Contents

On the semilocal convergence analysis of a seventh order four step method for solving nonlinear equations

Author(s): Samundra Regmi1, Ioannis K. Argyros2, Santhosh George3, Christopher I. Argyros4
1European Space Research and Technology Centre (ret.); Current address: Blue Abyss, Newquay, Cornwall, United Kingdom;
2Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
3Department of Mathematical and Computational Sciences,National Institute of Technology Karnataka, India-575 025
4Department of Computing and Technology, Cameron University, Lawton, OK 73505, USA
Copyright © Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We provide a semi-local convergence analysis of a seventh order four step method for solving nonlinear problems. Using majorizing sequences and under conditions on the first derivative, we provide sufficient convergence criteria, error bounds on the distances involved and uniqueness. Earlier convergence results have used the eighth derivative not on this method to show convergence. Hence, limiting its applicability.

Keywords: Banach space; convergence order; Iterative method.

1. Introduction and preliminaries

In this study we are interested in finding an approximation for the solution \(\bar{x}\) of the equation

\[\label{1.1} F: D \subset X \to Y \quad F(\overline{x})=0\tag{1}\] where \(X\) and \(Y\) are Banach spaces and \(D\) is an open subset of \(X.\) Seventh order method defined for \(n=0,1,2,\ldots\) by

\[ \overline{y}_{n} = \overline{x}_{n}- \Omega F'(\overline{x}_{n})^{-1}F(\overline{x}_{n}) \] \[ \overline{z}_{n} = \overline{x}_{n}-F'(\overline{y}_{n})^{-1}F(\overline{x}_{n}), \] \[ \overline{w}_{n} = \overline{z}_{n}-\Big(2F'(\overline{y}_{n})^{-1}-F'(\overline{x}_{n})^{-1}\Big)F(\overline{z}_{n})\tag{2} \]\[ \overline{x}_{n+1} =\overline{w}_{n}-\Big(2F'(\overline{y}_{n})^{-1}-F'(\overline{x}_{n})^{-1}\Big)F(\overline{w}_{n}) \] is considered for approximating \(\bar{x}.\)

In this paper we study the semi-local convergence. Moreover, we use condition only on the first derivative appearing on (2). Hence, we extend its applicability. The local convergence of this method was shown [1] using conditions reaching the fifth derivative which is not on (2).

But these restrictions limit the applicability of the method (2) although it may converge.

For example: Let \(X=Y=\mathbb{R}, \,D= [-0.5, 1.5].\) Define \(\Psi\) on \(D\) by \[\Psi(t)=\left\{\begin{array}{cc} t^3\log t^2+t^5-t^4& if\,\,t\neq0\\ 0& if\,\, t=0. \end{array}\right.\] Then, we get \(t^*=1,\) and \[\Psi'''(t) = 6\log t^2 + 60t^2-24t + 22.\] Obviously \(\Psi'''(t)\) is not bounded on \(D,\) so the analysis in [1] cannot guarantee convergence. In this paper we examine the more interesting semi-local case using conditions only on the first derivative which is on method (2). Hence, we extend the applicability of this method.

The analysis is given in Section 2 and the examples in Section 3.

2. Convergence

Let \(K_{0},K,K_{1}\) and \(\delta\) be positive parameters. Define scalar sequences by \(x_{0}=0, y_{0}= \delta\)

\[ z_{n} =y_{n}+ \Bigg(\frac{K_{1}K(y_{n}-x_{n})}{(1-K_{0}x_{n})(1-K_{0}y_{n})}+|\frac{\Omega-1}{\Omega}| \Bigg)(y_{n}-x_{n}) \]\[ w_{n} = z_{n}+ \Bigg(1+\frac{K(y_{n}-x_{n})}{1-K_{0}x_{n}}\Bigg)\frac{p_{n}}{1-K_{0}y_{n}}\]\[ x_{n+1} = w_{n}+ \Bigg(1+\frac{K(y_{n}-x_{n})}{1-K_{0}x_{n}}\Bigg)\frac{q_{n}}{1-K_{0}y_{n}}\tag{3}\]\[ y_{n+1} = x_{n+1}+\frac{K(x_{n+1}-x_{n})^2+2 K_{1}(x_{n+1}-y_{n})+2 K_{1} |1-\frac{1}{\Omega}|(y_{n}-x_{n})}{2(1-K_{0}x_{n+1})}, \] where \[p_{n} = K_{1} \Bigg(z_{n}-y_{n}+\Big(1-\frac{1}{|\Omega|}\Big)(y_{n}-x_{n})\Bigg)\] and \[q_{n} =K_{1} \Bigg(w_{n}-z_{n}+z_{n}-y_{n}+\Big(1-\frac{1}{|\Omega|}\Big)(y_{n}-x_{n})\Bigg).\]

Next, a sufficient convergence criterion is presented for these sequences.

Lemma 1. Suppose \[\label{2.2} K_{0}\, y_{n} <1, K_{0}\, x_{n+1}<1 \tag{4}\] for each \(n=0,1,2, \cdots.\) Then, the following assertions hold \[\label{2.3} x_{n} \leq y_{n} \leq z_{n} \leq w_{n} \leq x_{n+1} \leq y_{n+1}< \frac{1}{K_{0}}\tag{5}\] and \[\label{2.4} \lim_{n \to \infty} y_{n} =y^{\star} \in \Bigg[ 0, \frac{1}{K_{0}}\Bigg].\tag{6}\]

Proof. Using definition (3) and condition (4) we deduce that (5). So, sequence \(\{y_{n}\}\) is non decreasing and bounded from above by \(\frac{1}{K_{0}}.\) Hence, it converges to its unique least upper bound \(y^{\star}.\) ◻

The semilocal convergence of method (2) uses conditions \((H):\) Suppose

  1. \(H_1\) There exists \(\overline{x}_{0} \in D, \delta \geq 0\) such that \(F'(\overline{x}_{0})^{-1} \in \mathcal{L}(Y,X)\) and \(\|F'(\overline{x}_{0})^{-1}\,F(\overline{x}_{0})\| |\Omega| \leq \delta.\)

  2. \(H_2\) \(\|F'(\overline{x}_{0})^{-1}\,(F'(\overline{v})-F'(\overline{x}_{0}))\| \leq K_{0} \|\overline{v}-\overline{x}_{0}\|\) for each \(\overline{v} \in D\) for some \(K_{0} >0.\)

    \(H_3\) Consider \(D_{1}= U\Bigg(\overline{x}_{0}, \frac{1}{K_{0}}\Bigg) \cap D.\)

  3. \(H_4\) \(\|F'(\overline{x}_{0})^{-1}\, (F'(\overline{v})-F'(\overline{w}))\| \leq K \|\overline{v}-\overline{w}\|\) and \(\|F'(\overline{x}_{0})^{-1}\,F'(\overline{v})\| \leq K_{1}\) for all \(\overline{v} \in D_{0}\) and \(\overline{w}= \overline{v}-F'(\overline{v})^{-1}\, F(\overline{v}).\)

  4. \(H_5\) Conditions of Lemma 1 hold, and

  5. \(U[\overline{x}_{0}, y^{\star}] \subset D.\)

Next, we present the semilocal convergence result for method (2).

Theorem 1. Suppose conditions \((H)\) hold. Then, iterates \(\overline{x}_{n}, \overline{y}_{n}, \overline{z}_{n}, \overline{w}_{n}, \overline{x}_{n+1}\) are well defined, belong in \(U[\overline{x}_{0}, y^{\star}]\) and converge to a solution \(\overline{x}^{\star} \in U[x_{0}, y^{\star}]\) of equation \(F(x) =0.\) Moreover, the following error estimate holds \[\label{2.5} \|\overline{x}^{\star}-\overline{x}_{m}\| \leq y^{\star} – x_{m}.\tag{7}\]

Proof. Mathematical induction on \(m\) is utilized to show assertions \[ \|\overline{y}_{m}-\overline{x}_{m}\| \leq y_{m}-x_{m},\tag{8}\]\[ \|\overline{z}_{m}-\overline{y}_{m}\| \leq z_{m}-y_{m}, \|\overline{w}_{m}-\overline{z}_{m}\| \leq w_{m}-z_{m} \tag{9}\] and \[ \|\overline{x}_{m+1}-\overline{w}_{m}\| \leq x_{m+1}-w_{m}. \tag{10}\] In view of condition \((H_{1}),\) we have \[\|\overline{y}_{0}-\overline{x}_{0}\| \leq \delta = {y}_{0} -{x}_{0} \leq y^{\star},\] so \(\overline{y}_{0} \in U[\overline{x}_{0},y^{\star}]\) and (8) holds for \(m=0.\)

Consider \(b \in U(\overline{x}_{0}, y^{\star}).\) Then, by condition \((H_{2}),\) we get \[\label{2.9} \|F'(\overline{x}_{0})^{-1}(F'(b)-F(\overline{x}_{0}))\| \leq K_{0} \|b-\overline{x}_{0}\| \leq K_{0} y^{\star}<1.\tag{11}\] By (11) and a lemma on linear operators with inverses attributed to Banach [2-10] it follows \(F'(b)^{-1} \in \mathcal{L}(Y,X)\) and \[\label{2.10} \|F'(b)^{-1}\,F'(\overline{x}_{0})\| \leq \frac{1}{1-K_{0} \|b-\overline{x}_{0}\|}.\tag{12}\] Iterates \(\overline{z}_{0}, \overline{w}_{0}, \overline{x}\) are well defined by the second substep of method (2) and (12) for \(b=y_{0},\) since \(\overline{y}_{0} \in U(\overline{x}_{0}, y^{\star}).\) Suppose estimates (8)-(10) hold for all values of \(m\) smaller or equal to \(n.\) Then, we obtain by method (2) and the induction hypotheses in turn that \[\begin{aligned} \overline{z}_{m} &= \overline{x}_{m}- \Omega F'(\overline{x}_{m})^{-1} F(\overline{x}_{m})+\Omega F'(\overline{x}_{m})^{-1} F(\overline{x}_{m})-F'(\overline{y}_{m})^{-1} F(\overline{x}_{m}) \\ &= \overline{y}_{m}+ F'(\overline{x}_{m})^{-1} (F'(\overline{y}_{m})-F'(\overline{x}_{m}))\, F'(\overline{y}_{m})^{-1} F'(\overline{y}_{m})^{-1} F(\overline{x}_{m}) \\ & \quad + |\Omega-1| F'(\overline{x}_{m})^{-1} F(\overline{x}_{m}) \\ \|\overline{z}_{m}-\overline{y}_{m}\| & \leq \|F'(\overline{x}_{m})^{-1}\,F'(\overline{x}_{0})\| \|F'(\overline{x}_{0})^{-1} (F'(\overline{y}_{m})-F'(\overline{x}_{m}))\|\\ &\times\|F'(\overline{y}_{m})^{-1}\,F'(\overline{x}_{0})\| \|F'(\overline{x}_{0})^{-1} F(\overline{x}_{m})\| \\ & \quad + |\Omega -1| \|F'(x_{m})^{-1}\,F(\overline{x}_{m})\| \\ & \leq \frac{K_{1} K \|\overline{y}_{m}-\overline{x}_{m}\|^{2}}{(1-K_{0} \|\overline{x}_{m}-\overline{x}_{0}\|) (1-K_{0} \|\overline{y}_{m}-\overline{x}_{0}\|)}+ |1-\frac{1}{\Omega}| \|\overline{y}_{m}-\overline{x}_{m}\| \\ &\leq z_{m}-y_{m}, \end{aligned}\] and \[\|\overline{z}_{m}-x_{0}\| \leq \|\overline{z}_{m}-\overline{y}_{m}\|+ \|\overline{y}_{m}-x_{0}\| \leq z_{m}-y_{m}+y_{m}-x_{0} = z_{m} \leq y^{\star}.\] So \(\overline{z}_{m} \in U[\overline{x}_{0}, y^{\star}]\) and (8) hold.

Define \[\begin{aligned} A_{m} &= (F(\overline{z}_{m})-F(\overline{y}_{m}))+ (F(\overline{y}_{m})-F(\overline{x}_{m}))+F(\overline{x}_{m}) \\ &= \int_{0}^{1} F'(\overline{y}_{m}+\theta (\overline{z}_{m}-\overline{y}_{m})) d\theta (\overline{z}_{m}-\overline{y}_{m})\\ &+ \int_{0}^{1} F'(\overline{x}_{m}+\theta (\overline{y}_{m}-\overline{x}_{m})) d\theta (\overline{y}_{m}-\overline{x}_{m})\\ & \quad – \frac{1}{\Omega} F'(\overline{x}_{m}) (\overline{y}_{m}-\overline{x}_{m}). \end{aligned}\tag{13}\] Then, by induction hypotheses, \((H_{3})\) and (13), we get \[\begin{aligned} \|F'(\overline{x}_{0})^{-1} \, A_{m}\| & \leq K_{1} \Bigg(\|\overline{z}_{m}-\overline{y}_{m}\|+ \|\overline{y}_{m}-\overline{x}_{m}\|+ \frac{1}{|\Omega|} \|\overline{y}_{m}-\overline{x}_{m}\|\Bigg) \\ & \leq K_{1} \Bigg( z_{m}-y_{m}+y_{m}-x_{m}+ \frac{1}{|\Omega|} (y_{m}-x_{m})\Bigg) = p_{m}.\\\label{2.12} \end{aligned}\tag{14}\] Then, by the third substep of method (2) we can write \[\label{2.13} \overline{w}_{m}-\overline{z}_{m} = -F'(\overline{y}_{m})^{-1} A_{m}- F'(\overline{y}_{m})^{-1} (F'(\overline{x}_{m})-F'(\overline{y}_{m})) F'(\overline{x}_{m})^{-1} A_{m}.\tag{15}\] In view of (3), (12), (14) and (15) we have in turn that \[\begin{aligned} \|\overline{w}_{m}-\overline{z}_{m}\| & \leq \frac{p_{m}}{1-K_{0} \|\overline{y}_{m}-\overline{x}_{0}\|}+ \frac{K \|\overline{y}_{m}-\overline{x}_{m}\| p_{m}}{(1-K_{0} \|\overline{y}_{m}-\overline{x}_{0}\|)(1-K_{0} \|\overline{x}_{m}-\overline{x}_{0}\|)} \\ & \leq w_{m}-z_{m}, \end{aligned}\] and \[\begin{aligned} \|\overline{w}_{m}-\overline{x}_{0}\| & \leq \|\overline{w}_{m}-\overline{z}_{m}\|+\|\overline{z}_{m}-\overline{y}_{m}\|+\|\overline{y}_{m}-\overline{x}_{0}\| \\ & \leq w_{m} -z_{m}+z_{m}-y_{m}+y_{m}-x_{0} = w_{m} \leq y^{\star}, \end{aligned}\] so \(\overline{w}_{m} \in U[\overline{x}_{0},y^{\star}]\) and (9) holds.

Define \[\begin{aligned} B_{m} &= (F(\overline{w}_{m})-F(\overline{z}_{m}))+ (F(\overline{z}_{m})-F(\overline{y}_{m})) + (F(\overline{y}_{m})-F(\overline{x}_{m}))+F(\overline{x}_{m}) \\ &= \int_{0}^{1} F'(\overline{z}_{m}+ \theta (\overline{w}_{m}-\overline{z}_{m})) d\theta (\overline{w}_{m}-\overline{z}_{m})+ \int_{0}^{1} F'(\overline{y}_{m}+ \theta (\overline{z}_{m}-\overline{y}_{m})) d\theta \\ & \quad + \int_{0}^{1} F'(\overline{x}_{m}+ \theta (\overline{y}_{m}-\overline{x}_{m})) d\theta (\overline{y}_{m}-\overline{x}_{m}) – \frac{1}{\Omega} F'(\overline{x}) (\overline{y_{m}}-\overline{x_{m}}).\\\label{2.14} \end{aligned}\tag{16}\] So \[\begin{aligned} \|F'(\overline{x}_{0})^{-1} B_{m}\| &\leq K_{1} \Bigg(\|\overline{w}_{m}-\overline{z}_{m}\|+ \|\overline{z}_{m}-\overline{y}_{m}\|+ \|\overline{y}_{m}-\overline{x}_{m}\|+ \frac{1}{|\Omega|} \|\overline{y}_{m}-\overline{x}_{m} \|\Bigg). \\ & \leq K_{1} \Bigg(w_{m}-z_{m}+z_{m}-y_{m}+\Big(1+\frac{1}{|\Omega|}\Big) (y_{m}-x_{m}) \Bigg) = q_{m}. \end{aligned}\tag{17}\] By the third substep of method (2), we can write \[\label{2.16} \overline{x}_{m+1}-\overline{w}_{m} = – F'(\overline{y}_{m})^{-1} B_{m}-F'(\overline{y}_{m})^{-1} (F'(\overline{x}_{m})-F'(\overline{y}_{m}))\,F'(\overline{x}_{m})^{-1}.\tag{18}\] Hence we get \[\begin{aligned} \|\overline{x}_{m+1}-\overline{w}_{m}\| & \leq \frac{q_{k}}{1-K_{0} \|\overline{y}_{m}-\overline{x}_{0}\|}+ \frac{K q_{m} \|\overline{y}_{m}-\overline{x}_{m}\| }{(1-K_{0} \|\overline{y}_{m}-\overline{x}_{0}\|)(1-K_{0} \|\overline{x}_{m}-\overline{x}_{0}\|)} \\ & \leq x_{m+1}-w_{m}, \end{aligned}\] and \[\begin{aligned} \|\overline{x}_{m+1}-\overline{x}_{0}\| & \leq \|\overline{x}_{m+1}-\overline{w}_{m}\|+\|\overline{w}_{m}-\overline{z}_{m}\|+\|\overline{z}_{m}-\overline{y}_{m}\|+ \|\overline{y}_{m}-\overline{x}_{0}\| \\ & \leq x_{m+1}-w_{m}+w_{m} -z_{m}+z_{m}-y_{m}+y_{m}-x_{0} = x_{m+1} \leq y^{\star}, \end{aligned}\] so \(\overline{x}_{m+1} \in U[\overline{x}_{0},y^{\star}]\) and (10) holds. We can write in turn by the first substep of method (2) \[\begin{aligned} F(\overline{x}_{m+1}) &= F(\overline{x}_{m+1})- F(\overline{x}_{m})-\frac{1}{\Omega} F'(x_{m}) (\overline{y}_{m}-\overline{x}_{m}) \\ &= (F(\overline{x}_{m+1})-F(\overline{x}_{m})-F'(\overline{x}_{m})(\overline{x}_{m+1})-\overline{x}_{m})) \\ & \quad + F'(\overline{x}_{m})(\overline{x}_{m+1}-\overline{x}_{m}) – \frac{1}{\Omega} F'(\overline{x}_{m})(\overline{y}_{m}-\overline{x}_{m})\\ &= (F(\overline{x}_{m+1})-F(\overline{x}_{m})-F'(\overline{x}_{m})(\overline{x}_{m+1})-\overline{x}_{m})) \\ & \quad + F'(\overline{x}_{m})(\overline{x}_{m+1}-\overline{x}_{m})+ \Big(1- \frac{1}{\Omega}\Big) F'(\overline{x}_{m})(\overline{y}_{m}-\overline{x}_{m}) \\ \|F'(\overline{x}_{0})F(x_{m+1})\| & \leq \frac{K}{2} \|\overline{x}_{m+1}-\overline{x}_{m}\|^{2}+ K_{1} \|\overline{x}_{m+1}-\overline{y}_{m}\| \\ & \quad + |1-\frac{1}{\Omega}| K_{1} \|\overline{y}_{m}-x_{m}\| \\ & \leq \frac{K}{2} (x_{m+1}-x_{m})^{2}+ K_{1} (x_{m+1}-y_{m})\\ \label{2.17} & \quad +|1-\frac{1}{\Omega}| K_{1} (y_{m}-x_{m}), \end{aligned}\tag{19}\] so \[\begin{aligned} \|\overline{y}_{m+1}-\overline{x}_{m+1}\| & \leq \|F'(\overline{x}_{m+1})^{-1} \,F'(\overline{x}_{0})\| \|F'(\overline{x}_{0})^{-1} \,F(\overline{x}_{m+1})\| \\ & \leq \frac{ \|F'(\overline{x}_{0})^{-1} \,F(\overline{x}_{m+1})\|}{1-K_{0} \|\overline{x}_{m+1}-x_{0}\|} \leq \frac{ \|F'(\overline{x}_{0})^{-1} \,F(\overline{x}_{m+1})\|}{1-K_{0} x_{m+1}} \leq y_{m+1}-x_{m+1} \end{aligned}\] and \[\begin{aligned} \|\overline{y}_{m+1} -x_{0}\| & \leq \|\overline{y}_{m+1}-\overline{x}_{m+1}\|+\|\overline{x}_{m+1}-\overline{x}_{0}\| \\ & \leq y_{m+1}-x_{m+1}+x_{m+1}-x_{0} =y_{m+1} \leq y^{\star}, \end{aligned}\] so \(\overline{y}_{m+1} \in U[x_{0},y^{\star}]\) and (8) hold. By letting \(m \to \infty\) in (19) and using the continuity of \(F\) we deduce \(F(\overline{x}^{\star})=0.\) Finally, to show \((2.5),\) let \(i\) be an integer. We can write \[\label{2.18} \|\overline{x}_{m+i}-\overline{x}_{m}\| \leq x_{m+i}-x_{m}.\tag{20}\] Then, by letting \(i \to \infty,\) we conclude (7). ◻

Proposition 1. Suppose that there exists a simple solution \(x^*\in U(\bar{x}_0, \rho_0)\subset D\) of equation \(F(x)=0,\) and (H3) holds. Set \(D_2=U(x^*, \rho)\cap D.\) Moreover, suppose there exist \(\rho\geq \rho_0\) such that \(\frac{K_0}{2}(\rho_0+\rho) < 1.\) Then, the element \(x^*\) is the only solution of equation \(F(x)=0\) in the region \(D_2.\)

Proof. Consider \(\tilde{x}\in D_2\) with \(F(\tilde{x})=0.\) Set \(Q=\int_0^1F'(x^*+\theta(\tilde{x}-x^*))d\theta.\) Then, by (H2) \[\|F'(\bar{x}_0)^{-1}(Q-F'(x^*))\|\leq \ell_0\int_0^1[\theta\|\tilde{x}-\bar{x}_0\|+(1-\theta)\|x^*-\bar{x}_0\|]d\theta\leq \frac{\ell_0}{2}(\rho_0+\rho) < 1.\] Hence, \(\tilde{x}=x^*\) is implied by the inverse of \(Q\) and the approximation \(Q(\tilde{x}-x^*)=F(\tilde{x})-F(x^*)=0-0=0.\) ◻

Remark 1. \((1)\) Condition \((H_{3})\) can be replaced by stronger

\((H_{3})'\) \(\|F'(\overline{x}_{0})^{-1}\, (F'(\overline{v})-F'(\overline{w}))\| \leq \tilde{K} \|\overline{v}-\overline{w}\|\) for each \(\overline{v}, \overline{w} \in D_{1},\)

or even stronger

\((H_{3})''\) \(\|F'(\overline{x}_{0})^{-1}\, (F'(\overline{v})-F'(\overline{w}))\| \leq \tilde{\tilde{K}} \|\overline{v}-\overline{w}\|\) for each \(\overline{v}, \overline{w} \in D.\)

Notice however that since \[\label{2.19} D_{1} \subseteq D,\tag{21}\] we have \[\label{2.20} K \leq \tilde{K} \leq \tilde{\tilde{K}} \quad and \quad K_{0} \leq \tilde{\tilde{K}}.\tag{22}\] Similar observations can be made for the second condition in \((H_{3}).\)

\((2)\) Condition \((H_{5})\) can be replaced by \((H_{5})'\) \(U\Big[x_{0},\frac{1}{K_{0}}\Big],\) since \(\frac{1}{K_{0}}\) is obviously in closed form.

\((3)\) Lipschitz constants can be smaller if we define \(S = U\Big(\overline{y}_{0}, \frac{1}{K_{0}}-\delta\Big)\) provided that \(K_{0}\,\delta <1.\) Moreover, suppose that \(S \subset D,\) then we have \(S \subset D_{1}.\)

Hence, the Lipschitz constants on \(S\) are at least as tight. Notice that we are still using initial data, since \(\overline{y}_{0} = \overline{x}_{0}-\Omega F'(\overline{x}_{0})^{-1}\,F(\overline{x}_{0}).\)

Example 1. Defined the real function \(f\) on \(D=B[x_0,1-w],\) \(x_0=1,\, w\in (0, 1)\) by \[f(s)=s^3-w.\] Then, the definitions are satisfied for \(\Omega=1,\,\delta=\frac{1-w}{3},\, K_0=3-w,\, K_1=2,\, K=2(1+\frac{1}{1-w}).\) Then for \(w=0.98,\) we have

Table 1 Sequence (3) and condition (4)
n 1 2 3 4 5 6
\(x_{n+1}\) 0.0092 0.0162 0.0205 0.0224 0.0228 0.0228
\(y_n\) 0.0067 0.0145 0.0197 0.0222 0.0227 0.0228
\(K_0y_n\) 0.0067 0.0145 0.0197 0.0222 0.0227 0.0228
\(K_0x_{n+1}\) 0.0186 0.0327 0.0415 0.0452 0.0460 0.0460

Hence, the conditions of Lemma 1 hold.

3. Conclusion

The technique of recurrent functions has been utilized to extend the application of method (2). The convergence uses conditions on the derivative of the method and not the eighth derivative as in earlier studies. The technique is very general rendering it useful to extend the usage of other iterative methods [11-20].

References

  1. Xiao, X., & Yin, H. (2015). A new class of methods with high order of convergence for solving systems of nonlinear equations. Applied Mathematics and Computation, 264, 300-309.
  2. Argyros, I. K. (2004). On the Newton-Kantorovich hypothesis for solving equations. Journal of Computational Mathematics, 169, 315-332.
  3. Argyros, I. K. (2007). Computational theory of iterative methods. Elsevier Publishing Company.
  4. Argyros, I. K. (2008). Convergence and applications of Newton-type iterations. Springer Verlag.
  5. Argyros, I. K., & Hilout, S. (2012). Weaker conditions for the convergence of Newton’s method. Journal of Complexity, 28(3), 364-387.
  6. Argyros, I. K., & Hilout, S. (2013). On an improved convergence analysis of Newton’s methods. Applied Mathematics and Computation, 225, 372-386.
  7. Argyros, I. K., & Magréñán, A. A. (2017). Iterative methods and their dynamics with applications. CRC Press.
  8. Argyros, I. K., & Magréñán, A. A. (2018). A contemporary study of iterative methods. Elsevier (Academic Press).
  9. Argyros, I. K. (2021). Unified convergence criteria for iterative Banach space valued methods with applications. Mathematics, 9(16), 1942. (link unavailable)
  10. Homeier, H. H. H. (2004). A modified Newton method with cubic convergence: The multivariate case. Journal of Computational and Applied Mathematics, 169, 161-169.
  11. Behl, R., Maroju, P., Martinez, E., & Singh, S. (2020). A study of the local convergence of a fifth order iterative method. Indian Journal of Pure and Applied Mathematics, 51(2), 439-455.
  12. Cătinaș, E. (2021). How many steps still left to \(x^{\ast}\)? SIAM Review, 63(3), 537-538.
  13. Ezquerro, J. A., & Hernandez, M. A. (2018). Newton’s method: An updated approach of Kantorovich’s theory. Springer, Cham.
  14. Gagandeep, Sharma, R., & Argyros, I. K. (2021). On the convergence of a fifth order method in Banach spaces. Bulletin of Mathematical Analysis and Applications, 13(1), 16-40.
  15. Gagandeep, Sharma, R., & Argyros, I. K. (2017). Semilocal convergence analysis of a fourth-order method in Banach spaces and its dynamics. Advances in Computational Sciences and Technology, 10(5), 1273-1285.

  16. Jaiswal, J. P. (2016). Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numerical Algorithms, 71(4), 933-951.
  17. Kantorovich, L. V., & Akilov, G. P. (1982). Functional analysis. Pergamon Press.
  18. Magréñán, A. A., Argyros, I. K., Rainer, J. J., & Sicilia, J. A. (2018). Ball convergence of a sixth-order Newton-like method based on means under weak conditions. Journal of Mathematical Chemistry, 56, 2117-2131. (link unavailable)
  19. Magréñán, A. A., & Gutiérrez, J. M. (2015). Real dynamics for damped Newton’s method applied to cubic polynomials. Journal of Computational and Applied Mathematics, 275, 527-538.
  20. Verma, R. (2019). New Trends in Fractional Programming. Nova Science Publisher.