{1}{2}\left\{ \left( \frac{1-c}{1+c}\right) ,\frac{1% }{2}\left( \frac{\delta \left( Q_{s},\theta \right) -\delta \left( P_{s},\theta \right) }{\delta \left( Q_{s},\theta \right) +\delta \left( P_{s},\theta \right) }\right) \right\} ,\] where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\ \theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (32)and(33) hold. By substituting (9),(10),(32),(33)into(15), we obtain (34) for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}).\) Since \(0<\varepsilon <\frac{1}{2}\left( \frac{1-c}{1+c}\right)\), then by Lemma 5 and (34) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 3.2. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) .\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11)and(12), we have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0,\) \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{d},\theta \right) <0<\delta \left( P_{s},\theta \right)\). Then, \(% 0<c<1.\) By Lemma 3, for any given \(\varepsilon\) \(\left( 0<\varepsilon <% \frac{1}{2}\left( \frac{1-c}{1+c}\right) \right) ,\) where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\ \theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have \[\begin{align} \left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert &\geq \left\vert A_{s,2}\left( z\right) e^{P_{s}\left( z\right) }\right\vert -\left\vert A_{s,1}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert\notag\\ &\geq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} -\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\geq \frac{1}{2}\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r^{n}\right\} , \end{align}\tag{37}\] \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1+\varepsilon \right) c\delta \left( P_{s},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) c\delta \left( Q_{s},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1+\varepsilon \right) c\delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1,\text{ }j\neq s. \end{align}\tag{38}\]
By substituting (9),(10),(37)and(38)into(15), by \(% 0<\varepsilon <\frac{1}{2}\left( \frac{1-c}{1+c}\right) ,\) for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we obtain \[\exp \left\{ \frac{\left( 1-c\right) }{2}\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4kBr_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}. \tag{39}\] Therefore, by Lemma 5 and (39) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Equation 3, we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 3.3. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) .\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11)and(12), we have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0\), \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{d},\theta \right) <\delta \left( P_{s},\theta \right) <0\). Put \[c^{\prime }=\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1\right\} .\] By Lemma 3, for any given \(0<\varepsilon <1,\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(% H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have \[\begin{align} \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert &\leq \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }\right\vert +\left\vert A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert\notag\\ &\leq \exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{j},\theta \right) r^{n}\right\} +\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{j},\theta \right) r^{n}\right\}\notag\\ &\leq 2\exp \left\{ \left( 1-\varepsilon \right) c^{\prime }\delta \left( P_{s},\theta \right) r^{n}\right\} ,\text{ }j=0,1,2,…,k-1. \end{align}\tag{40}\]
By substituting (9),(10)and(40)into(30), for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] we obtain \[1\leq 2kBr_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ \left( 1-\varepsilon \right) c^{\prime }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( \varepsilon -1\right) c^{\prime }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2kr_{m}^{2k}B\left[ T\left( 2r_{m},f\right) \right] ^{k+1}. \tag{41}\] By Lemma 5 and (41) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log ^{+}T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log _{2}^{+}T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from Eq. (3), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
\(\delta \left( P_{s},\theta \right) <\delta \left( P_{d},\theta \right)\). Here we also divide our proof in three subcases: \(% \left( \varphi =\theta _{s}\right)\) or \(\left( \varphi =\theta _{d}\right)\) or (\(\varphi \neq \theta _{s}\) and \(\varphi \neq \theta _{d}\) ). Using the same reasoning as in I, we can also obtain \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
First, we show that (4) can possess at most one exceptional transcendental meromorphic solution \(f_{0}\) of finite order. In fact, if \(f_{\ast }\) is another transcendental meromorphic solution of finite order of Eq. (4), then \(% f_{0}-f_{\ast }\) is of finite order. But \(f_{0}-f_{\ast }\) is a transcendental meromorphic solution of the corresponding homogeneous equation of (4). This contradicts Theorem 3. We assume that \(f\) is an infinite order meromorphic solution of (4) whose poles are of uniformly bounded multiplicities. By Lemma 7 and Lemma 8 , we have \(\overline{\lambda }\left( f\right) =\lambda \left( f\right) =\rho \left( f\right) =+\infty\) and \(\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) \leq n.\)
Now, we prove that \(\rho _{2}\left( f\right) \geq n.\) By Lemma 3, there exists a set \(E_{1}\) \(\subset (1,+\infty )\) having finite logarithmic measure and a constant \(B>0\) such that for all \(z\) satisfying \(% |z|=r\notin \lbrack 0,1]\diagdown \lbrack E_{1}\), we have (9). Set \[\rho _{1}=\max \left\{ \rho \left( F\right) ,\rho \left( A_{j,i}(z)\right) :j=0,1,…,k-1;i=1,2\right\} .\] By (4), it follows that the poles of \(f\) can only occur at the poles of \(F\) and \(A_{j,i}(z),j=0,1,…,k-1;i=1,2\). Note that the poles of \(f\) are of uniformly bounded multiplicities. Hence \[\lambda \left( \frac{1}{f}\right) \leq \max \left\{ \rho \left( A_{j,i}(z)\right) :j=0,1,…,k-1;i=1,2\right\} =\rho _{1}.\] By Hadamard factorization theorem, we know that \(f\) can be written as \(f(z)=% \frac{g(z)}{d(z)},\) where \(g(z)\) and \(d(z)\) are entire functions with \[\lambda \left( d\right) =\rho \left( d\right) =\lambda \left( \frac{1}{f}% \right) \leq \rho _{1}<\rho \left( f\right) =\rho \left( g\right) =+\infty .\] For each sufficiently large \(|z|=r\), let \(z_{r}=re^{i\theta _{r}}\) be a point satisfying \(\left\vert g(z_{r})\right\vert\) \(=M(r,g)\). By Lemma 3, there exist a constant \(\delta _{r}\) \(\left( >0\right) ,\) a sequence \(% \left\{ r_{m}\right\} _{m\in \mathbb{N} },\) \(r_{m}\rightarrow +\infty\) and a set \(E_{2}\) of finite logarithmic measure such that the estimation (10) holds for all \(z\) satisfying \(\left\vert z\right\vert =r_{m}\) \(\notin E_{2},\) \(% r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\). Since \(|g(z)|\) is continuous in \(|z|=r\), then there exists a constant \(r(>0)\) such that for all \(z\) satisfying \(|z|=r\) sufficiently large and \(\arg z=\) \(\theta \in\) \(% \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] ,\) we have \[\frac{1}{2}|g(z_{r})|<|g(z)|<\frac{3}{2}|g(z_{r})|. \tag{42}\] On the other hand, by Lemma 8, for a given \(\varepsilon \left( 0<\varepsilon <n-\rho _{1}\right) ,\) there exists a set \(E_{5}\subset (1,+\infty )\) that has finite linear measure and finite logarithmic measure such that when \(|z|=r\notin \lbrack 0,1]\cup E_{5},\) \(r\rightarrow +\infty ,\) we have \[\left\vert F\left( z\right) \right\vert \leq \exp \left\{ r^{\rho _{1}+\varepsilon }\right\} ,\left\vert d\left( z\right) \right\vert \leq \exp \left\{ r^{\rho _{1}+\varepsilon }\right\} . \tag{43}\] Since \(|g(z)|=M(r,g)\geq 1\), from (43), we obtain \[\left\vert \frac{F\left( z\right) }{f\left( z\right) }\right\vert =\left\vert \frac{d\left( z\right) F\left( z\right) }{g\left( z\right) }% \right\vert \leq \frac{\left\vert d\left( z\right) F\left( z\right) \right\vert }{M(r,g)} \leq \exp \left\{ r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ r^{\rho _{1}+\varepsilon }\right\} =\exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\}, \tag{44}\] for \(|z|=r\notin \lbrack 0,1]\cup E_{5},\) \(r\rightarrow +\infty .\) Set \(\nu =\min \left\{ \delta _{r},\lambda _{r}\right\} .\) Suppose that \(A_{j,i}(z)\), \(P_{j}(z),\) \(Q_{j}(z)\) \(a_{j,n},b_{j,n},\left( j=0,1,…,k-1;i=1,2\right)\) satisfy the hypotheses of Theorem 3. Set \(z=re^{i\theta },\) \(% a_{s,n}=\left\vert a_{s,n}\right\vert e^{i\theta _{s}},\) \(% a_{d,n}=\left\vert a_{d,n}\right\vert e^{i\theta _{d}}\), \(b_{s,n}=\left\vert b_{s,n}\right\vert e^{i\varphi }\), \(\theta _{s}\), \(\theta _{d}\), \(\varphi \in \lbrack 0,2\pi )\), \(\theta _{s}\neq \theta _{d},.\) For any given \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}% \right] \diagdown\) \(\left( H_{1}\cup H_{2}\right)\), we have \(\delta \left( P_{s},\theta \right) \neq 0,\delta \left( P_{d},\theta \right) \neq 0\) and \[\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) \text{ or }\delta \left( P_{s},\theta \right) <\delta \left( P_{d},\theta \right) .\]
\(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right)\). Here we also divide our proof in three cases: \(\left( \varphi =\theta _{s}\right)\) or \(\left( \varphi =\theta _{d}\right)\) or (\(% \varphi \neq \theta _{s}\) and \(\varphi \neq \theta _{d}\)).
Case 1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right)\) and (\(\varphi \neq \theta _{s}\) and \(% \varphi \neq \theta _{d}\)).
Subcase 1.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0,\delta \left( Q_{s},\theta \right) >0.\) If \(% \delta \left( P_{s},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >0,\) then we suppose \(\delta \left( P_{s},\theta \right) >\delta \left( Q_{s},\theta \right)\) without loss of generality. Set \(\delta _{3}=\max \left\{ \delta \left( P_{j},\theta \right) ,\delta \left( Q_{j},\theta \right) ;j\neq s\right\}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \},\) then \(0<\delta _{3}<\delta \left( P_{s},\theta \right) .\) Thus by Lemma 3, for any given \(\varepsilon\) with \[0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{\delta \left( P_{s},\theta \right) -\delta _{3}}{\delta \left( P_{s},\theta \right) +\delta _{3}}\right) ,\frac{1}{2}\left( \frac{\delta \left( P_{s},\theta \right) -\delta \left( Q_{s},\theta \right) }{\delta \left( P_{s},\theta \right) +\delta \left( Q_{s},\theta \right) }\right) ,n-\rho _{1}\right\} ,\] where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s\right\} ,c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] we have (13)and(14) hold. From (4), we can write \[\left\vert A_{s,1}\left( z\right) e^{P_{s}\left( z\right) }+A_{s,2}\left( z\right) e^{Q_{s}\left( z\right) }\right\vert \leq \left\vert \frac{f}{f^{\left( s\right) }}\right\vert \left( \left\vert \frac{F\left( z\right) }{f}\right\vert +\left\vert \frac{f^{\left( k\right) }% }{f}\right\vert +\underset{j=0,j\neq s}{\overset{k-1}{\sum }}\left\{ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \left\vert \frac{f^{\left( j\right) }}{f}\right\vert \right\} \right) . \tag{45}\] By substituting (9),(10),(13),(14)and(44)into(45), for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] we have \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) \delta _{3}r_{m}^{n}\right\} . \tag{46}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{\delta \left( P_{s},\theta \right) -\delta _{3}}{\delta \left( P_{s},\theta \right) +\delta _{3}}\right) ,n-\rho _{1}\right\} ,\) then by Lemma 5 and (46), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] By Lemma 6 and from (4), we have \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.2. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0,\delta \left( Q_{s},\theta \right) <0.\) We have \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{s},\theta \right)\) and \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0<\delta \left( P_{s},\theta \right) .\) Put \[d=\max \left\{ c_{j}:j=0,1,…,k-1,j\neq s\right\} ,d_{s}=1\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-d}{1+d}\right) ,n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have (17)and(18) hold. By substituting (9),(10),(17),(18)and(44)into(45) for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \(\arg z=\) \(% \theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we get \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2k}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}\exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) d\text{ }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} . \tag{47}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-d}{1+d}\right) ,n-\rho _{1}\right\} ,\) by Lemma 5 and (47), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.3. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) >0.\) We suppose \(\delta \left( P_{s},\theta \right) >\delta \left( Q_{s},\theta \right)\) without loss of generality. By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{% 1-\nu }{1+\nu }\right) ,\frac{1}{2}\left( \frac{\delta \left( P_{s},\theta \right) -\delta \left( Q_{s},\theta \right) }{\delta \left( P_{s},\theta \right) +\delta \left( Q_{s},\theta \right) }\right) ,n-\rho _{1}\right\} ),\) where \[\nu =\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,\nu _{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},\) \(r\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have (20)and(21) hold. By substituting (9),(10),(20),(21)and(44)into(45) for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \[\arg z=\mathit{\ }\theta \in \mathit{\ }\left[ \theta _{r}-\delta _{r},% \mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\] we get \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) \nu \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} . \tag{48}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-\nu }{1+\nu }% \right) ,n-\rho _{1}\right\} ,\) then by Lemma 5 and (48), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, then by Lemma 6 and from (4), we have \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.4. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) <0.\) We have \(\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0,\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0,\) then \(\delta \left( Q_{s},\theta \right) <\) \(% \delta \left( P_{s},\theta \right) .\) Put \[\nu ^{\prime }=\max \left\{ c_{j}:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,\nu _{s}^{\prime }=1.\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-\nu ^{\prime }}{1+\nu ^{\prime }}\right) ,n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin % \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have \(\left( 3.16\right)\) and \(\left( 3.17\right)\) hold. By substituting (9),(10),(23),(24)and(44)into(45) for all \(z\) satisfying \(% |z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(% r_{m}\rightarrow +\infty\) and \[\arg z=\mathit{\ }\theta \in \mathit{\ }\left[ \theta _{r}-\delta _{r},% \mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] we have \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2k}\text{ }\left[ T\left( 2r_{m},f\right) % \right] ^{k+1}\exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) \nu ^{\prime }\text{ }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} . \tag{49}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-\nu ^{\prime }}{% 1+\nu ^{\prime }}\right) ,n-\rho _{1}\right\} ,\) then by Lemma 5 and (49), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.5. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) >0.\) We have \(\delta \left( P_{d},\theta \right) <\delta \left( P_{s},\theta \right) <0<\delta \left( Q_{s},\theta \right) .\) Put \[d^{\prime }=\max \left\{ c_{j}^{\prime }:j=0,1,…,k-1,j\neq s\right\} ,d_{s}^{\prime }=1.\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-d^{\prime }}{1+d^{\prime }}\right) ,n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin % \left[ 0,1\right] \cup E_{3},\) \(r\rightarrow +\infty\) and \[\arg z=\theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have (26) and (27) hold. Using a similar proof as that of Subcase 1.5 of Theorem 3 by (45), we can obtain for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\) \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) d^{\prime }\delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} . \tag{50}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-d^{\prime }}{% 1+d^{\prime }}\right) ,n-\rho _{1}\right\} ,\) by Lemma 5 and (50), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 1.6. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) ,\delta \left( Q_{s},\theta \right) <0.\) Set \[\lambda =\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} .\tag{51}\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2},n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},\) \(r\rightarrow +\infty\) and \(\arg z=\theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0,\delta \left( Q_{s},\theta \right) =\delta \left( P_{s},\theta \right) \}\) are finite sets, we have (29) holds\(.\) From (4), we have \[1\leq \left\vert \frac{f}{f^{\left( k\right) }}\right\vert \left( \left\vert \frac{F\left( z\right) }{f\left( z\right) }\right\vert +\underset{j=0}{% \overset{k-1}{\sum }}\left\{ \left\vert A_{j,1}\left( z\right) e^{P_{j}\left( z\right) }+A_{j,2}\left( z\right) e^{Q_{j}\left( z\right) }\right\vert \left\vert \frac{f^{\left( j\right) }}{f}\right\vert \right\} \right) . \tag{51}\] By substituting (9),(10),(29)and(44)into(51) for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in\) \(% \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) we get \[1\leq 2\left( k+1\right) Br_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( \varepsilon -1\right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2\left( k+1\right) Br_{m}^{2k}\exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \left[ T\left( 2r_{m},f\right) \right] ^{k+1}. \tag{52}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2},n-\rho _{1}\right\}\) and \(% \delta \left( P_{s},\theta \right) <0,\) by Lemma 5 and (52), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Case 2. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right)\) and\(\ \varphi =\theta _{s}.\mathbf{\ }\)
Subcase 2.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0.\) Because of \(a_{s,n}\neq b_{s,n}\), we suppose \(\left\vert a_{s,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11) and (12), we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Put \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1.\] Then, \(0<c<1.\) By Lemma 3, for any given \(\varepsilon\) with \[0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,\frac{1% }{2}\left( \frac{\delta \left( Q_{s},\theta \right) -\delta \left( P_{s},\theta \right) }{\delta \left( Q_{s},\theta \right) +\delta \left( P_{s},\theta \right) }\right) ,n-\rho _{1}\right\},\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logar measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \[\arg z=\ \theta \in \ \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (32) and (33) hold. By substituting (9),(10),(32),(33)and(44)into(45), we obtain for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},% \mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3})\) \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\text{ }\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left\{ 2r^{\rho _{1}+\varepsilon }\right\} \exp \left\{ \left( 1+\varepsilon \right) c\delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} .\tag{53}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,n-\rho _{1}\right\}\), then by Lemma 5 and (53) we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 2.2. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) .\) Because of \(a_{s,n}\neq b_{s,n}\), we suppose \(\left\vert a_{s,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11) and (12) we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Put \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1.\] Using the same reasoning as in Subcase 2.1 , we can also obtain \(% \rho \left( f\right) =+\infty\) and \(\rho _{2}\left( f\right) =n.\)
Subcase 2.3. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) .\) We have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <\delta \left( P_{s},\theta \right) <0,\) \(\delta \left( P_{s},\theta \right) <\delta \left( P_{j},\theta \right) <0\). Put \[\lambda =\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} .\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2},n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (35) holds\(.\) By (9),(10),(35),(44)and(51), we have for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup \left( E_{1}\cup E_{2}\cup E_{3}\right) ,\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown (H_{1}\cup H_{2}\cup H_{3}),\) \[1\leq 2\left( k+1\right) Br_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left( 2r^{\rho _{1}+\varepsilon }\right) \exp \left\{ \left( 1-\varepsilon \right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} ,\] which gives \[\exp \left\{ \left( \varepsilon -1\right) \lambda \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2\left( k+1\right) Bkr_{m}^{2k}\exp \left( 2r^{\rho _{1}+\varepsilon }\right) \left[ T\left( 2r_{m},f\right) \right] ^{k+1}. \tag{54}\] Since \(0<\varepsilon <n-\rho _{1}\) and \(\delta \left( P_{s},\theta \right) <0,\) then by Lemma 5 and (54), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Case 3. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right)\) and\(\ \varphi =\theta _{d}.\ \)
Subcase 3.1. \(\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) >0.\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11)and(12), we have \(\delta \left( Q_{s},\theta \right) >\delta \left( Q_{j},\theta \right) >0\), \(\delta \left( Q_{s},\theta \right) >\delta \left( P_{s},\theta \right) >\delta \left( P_{j},\theta \right) >0\). Then, \(0<c<1.\) By Lemma 3, for any given \(\varepsilon\) with \[0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,\frac{1% }{2}\left( \frac{\delta \left( Q_{s},\theta \right) -\delta \left( P_{s},\theta \right) }{\delta \left( Q_{s},\theta \right) +\delta \left( P_{s},\theta \right) }\right) ,n-\rho _{1}\right\} ,\] where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},\) \(r\rightarrow +\infty\) and \[\arg z=\theta \in \left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\] where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (32)and(33) hold. By substituting (9),(10),(32),(33)and(44)into(45), we obtain \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left( 2r^{\rho _{1}+\varepsilon }\right) \exp \left\{ \left( 1+\varepsilon \right) c\delta \left( Q_{s},\theta \right) r_{m}^{n}\right\} \tag{55}\] for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) .\) Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{% 1-c}{1+c}\right) ,n-\rho _{1}\right\}\), then by Lemma 5 and (55), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 3.2. \(\delta \left( P_{s},\theta \right) >0>\delta \left( P_{d},\theta \right) .\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11)and(12), we have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0\), \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{d},\theta \right) <0<\delta \left( P_{s},\theta \right)\). Then, \(0<c<1.\) By Lemma 3, for any given \(\varepsilon\) \(\left( 0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,n-\rho _{1}\right\} \right) ,\) where \[c=\max \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1,j\neq s,j\neq d\right\} ,c_{s}=1,\] there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logar measure such that for all \(z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right]\) \(% \diagdown H_{1}\cup H_{2}\cup H_{3},\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(% H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (37)and(38) hold. Substituting (9),(10),(37),(38)and(44)into(45), we obtain for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1\right] \cup (E_{1}\cup E_{2}\cup E_{3}),\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right)\) \[\exp \left\{ \left( 1-\varepsilon \right) \delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 4\left( k+1\right) Br_{m}^{2s}\left[ T\left( 2r_{m},f\right) \right] ^{k+1} \exp \left\{ \left( 1+\varepsilon \right) c\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} . \tag{56}\] Since \(0<\varepsilon <\min \left\{ \frac{1}{2}\left( \frac{1-c}{1+c}\right) ,n-\rho _{1}\right\}\), then by Lemma 5 and (56), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Subcase 3.3. \(0>\delta \left( P_{s},\theta \right) >\delta \left( P_{d},\theta \right) .\) Because of \(a_{d,n}\neq b_{s,n}\), we suppose \(\left\vert a_{d,n}\right\vert <\left\vert b_{s,n}\right\vert\) without loss of generality. In this case, by (11) and (12), we have \(\delta \left( Q_{s},\theta \right) <\delta \left( Q_{j},\theta \right) <0\), \(\delta \left( Q_{s},\theta \right) <\delta \left( P_{d},\theta \right) <\delta \left( P_{s},\theta \right) <0\). Put \[c^{\prime }=\min \left\{ c_{j},c_{j}^{\prime }:j=0,1,…,k-1\right\} .\] By Lemma 3, for any given \(\varepsilon\) (\(0<\varepsilon <\min \left\{ \frac{1}{2},n-\rho _{1}\right\} ),\) there is a set \(E_{3}\subset \lbrack 1,+\infty )\) having finite logarithmic measure such that for all \(% z\) satisfying \(|z|=r\notin \left[ 0,1\right] \cup E_{3},r\rightarrow +\infty\) and \(\arg z=\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{% \ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right) ,\) where \(H_{1}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =0,\delta \left( P_{d},\theta \right) =0\},\) \(% H_{2}=\{\theta \in \lbrack 0,2\pi ):\delta \left( P_{s},\theta \right) =\delta \left( P_{d},\theta \right) \}\) and \(H_{3}=\{\theta \in \lbrack 0,2\pi ):\delta \left( Q_{s},\theta \right) =0\}\) are finite sets, we have (40) holds\(.\) By substituting (9),(10),(40)and(44)into(51), we obtain for all \(z\) satisfying \(|z|=r_{m}\notin \left[ 0,1% \right] \cup \left( E_{1}\cup E_{2}\cup E_{3}\right) ,\) \(r_{m}\rightarrow +\infty\) and \(\arg z=\) \(\theta \in\) \(\left[ \theta _{r}-\delta _{r},\mathit{\ }\theta _{r}+\delta _{r}\right] \diagdown \left( H_{1}\cup H_{2}\cup H_{3}\right)\) \[1\leq 2\left( k+1\right) Br_{m}^{2k}\left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left( 2r^{\rho _{1}+\varepsilon }\right) \exp \left\{ \left( 1-\varepsilon \right) c^{\prime }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\}\] which gives \[\exp \left\{ \left( \varepsilon -1\right) c^{\prime }\delta \left( P_{s},\theta \right) r_{m}^{n}\right\} \leq 2\left( k+1\right) Br_{m}^{2k} \left[ T\left( 2r_{m},f\right) \right] ^{k+1}\exp \left( 2r^{\rho _{1}+\varepsilon }\right) . \tag{57}\] By Lemma 5 and (57), we obtain \[\rho \left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log T\left( r_{m},f\right) }{\log r_{m}}=+\infty\] and \[\rho _{2}\left( f\right) =\limsup_{r_{m}\rightarrow +\infty }\frac{\log \log T\left( r_{m},f\right) }{\log r_{m}}\geq n.\] In addition, by Lemma 6 and from (4), we have \(% \rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
\(\delta \left( P_{s},\theta \right) <\delta \left( P_{d},\theta \right)\). Here we also divide our proof in three subcases: \(% \left( \varphi =\theta _{s}\right)\) or \(\left( \varphi =\theta _{d}\right)\) or (\(\varphi \neq \theta _{s}\) and \(\varphi \neq \theta _{d}\) ). Using the same reasoning as in I, we can obtain \(\rho _{2}\left( f\right) \leq n,\) so \(\rho _{2}\left( f\right) =n.\)
Hamani, K., & Belaı̈di, B. (2017). On the hyper-order of transcendental meromorphic solutions of certain higher order linear differential equations. Opuscula Mathematica, 37(6), 853-874.
Hayman, W. K. (1964). Meromorphic functions (Vol. 78). Oxford Mathematical Monographs, Clarendon Press, Oxford.
Kwon, K. H. (1996). On the growth of entire functions satisfying second order linear differential equations. Bulletin of the Korean Mathematical Society, 33(3), 487-496.
Laine, I. (1993). Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter & Co., Berlin.
Yang, C. C., & Yi, H. X. (2004). Uniqueness theory of meromorphic functions (Vol. 557). Springer Science & Business Media.
Belaı̈di, B., & Abbas, S. (2008). On the hyper order of solutions of a class of higher order linear differential equations. Analele Ştiinţifice ale Universităţii “Ovidius” Constanţa. Seria: Matematică, 16(2), 15-30.
Belaı̈di, B. (2007). On the meromorphic solutions of linear differential equations. Journal of Systems Science and Complexity, 20, 41-46.
Tu, J., & Yi, C. F. (2008). On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order. Journal of Mathematical Analysis and Applications, 340(1), 487-497.
Andasmas, M., & Belaı̈di, B. (2013). On the order and hyper-order of meromorphic solutions of higher order linear differential equations. Hokkaido Mathematical Journal, 42(3), 357-383.
Gundersen, G. G. (1988). Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. Journal of the London Mathematical Society, 2(1), 88-104.
Habib, H., & Belaı̈di, B. (2011). On the growth of solutions of some higher order linear differential equations with entire coefficients. Electronic Journal of Qualitative Theory of Differential Equations, 2011(93), 115–134.
Hamani, K., & Belaidi, B. (2013). On the hyper-order of solutions of a class of higher order linear differential equations. Bulletin of the Belgian Mathematical Society-Simon Stevin, 20(1), 27-39.
Gundersen, G. G. (1988). Finite order solutions of second order linear differential equations. Transactions of the American Mathematical Society, 305(1), 415-429.
Chen, W., & Xu, J. (2009). Growth of meromorphic solutions of higher-order linear differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 2009(1), 1-13.
Belaı̈di, B. (2008). Growth and oscillation theory of solutions of some linear differential equations. Matematicki vesnik, 60(234), 233-246.
Zong-xuan, C. (1994). Zeros of meromorphic solutions of higher order linear differential equations. Analysis, 14(4), 425-438.
Chen, Z. X. (1996). The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients. Kodai Mathematical Journal, 19(3), 341-354.