In this paper we establish the existence of monads on cartesian products of projective spaces. We give the necessary and sufficient conditions for the existence of monads on \(\mathbf{P}^1\times\cdots\times \mathbf{P}^1\). We construct vector bundles associated to monads on \(X=\mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\). We study these vector bundles associated to monads on \(X\) and prove their stability and simplicity.
In algebraic geometry, one very interesting problem deals with the existence of indecomposable vector bundles of low rank on algebraic varieties in comparison to the ambient space. One of the most important tools or technique to construct these vector bundles is via monads which appear in many contexts within algebraic geometry. Monads were first introduced by Horrocks [1] who showed that all vector bundles \(E\) on \(\mathbf{P}^3\) could be obtained as the cohomology bundle of a monad of a given kind.
Many authors have constructed indecomposable vector bundles of low over projective varieties, we mention a few of the pioneers that have made remarkable strides in this regard. The famous Horrocks-Mumford bundle of rank 2 over \(\mathbf{P}^4\) [2], the Horrocks vector bundle of rank 3 on \(\mathbf{P}^5\) [3] the Tango bundles [4] of rank \(n-1\) on \(\mathbf{P}^n\) for \(n\geq3\) and the rank 2 vector bundle on \(P^5\) in characteristic 2 by Tango [4] are all obtained as cohomologies of certain monads.
The first problem is to tackle the existence of monads. Fløystad [5] gave a theorem on the existence of monads over projective spaces. Costa and Miró-Roig [6] extended these results to smooth quadric hypersurfaces of dimension at least 3. Marchesi, Marques and Soares [7] generalized Fløystad’s theorem to a larger set of varieties. Maingi [8] proved the existence of monads on \(\mathbf{P}^n\times\mathbf{P}^n\) and proved simplicity of the cohomology bundle.
In this work we prove the existence of monads on certain Cartesian products of projective spaces. We first extend Fløystad’s [6] main theorem to \(\mathbf{P}^1\times\cdots\times\mathbf{P}^1\). Maingi [9] gave a conditional variant theorem on \(\mathbf{P}^{a_1}\times\cdots\times\mathbf{P}^{a_n}\), here we give a biconditional theorem (Theorem 4) but for all \(a_i=1\), \(i=1,\cdots,n+1\). Next we establish the existence of monads \[0\rightarrow{\mathcal{O}_X(-1,-1,-1,-1)^{\oplus k}} 0\overrightarrow{f}>{\mathscr{G}_n\oplus \mathscr{G}_m}\overrightarrow{g}>\mathcal{O}_X(1,1,1,1)^{\oplus k} 0\rightarrow0\] on \(X=\mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\) where \(\mathscr{G}_n:=\mathcal{O}_X(0,-1,0,0)^{\oplus n+k}\oplus\mathcal{O}_X(-1,0,0,0)^{\oplus n+k}\) and \(\mathscr{G}_m:=\mathcal{O}_X(0,0,-1,0)^{\oplus m+k}\oplus\mathcal{O}_X(0,0,0,-1)^{\oplus m+k}\). We then prove stability of the kernel bundle \(\ker g\) and finally prove that the cohomology vector bundle, \(E=\ker g/ im f\) is simple. The first set of definitions in the following section are based on lecture notes by Miró-Roig [10].Definition 1. Let \(X\) be a nonsingular projective variety.
Definition 2. Let \(X\) be a nonsingular projective variety, let \(\mathscr{L}\) be a very ample line sheaf, and \(V,W,U\) be finite dimensional \(k\)-vector spaces. A linear monad on \(X\) is a complex of sheaves,
where \(A\in Hom(V,W)\otimes H^0 \mathscr{L}\) is injective and \(B\in Hom(W,U)\otimes H^0 \mathscr{L}\) is surjective. The existence of the monad \(M_\bullet\) is equivalent to the following conditions on \(A\) and \(B\)Definition 3. A torsion-free sheaf \(E\) on \(X\) is said to be a linear sheaf on \(X\) if it can be represented as the cohomology sheaf of a linear monad.
Definition 4. Let \(X\) be a non-singular irreducible projective variety of dimension \(d\) and let \(\mathscr{L}\) be an ample line bundle on \(X\). For a torsion-free sheaf \(F\) on \(X\) we define
Definition 5. Let \(X\) be an algebraic variety and let \(E\) be a torsion-free sheaf on \(X\). Then \(E\) is \(\mathscr{L}\)-stable if every subsheaf \(F\hookrightarrow E\) satisfies \(\mu_{\mathscr{L}}(F)< \mu_{\mathscr{L}}(E)\), where \(\mathscr{L}\) is an ample invertible sheaf.
Proposition 1. ([11], Lemma 2.6) Let \(E\) be a rank \(r\) holomorphic vector bundle over a cyclic projective variety \(X\). If \(H^0((\bigwedge^q E)_{norm}) = 0\) for \(1\leq q\leq r-1\), then \(E\) is stable and \(E\) is semistable if \(H^0((\bigwedge^q E)_{norm}(-1)) = 0\).
Theorem 1.[Generalized Hoppe Criterion] Let \(G\rightarrow X\) be a holomorphic vector bundle of rank \(r\geq2\) over a polycyclic variety \(X\) equiped with a polarisation \(\mathscr{L}\) if \[H^0(X,(\wedge^sG)\otimes\mathcal{O}_X(B))=0\,,\] for all \(B\in pic(X)\) and \(s\in\{1,\ldots,r-1\}\) such that \(\delta_{\mathscr{L}}(B)< -s\mu_{\mathscr{L}}(G)\) then \(G\) is stable and if \(\delta_{\mathscr{L}}(B)\leq-s\mu_{\mathscr{L}}(G)\) then \(G\) is semi-stable. Conversely if then \(G\) is (semi-)stable then \[H^0(X,G\otimes\mathcal{O}_X(B))=0\] for all \(B\in pic(X)\) and all \(s\in\{1,\ldots,r-1\}\) such that \(\delta_{\mathscr{L}}(B)< -s\mu_{\mathscr{L}}(G)\) or \(\delta_{\mathscr{L}}(B)\leq-s\mu_{\mathscr{L}}(G)\).
Proposition 2. Let \(X\) be a polycyclic variety with Picard number \(4\), let \(\mathscr{L}\) be an ample line bundle and let E be a rank \(r>1 \) holomorphic vector bundle over \(X\). If \(H^0((\bigwedge^q E)_{{\mathscr{L}}-norm}(p_1,p_2,p_3,p_4)) = 0\) for \(1\leq q \leq r-1\) and every \((p_1,p_2,p_3,p_4)\in \mathbb{Z}^4\) such that \(\delta_{\mathscr{L}}\leq0\) then E is \(\mathscr{L}\)-stable.
Definition 6. A vector bundle \(E\) on \(X\) is said to be
Proposition 3. Let \(0\rightarrow E \rightarrow F \rightarrow G\rightarrow 0\) be an exact sequence of vector bundles. Then we have the following exact sequences involving exterior and symmetric powers:
Theorem 2.[Künneth formula] Let \(X\) and \(Y\) be projective varieties over a field \(k\). Let \(\mathscr{F}\) and \(\mathscr{G}\) be coherent sheaves on \(X\) and \(Y\) respectively. Let \(\mathscr{F}\boxtimes\mathscr{G}\) denote \(p_1^*(\mathscr{F})\otimes p_2^*(\mathscr{G})\), then \(\displaystyle{H^m(X\times Y,\mathscr{F}\boxtimes\mathscr{G}) \cong \bigoplus_{p+q=m} H^p(X,\mathscr{F})\otimes H^q(Y,\mathscr{G})}\).
Since for our case we deal \(X = \mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\), then \[\displaystyle{H^t(X,\mathcal{O}_X (i,j,k,l)) \cong \bigoplus_{p+q+r+s=t} U\otimes V}\,,\] where \(U = H^p(\mathbf{P}^n,\mathcal{O}_{\mathbf{P}^n}(i))\otimes H^q(\mathbf{P}^n,\mathcal{O}_{\mathbf{P}^n}(j))\), \(V=H^r(\mathbf{P}^m,\mathcal{O}_{\mathbf{P}^m}(k)))\otimes H^s(\mathbf{P}^m,\mathcal{O}_{\mathbf{P}^m}(l))\) and \(p,q,r,s,t,i,j,k\) and \(l\) are integers.Theorem 3. ([13], Theorem 4.1) Let \(n\geq1\) be an integer and \(d\) be an integer. We denote by \(S_d\) the space of homogeneous polynomials of degree \(d\) in \(n+1\) variables (conventionally if \(d< 0\) then \(S_d=0\)). Then the following statements are true:
Lemma 1. If \(p_1+p_2+p_3+p_4>0\) then \(h^p(X,\mathcal{O}_X (-p_1,-p_2,-p_3,-p_4)^{\oplus k}) = 0\) where \(X = \mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\) and for \(0\leq p< \dim(X) -1\), for \(k\) a non negative integer.
Lemma 2.( [14], Lemma 10) Let \(A\) and \(B\) be vector bundles canonically pulled back from \(A’\) on \(\mathbf{P}^n\) and \(B’\) on \(\mathbf{P}^m\) then \(\displaystyle{H^q(\bigwedge^s(A\otimes B))= \sum_{k_1+\cdots+k_s=q}\big\{\bigoplus_{i=1}^{s}(\sum_{j=0}^s\sum_{m=0}^{k_i}H^m(\wedge^j(A))\otimes(H^{k_i-m}(\wedge^{s-j}(B)))) \big\}}\).
The proof of the lemma depends on the following: Lemma 3.([5], Main Theorem) Let \(k\geq1\). There exists monads on \(\mathbf{P}^k\) whose maps are matrices of linear forms,
\[
0\rightarrow {\mathcal{O}_{\mathbf{P}^{k}}(-1)^{\oplus a}} \underrightarrow{A}>{\mathcal{O}^{\oplus b}_{\mathbf{P}^{k}}} \underrightarrow{B}>{\mathcal{O}_{\mathbf{P}^{k}}(1)^{\oplus c}} \rightarrow 0\\
\]
if and only if at least one of the following is fulfilled;
\((1)b\geq2c+k-1\) , \(b\geq a+c\) and
\((2)b\geq a+c+k\)
Theorem 4. Let \(X = \mathbf{P}^1\times\mathbf{P}^1\cdots\times\mathbf{P}^1\) and \(\mathscr{L} = \mathcal{O}_X(1,\cdots,1)\) an ample line bundle. Denote by \(N = h^0(\mathcal{O}_X(1,\cdots,1)) – 1=2n+1\). Then there exists a linear monad \(M_\bullet\) on \(X\) of the form \[ M_\bullet: 0\rightarrow \mathcal{O}_{X}(-1,\cdots,-1)^{\oplus\alpha}\underrightarrow{f}{\mathcal{O}^{\oplus\beta}_X} \underrightarrow{g}\mathcal{O}_{X}(1,\cdots,1)^{\oplus\gamma} \rightarrow 0\\ \] if and only if atleast one of the following is satified
Proof For the ample line bundle \(\mathscr{L} = \mathcal{O}_X(1,\ldots,1)\) we have the Segre embedding
Suppose that one of the conditions of Lemma 3 is satisfied and setting \(k=2n+1\), \(\alpha=a\), \(\beta=b\) and \(\gamma=c\), we see thatRemark 1.
Lemma 4. Let \(n,m\) and \(k\) are positive integers, given four matrices \(f_1,f_2,f_3\) and \(f_4\) of order \(k\) by \(n+k\), and four other matrices \(g_1,g_2,g_3\) and \(g_4\) of order \(n+k\) by \(k\) as shown; \begin{align*} f_1 &=\left[ \begin{array}{ccccc} &y_n \cdots y_0 \\ ⋰ & ⋰ \\ y_n \cdots y_0 \end{array} \right]_{k\times {(n+k)}},\\ f_2 &=\left[ \begin{array}{ccccccc} &x_n \cdots x_0\\ ⋰ & ⋰\\ x_n \cdots x_0 \end{array} \right]_{k\times {(n+k)}},\\ f_3 &=\left[ \begin{array}{ccccccc} &t_m \cdots t_0\\ ⋰ & ⋰ \\ t_m \cdots t_0 \end{array} \right]_{k\times {(m+k)}},\end{align*} \begin{align*} f_4 &=\left[ \begin{array}{ccccccc} &z_m \cdots z_0\\ ⋰ & ⋰ \\ z_m \cdots z_0 \end{array} \right]_{k\times {(m+k)}},\\ g_1 &=\left[\begin{array}{cccccc} x_0\\ \vdots &\ddots & x_0\\ x_n &\ddots &\vdots\\ && x_n \end{array} \right]_{{(n+k)}\times k},\\ g_2 &=\left[\begin{array}{cccccc} y_0\\ \vdots &\ddots & y_0\\ y_n &\ddots &\vdots\\ && y_n \end{array} \right]_{{(n+k)}\times k},\\ g_3 &=\left[ \begin{array}{cccccc} z_0\\ \vdots &\ddots & z_0\\ z_m &\ddots &\vdots\\ && z_m \end{array} \right]_{{(m+k)}\times k}\end{align*} and \[ g_4 =\left[\begin{array}{cccccc} t_0\\ \vdots &\ddots & t_0\\ t_m &\ddots &\vdots\\ && t_m \end{array} \right]_{{(m+k)}\times k}\,,\] we define two matrices \(f\) and \(g\) as follows; \[ f =\left[\begin{array}{cccc} f_1 & -f_2 & f_3 & -f_4 \end{array} \right]\] and \[ g =\left[\begin{array}{cc} g_1 \\ g_2 \\g_3 \\ g_4 \end{array} \right].\] Then we have
Proof.
Theorem 5. Let \(n,m\) and \(k\) be positive integers. Then there exists a linear monad on \(X = \mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\) of the form; \[ 0\rightarrow {\mathcal{O}_X(-1,-1,-1,-1)^{\oplus k}} \underrightarrow{f}{\mathscr{G}_n\oplus \mathscr{G}_m}\underrightarrow{g}\mathcal{O}_X(1,1,1,1)^{\oplus k} \rightarrow 0\,, \] where \(\mathscr{G}_n:=\mathcal{O}_X(0,-1,0,0)^{\oplus n+k}\oplus\mathcal{O}_X(-1,0,0,0)^{\oplus n+k}\) and \(\mathscr{G}_m:=\mathcal{O}_X(0,0,-1,0)^{\oplus m+k}\oplus\mathcal{O}_X(0,0,0,-1)^{\oplus m+k}\).
Proof. The maps \(f\) and \(g\) in the monad are the matrices given in Lemma 4. Notice that \[f\in \text{Hom}(\mathcal{O}_X(-1,-1,-1,-1)^{\oplus k},\mathscr{G}_n\oplus\mathscr{G}_m)\quad \text{ and} \quad g\in\text{Hom}(\mathscr{G}_n\oplus\mathscr{G}_m,\mathcal{O}_X(1,1,1,1)^{\oplus k}).\] Hence by the above lemma they define the desired monad.
Theorem 6. Let \(T\) be a vector bundle on \(X=\mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\) defined by the sequence \[0\rightarrow T \rightarrow \mathscr{G}_n\oplus\mathscr{G}_m\underrightarrow{g}\mathcal{O}_X(1,1,1,1)^{\oplus k} \rightarrow 0\,,\] where \(\mathscr{G}_n:=\mathcal{O}_X(0,-1,0,0)^{\oplus n+k}\oplus\mathcal{O}_X(-1,0,0,0)^{\oplus n+k}\) and \(\mathscr{G}_m:=\mathcal{O}_X(0,0,-1,0)^{\oplus m+k}\oplus\mathcal{O}_X(0,0,0,-1)^{\oplus m+k}\), then \(T\) is stable for an ample line bundle \(\mathscr{L} = \mathcal{O}_X(1,1,1,1)\).
Proof. We need to show that \(H^0(X,\bigwedge^q T(-p_1,-p_2,-p_3,-p_4))=0\) for all \(\displaystyle{\sum_{i=1}^4p_i\geq0}\) and \(1\leq q\leq rank(T)\). Consider the ample line bundle \(\mathscr{L} = \mathcal{O}_X(1,1,1,1) = \mathcal{O}(L)\). Its class in \( pic(X)= \langle [a\times\mathbf{P}^n],[\mathbf{P}^n\times b],[c\times\mathbf{P}^n],[\mathbf{P}^n\times d]\rangle\) corresponds to the class \[1\cdot[a\times\mathbf{P}^n]+1\cdot[\mathbf{P}^n\times b]\cdot[c\times\mathbf{P}^m]+1\cdot[\mathbf{P}^m\times d],\] where \(a\) and \(b\) are hyperplanes of \(\mathbf{P}^n\) and \(c\) and \(d\) hyperplanes of \(\mathbf{P}^m\) with the intersection product induced by \(a^{n} = b^{n} = c^{m} = d^{m}=1\) and \(a^{n+1} = b^{n+1} = c^{n+1} = d^{n+1=0}\). Now from the display diagram of the monad, we get \begin{align*} \begin{split} c_1(T) & = c_1(\mathscr{G}_n\oplus\mathscr{G}_m) – c_1(\mathcal{O}_X(1,1,1,1)^{\oplus k})\\ & = (n+k)(-1,0,0,0)+(n+k)(0,-1,0,0)+(m+k)(0,0,-1,0)+(m+k)(0,0,0,-1) – k(1,1) \\ & = (-n-2k,-n-2k,-m-2k,-m-2k)\,. \end{split} \end{align*} Since \(L^{2n+2m}>0\) the degree of \(T\) is, \begin{align*} \deg_{\mathscr{L}}T &= c_1(T)\cdot\mathscr{L}^{d-1}\\ &=-(n+m+4k)([a\times\mathbf{P}^n]+[\mathbf{P}^n\times b]+[c\times\mathbf{P}^m]+[\mathbf{P}^m\times d])\cdot \\ &(1\cdot[a\times\mathbf{P}^n]+1\cdot[\mathbf{P}^n\times b]+1\cdot[c\times\mathbf{P}^m]+1\cdot[\mathbf{P}^m\times d])^{2n+2m-1}\\ &=-(n+m+4k)L^{2n+2m}< 0.\end{align*} Since \(\deg_{\mathscr{L}}T< 0\), then \((\bigwedge^q T)_{\mathscr{L}-norm} = (\bigwedge^q T)\) and it suffices by the generalized Hoppe Criterion (Proposition 2), to prove that \(h^0(\bigwedge^q T(-p_1,-p_2,-p_3,-p_4)) = 0\) with \(\displaystyle{\sum_{i=1}^4p_i\geq0}\) and for all \(1\leq q\leq rk(T)-1\). Next we twist the exact sequence \[0\rightarrow T \rightarrow \mathscr{G}_n\oplus\mathscr{G}_m\underrightarrow{g}\mathcal{O}_X(1,1,1,1)^{\oplus k} \rightarrow 0\] by \(\mathcal{O}_X(-p_1,-p_2,-p_3,-p_4)\) we get, \[ 0\rightarrow T(-p_1,-p_2,-p_3,-p_4)\rightarrow \mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m\rightarrow \mathcal{O}_X(1-p_1,1-p_2,1-p_3,1-p_4)^{\oplus k}\rightarrow 0\,,\] where \[\mathscr{\overline{G}}_n:=\mathcal{O}_X(-1-p_1,-p_2,-p_3,-p_4)^{\oplus n+k}\oplus\mathcal{O}_X(-p_1,-1-p_2,-p_3,-p_4)^{\oplus n+k}\] and \[\mathscr{\overline{G}}_m:=\mathcal{O}_X(-p_1,-p_2,-1-p_3,-p_4)^{\oplus m+k}\oplus\mathcal{O}_X(-p_1,-p_2,-p_3,-1-p_4)^{\oplus m+k}\] and taking the exterior powers of the sequence by Proposition 3, we get \[0\rightarrow \bigwedge^q T(-p_1,-p_2,-p_3,-p_4) \rightarrow \bigwedge^q \mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m\rightarrow \cdots\,.\] Taking cohomology we have the injection: \[0\rightarrow H^0(X,\bigwedge^{q}T(-p_1,-p_2,-p_3,-p_4))\hookrightarrow H^0(X,\bigwedge^q \mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)\,.\] From Lemma 1 and Lemma 2, we have \(H^0(X,\bigwedge^q \mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)=0\). implies \(h^0(X,\bigwedge^{q}T(-p_1,-p_2,-p_3,-p_4)) = h^0(X,\bigwedge^q \mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)=0\), i.e. \(h^0(X,\bigwedge^{q}T(-p_1,-p_2,-p_3,-p_4))=0\) and thus \(T\) is stable.
Theorem 7. Let \(X=\mathbf{P}^n\times\mathbf{P}^n\times\mathbf{P}^m\times\mathbf{P}^m\), then the cohomology vector bundle \(E\) associated to the monad \[ 0\rightarrow {\mathcal{O}_X(-1,-1,-1,-1)^{\oplus k}} \underrightarrow{f}{\mathscr{G}_n\oplus\mathscr{G}_m}\underrightarrow{g}\mathcal{O}_X(1,1,1,1)^{\oplus k} \rightarrow 0 \] of rank \(2n+2m+2k\) is simple.
Proof. The display of the monad is
Since \(T\) is stable from theorem 3.6 above, we prove the cohomology bundle \(E\) is simple. The first step is to take the dual of the short exact sequence \[ 0\rightarrow \mathcal{O}_X(-1,-1,-1,-1)^{\oplus k} \rightarrow T\rightarrow E \rightarrow 0 \] to get \[ 0\rightarrow E^* \rightarrow T^* \rightarrow \mathcal{O}_X(1,1,1,1)^{\oplus k}\rightarrow 0. \] Tensoring by \(E\) we get \[ 0\rightarrow E\otimes E^* \rightarrow E\otimes T^* \rightarrow E(1,1,1,1)^k\rightarrow 0. \] Now taking cohomology gives: \[ 0\rightarrow H^0(X,E\otimes E^*) \rightarrow H^0(X,E\otimes T^*) \rightarrow H^0(E(1,1,1,1)^{\oplus k})\rightarrow \cdots\,, \] which implies that \begin{equation}\label{eq3}\tag{3} h^0(X,E\otimes E^*) \leq h^0(X,E\otimes T^*)\,. \end{equation} Now we dualize the short exact sequence \[ 0\rightarrow T \rightarrow {\mathscr{G}_n\oplus\mathscr{G}_m} \rightarrow \mathcal{O}_X(1,1,1,1)^{\oplus k} \rightarrow 0 \,,\] to get \[ 0\rightarrow \mathcal{O}_X(-1,-1,-1,-1)^{\oplus k} \rightarrow {\mathscr{G}_n\oplus\mathscr{G}_m} \rightarrow T^* \rightarrow 0 \,.\] For the sake of brevity we shall use the notation \(H^q(\mathscr{F})\) in place of \(H^q(X,\mathscr{F})\). Now twisting by \(\mathcal{O}_X(-1,-1,-1,-1)\) and taking cohomology and get \[ 0\rightarrow H^0(\mathcal{O}_X(-2,-2,-2,-2)^k) \rightarrow H^0(\mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)\rightarrow H^0(T^*(-1,-1,-1,-1))\rightarrow H^1(\mathcal{O}_X(-2,-2,-2,-2)^k)\rightarrow \] \[\rightarrow H^1(\mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)\rightarrow H^1(T^*(-1,-1,-1,-1))\rightarrow H^2(X,\mathcal{O}_X(-2,-2,-2,-2)^k) \rightarrow H^2(\mathscr{\overline{G}}_n\oplus\mathscr{\overline{G}}_m)\rightarrow \] \[\rightarrow H^2(T^*(-1,-1,-1,-1))\rightarrow \cdots \] from which we deduce \(H^0(X,T^*(-1,-1,-1,-1)) = 0\) and \(H^1(X,T^*(-1,-1,-1,-1)) = 0\) from Theorems 2 and 3. Lastly, tensor the short exact sequence \[ 0\rightarrow \mathcal{O}(-1,-1,-1,-1)^{\oplus k} \rightarrow T \rightarrow E\rightarrow 0\,, \] by \(T^*\) to get \[ 0\rightarrow T^*(-1,-1,-1,-1)^k \rightarrow T\otimes T^* \rightarrow E\otimes T^*\rightarrow 0\,, \] and taking cohomology we have \[ 0\rightarrow H^0(X,T^*(-1,-1,-1,-1)^k) \rightarrow H^0(X,T\otimes T^*) \rightarrow H^0(X,E\otimes T^*)\rightarrow \\ \rightarrow H^1(X,T^*(-1,-1,-1,-1)^k)\rightarrow \cdots\,. \] But \(H^1(X,T^*(-1,-1,-1,-1)^k=0\) for \(k>1\) from above, so we have \[ 0\rightarrow H^0(X,T^*(-1,-1,-1,-1)^{k}) \rightarrow H^0(X,T\otimes T^*) \rightarrow H^0(X,E\otimes T^*)\rightarrow 0 \,. \] This implies that \begin{equation}\label{eq4}\tag{4} h^0(X,T\otimes T^*) \leq h^0(X,E\otimes T^*)\,. \end{equation} Since \(T\) is stable then it follows that it is simple which implies \(h^0(X,T\otimes T^*)=1\). From (\ref{eq3}) and (\ref{eq4}) and putting these together we have; \[1\leq h^0(X,E\otimes E^*) \leq h^0(X,E\otimes T^*) = h^0(X,T\otimes T^*) = 1\,.\] We have \( h^0(X,E\otimes E^*) = 1 \) and therefore \(E\) is simple.
Example 1. We construct a monad on \(X = \mathbf{P}^1\times\mathbf{P}^1\times\mathbf{P}^2\times\mathbf{P}^2\) by explicitly giving the maps \(f\) and \(g\). We define \(f\) and \(g\) as follows: \[ f :=\left( \begin{array}{cccc|cccc|ccccc|ccccc} 0 & 0 & y_1 & y_0 & 0 & 0 & -x_1 & -x_0 & 0 & 0 & t_2 & t_1 & t_0 & 0 & 0 & -z_2 & -z_1 & -z_0\\ 0 & y_1 & y_0 & 0 & 0 & -x_1 & -x_0 & 0 & t_2 & t_1 & t_0 & 0 & 0 & 0 & -z_2 & -z_1 & -z_0 & 0\\ y_1 & y_0 & 0 & 0 & -x_1 & -x_0 & 0 & 0 & t_2 & t_1 & t_0 & 0 & 0 & -z_2 & -z_1 & -z_0 & 0 & 0\\ \end{array} \right) \] and \[ g :=\left( \begin{array}{ccc} x_0 & 0 & 0 \\ x_1 & x_0 & 0 \\ 0 & x_1 & x_0 \\ 0 & 0 & x_1 \\ \hline y_0 & 0 & 0 \\ y_1 & y_0 & 0 \\ 0 & y_1 & y_0 \\ 0 & 0 & y_1 \\ \hline z_0 & 0 & 0 \\ z_1 & z_0 & 0 \\ z_2 & z_1 & z_0 \\ 0 & z_2 & z_1 \\ 0 & 0 & z_2 \\ \hline t_0 & 0 & 0 \\ t_1 & t_0 & 0 \\ t_2 & t_1 & t_0 \\ 0 & t_2 & t_1 \\ 0 & 0 & t_2 \\ \end{array} \right) \,,\] from \(f\) and \(g\) we have the monad \[ 0\rightarrow {\mathcal{O}_X(-1,-1,-1,-1)^{\oplus3}} \underrightarrow{f}{\mathscr{G}_n\oplus \mathscr{G}_m}\underrightarrow{g}\mathcal{O}_X(1,1,1,1)^{\oplus3} \rightarrow 0\,, \] where \(\mathscr{G}_n:=\mathcal{O}_X(0,-1,0,0)^{\oplus4}\oplus\mathcal{O}_X(-1,0,0,0)^{\oplus4}\) and \(\mathscr{G}_m:=\mathcal{O}_X(0,0,-1,0)^{\oplus5}\oplus\mathcal{O}_X(0,0,0,-1)^{\oplus5}\).