On a generalized class of bi-univalent functions defined by subordination and \(q\)-derivative operator

Author(s): Ayotunde O. Lasode1, Timothy O. Opoola2
1Department of Mathematics, University of Ilorin, PMB 1515, Ilorin, Nigeria.;
2Department of Mathematics, University of Ilorin, PMB 1515, Ilorin, Nigeria.
Copyright © Ayotunde O. Lasode, Timothy O. Opoola. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, the \(q\)-derivative operator and the principle of subordination were employed to define a subclass \(\mathcal{B}_q(\tau,\lambda,\phi)\) of analytic and bi-univalent functions in the open unit disk \(\mathcal{U}\). For functions \(f(z)\in\mathcal{B}_q(\tau,\lambda,\phi)\), we obtained early coefficient bounds and some Fekete-Szegö estimates for real and complex parameters.

Keywords: Analytic function; Bi-univalent function; Subordination; Fekete-Szegö problem; Ma-Minda function; Carathéodory function; \(q\)-differentiation.

1. Introduction

Let \(\mathcal{U}=\{z:z\in\mathbb{C}, |z|< 1\}\) be a unit disk and let \(\mathcal{A}\) denote the class of analytic functions of the form

\begin{equation}\label{funAnalytic} f(z)=z+\sum_{n=2}^{\infty}a_nz^n \quad (z\in\mathcal{U}), \end{equation}
(1)
normalized by the conditions \(f(0)=f'(0)-1=0\). Let \(\mathcal{S}\subset\mathcal{A}\) be the class of analytic and univalent functions in \(\mathcal{U}\).

Let \(\mathcal{W}\) denote the class of functions

\begin{equation*}\label{funSchwarz} w(z)=w_1z + w_2z^2 + w_3z^3+\cdots\quad (z\in\mathcal{U}), \end{equation*} such that \(w(0)=0\) and \(|w(z)|< 1\). The class \(\mathcal{W}\) is known as the class of Schwarz functions.

By [1], let \(j(z)\), \(J(z)\in\mathcal{A}\), then \(j(z)\prec J(z)\), \(z\in\mathcal{U}\), if \(\exists w(z)\) analytic in \(\mathcal{U}\), such that \(w(0)=0\), \(|w(z)|< 1\) and \(j(z)=J(w(z))\). If the function \(J(z)\) is univalent in \(\mathcal{U}\), then \(j(z)\prec J(z)\implies j(0) = J(0)\) and \(j(\mathcal{U})\subset J(\mathcal{U})\).

Let \(\mathcal{P}\) denote the class of functions

\begin{equation}\label{funCaratheodory} p(z) = 1 + p_1z + p_2z^2 + \cdots \quad (z\in\mathcal{U}), \end{equation}
(2)
which are analytic in \(\mathcal{U}\) such that \(\mathcal{R}e(p(z))>0\) and \(p(0)=1\). It is known that functions in classes \(\mathcal{P}\) and \(\mathcal{W}\) are related such that
\begin{equation}\label{funPW} p(z)=\frac{1+w(z)}{1-w(z)} \Longleftrightarrow w(z)=\frac{p(z)-1}{p(z)+1}. \end{equation}
(3)
In [2], Ma and Minda defined a function \(\phi\in\mathcal{P}\ (z\in\mathcal{U})\) such that \(\phi(0)=1\), \(\phi'(0)>0\) and \(\phi(\mathcal{U})\) is starlike with respect to 1 and symmetric with respect to the real axis. Such function \(\phi\) can be expressed as
\begin{equation}\label{funMaMinda} \phi(z)=1+\beta_1z + \beta_2z^2+\cdots \quad (z\in\mathcal{U},\ \beta_1>0). \end{equation}
(4)
Fekete and Szegö [3] investigated the coefficient functional \begin{equation*}\label{funFSFunctional} g_\rho(f)=|a_3 – \rho a_2^2|, \end{equation*} which arose from the disproof of Littlewood-Parley conjecture (see [1]) that says modulus of coefficients of odd univalent functions are less than 1. This functional has been investigated by many researchers, see for instance [4,5].

Historically, Lewin [6] introduced a subclass of \(\mathcal{A}\) called the class of bi-univalent functions and established that \(|a_2|\leq 1.51\) for all bi-univalent functions. Also, the Koebe 1/4 theorem (see [1]) states that the range of every function \(f\in\mathcal{S}\) contains the disk \(D=\{\omega:|\omega|< 0.25\}\subseteq f(\mathcal{U})\). This implies that \(\forall f\in\mathcal{S}\) has an inverse function \(f^{-1}\) such that

\begin{align*} f^{-1}(f(z)) &= z \quad (z\in\mathcal{U}), \end{align*} and \begin{align*} f(f^{-1}(\omega)) &= \omega\quad (\omega:|\omega| < r_0(f);\; r_0(f)\geq 0.25), \end{align*} where \(f^{-1}(\omega)\) is expressed as
\begin{equation}\label{funF(w)} F(\omega)=f^{-1}(\omega) = \omega – a_2\omega^2 + (2a_2^2 – a_3)\omega^3 – (5a^3_2 – 5a_2a_3 + a_4)\omega^4 +\cdots. \end{equation}
(5)
Thus, a function \(f\in\mathcal{A}\) is said to be bi-univalent in \(\mathcal{U}\) if both \(f(z)\) and \(F(\omega)\) are univalent in \(\mathcal{U}\). Let \(\mathcal{B}\) denote the class of analytic and bi-univalent functions in \(\mathcal{U}\).

Some functions \(f\in\mathcal{B}\) includes \(f(z)=z\), \(f(z)=z/(1-z)\), \(f(z)=-\log(1-z)\) and \(f(z)=\frac{1}{2}\log[(1+z)/(1-z)]\). Observe that some familiar functions \(f\in\mathcal{S}\) such as the Koebe function \(K(z)=z/(1-z)^2\), its rotation function \(K_\sigma(z)=z/(1-e^{i\sigma}z)^2\), \(f(z)=z – z^2/2\) and \(f(z)=z/(1-z^2)\) are nonmembers of \(\mathcal{B}\). See [4,5,7,8,9,10,11] for more details.

Jackson [12] (see also [8,13,14]) introduced the concept of \(q\)-derivative operator. For functions \(f\in\mathcal{A}\), the \(q\)-derivative of \(f\) can be defined by

\begin{equation}\label{qDerivative} \mathcal{D}_qf(z)=\frac{f(z)-f(qz)}{(1-q)z} \qquad (z\neq 0, \ 0< q< 1), \end{equation}
(6)
where \(\mathcal{D}_q f(0)=f'(0)\) and \(\mathcal{D}_qf(z)z=\mathcal{D}_q(\mathcal{D}_qf(z))\). From (1) and (6) we get
\begin{equation}\label{funOperator} \left. \begin{array}{l} \mathcal{D}_qf(z)=1+\sum\limits_{n=2}^{\infty}[n]_q a_n z^{n-1}\\ \mathcal{D}_qf(z)z=\sum\limits_{n=2}^{\infty}[n]_q[n-1]_q a_n z^{n-2} \end{array} \right\} \end{equation}
(7)
where \([n]_q=\frac{1-q^n}{1-q}\), \([n-1]_q=\frac{1-q^{n-1}}{1-q}\), \(\lim\limits_{q\uparrow 1}[n]_q = n\) and \(\lim\limits_{q\uparrow 1}[n-1]_q = n-1\).

For instance, if \(\alpha\) is a constant, then for the function \(f(z)=\alpha z^n\),

\[\mathcal{D}_qf(z)=\mathcal{D}_q(\alpha z^n)=\frac{1-q^n}{1-q}\alpha z^{n-1}=[n]_q\alpha z^{n-1}\,,\] and note that \[\lim\limits_{q\uparrow 1}\mathcal{D}_qf(z)=\lim\limits_{q\uparrow 1}[n]_q\alpha z^{n-1}=n\alpha z^{n-1}=:f'(z)\,,\] where \(f'(z)\) is the classical derivative.

In this study, the \(q\)-derivative operator and the subordination principle are used to define and generalize a subclass of bi-univalent functions. Afterwards, some coefficient bounds and some Fekete-Szegö estimates were investigated. Some of our results generalised that of Srivastava and Bansal in [10] and some new results are added.

Definition 1. Let \(0< q< 1\), \(\tau \in\mathbb{C}\setminus\{0\}\), \(0\leq \lambda\leq 1\) and \(\phi\) is defined in (4). A function \(f\in\mathcal{B}\) is said to be in the class \(\mathcal{B}_q(\tau,\lambda,\phi)\) if the subordination conditions

\begin{equation}\label{myclassz} 1 + \frac{1}{\tau}[\mathcal{D}_qf(z) + \lambda z\mathcal{D}_qf(z)z – 1]\prec \phi(z)\qquad (z\in\mathcal{U}), \end{equation}
(8)
and
\begin{equation}\label{myclassw} 1 + \frac{1}{\tau}[\mathcal{D}_q F(\omega) + \lambda \omega\mathcal{D}_q^2F(\omega) – 1]\prec\phi(\omega) \quad (\omega\in \mathcal{U}), \end{equation}
(9)
where \(F(\omega)=f^{-1}(\omega)\) are satisfied.

Remark 1. Let \(q\uparrow 1\) in (8) and (9), then \(\mathcal{B}_q(\tau,\lambda,\phi)\) becomes the class \(\mathcal{B}(\tau, \lambda, \phi)\) investigated by Srivastava and Bansal [10].

2. Preliminary Lemmas

To establish our results, we shall need the following lemmas. Let \(p(z)\) be as defined in (2).

Lemma 2 ([1]). If \(p(z)\in\mathcal{P}\), then \(|p_n|\leq 2\ (n\in\mathbb{N}). \) The result is sharp for the well-known Möbius function.

Lemma 3 ([15,16]). If \(p(z)\in\mathcal{P}\), then \(2p_2 = p^2_1 + (4-p^2_1)x \) for some \(x\) and \(|x|\leq 1\).

3. Main Results

Unless otherwise mentioned in what follows, we assume throughout this work that \(0< q< 1\), \(\tau\in\mathbb{C}\setminus\{0\}\), \(0\leq \lambda \leq 1\), \(\phi\) is as defined in (4) and \(f\in\mathcal{B}\), hence our results are as follows:

Theorem 4. Let \(f\in\mathcal{B}_q(\tau,\lambda,\phi)\), then

\begin{align} |a_2| &\leq \frac{\beta_1^{3/2}|\tau|} {\sqrt{\left|\beta_1^2\tau [3]_q(1+[2]_q\lambda)+[2]_q^2(1+ [1]_q\lambda)^2(\beta_1-\beta_2)\right|}}\,,\label{Resulta2}\\ \end{align}
(10)
\begin{align} |a_3| &\leq \frac{ \beta_1^2|\tau|^2}{[2]^2_q(1+[1]_q\lambda)^2} + \frac{ \beta_1|\tau|}{[3]_q(1+[2]_q\lambda)}\label{Resulta3}\,, \end{align}
(11)
where \(\beta_1>0\) and \(\beta_n\ (n\in\mathbb{N})\) are coefficients of \(\phi(z)\) in (4).

Proof. Let \(f(z)\in\mathcal{B}\) and \(F(\omega)=f^{-1}(\omega)\), then there exists the analytic functions \(u(z), v(\omega)\in\mathcal{W}\), \(z,\omega\in\mathcal{U}\) such that \(u(0)=0=v(0)\), \(|u(z)|< 1\), \(|v(\omega)|< 1\) so that they satisfy the subordination conditions:

\begin{equation}\label{myclassz2} 1 + \frac{1}{\tau}[\mathcal{D}_q f(z) + \lambda z\mathcal{D}_qf(z)z – 1] = \phi (u(z)) \quad (z\in\mathcal{U})\,, \end{equation}
(12)
and
\begin{equation}\label{myclassw2} 1 + \frac{1}{\tau}[\mathcal{D}_q F(\omega) + \lambda \omega\mathcal{D}_q^2 F(\omega) – 1] = \phi (v(\omega)) \quad (\omega\in \mathcal{U}). \end{equation}
(13)
By substituting (7) into LHS of (12) we respectively get
\begin{equation}\label{Seriesf} 1 + \frac{1}{\tau}[\mathcal{D}_qf(z) + \lambda z\mathcal{D}_qf(z)z – 1]= 1 + \frac{[2]_q(1+[1]_q\lambda)a_2}{\tau}z + \frac{[3]_q(1+[2]_q\lambda)a_3}{\tau}z^2+\cdots\,, \end{equation}
(14)
and following the same process for \(F(\omega)\) in (5) gives
\begin{equation}\label{Seriesw} 1 + \frac{1}{\tau}[\mathcal{D}_q F(\omega) + \lambda \omega\mathcal{D}_q^2 F(\omega) – 1] = 1 – \frac{[2]_q(1+[1]_q\lambda)a_2}{\tau}\omega + \frac{[3]_q(1+[2]_q\lambda)(2a_2^2 – a_3)}{\tau}\omega^2 + \cdots. \end{equation}
(15)
Now to expand
\begin{equation}\label{Step3} \phi(u(z)), \end{equation}
(16)
and
\begin{equation}\label{Step4} \phi(v(\omega)), \end{equation}
(17)
in series form, let \(\delta_1(z)=1+b_1z+b_2z^2+\dots\), \(\delta_2(\omega)=1+c_1\omega+c_2\omega^2+\dots\in\mathcal{P}\), then by (3),
\begin{equation}\label{Eqn:p1} \delta_1(z)=\frac{1+u(z)}{1-u(z)}\Longrightarrow u(z)=\frac{\delta_1(z)-1}{\delta_1(z)+1}=\frac{1}{2}\left[b_1z + \left(b_2-\frac{b^2_1}{2}\right)z^2+\left(\frac{b_1^3}{2^2}-b_1b_2 + b_3\right)z^3+\cdots\right]\,, \end{equation}
(18)
and following the same process
\begin{equation}\label{Seriesv} \delta_2(\omega)=\frac{1+v(\omega)}{1-v(\omega)}\Longrightarrow v(\omega)=\frac{\delta_2(\omega)-1}{\delta_2(\omega)+1}=\frac{1}{2}\left[c_1\omega + \left(c_2-\frac{c^2_1}{2}\right)\omega^2+\left(\frac{c_1^3}{2^2}-c_1c_2+c_3\right)\omega^3+\cdots\right]. \end{equation}
(19)
Substituting (18) into (16) as expressed by (4) we get
\begin{align}\label{Seriesphiu} \phi(u(z))=1& + \frac{1}{2}\beta_1b_1z + \frac{1}{2}\left[\beta_1\left(b_2-\frac{b_1^2}{2}\right)+\frac{1}{2}\beta_2b_1^2\right]z^2\notag \\&+\frac{1}{2}\left[\beta_1\left(\frac{b_1^3}{2^2} – b_1b_2 +b_3\right)+\beta_2b_1\left(b_2-\frac{b_1^2}{2}\right)+\frac{1}{4}\beta_3b_1^3\right]z^3+\cdots\,, \end{align}
(20)
and substituting (19) into (17) as expressed by (4) we get
\begin{align}\label{Seriesphiv} \phi(v(\omega))= 1 &+ \frac{1}{2}\beta_1c_1\omega + \frac{1}{2}\left[\beta_1\left(c_2-\frac{c_1^2}{2}\right)+\frac{1}{2}\beta_2c_1^2\right]\omega^2 \notag\\&+\frac{1}{2}\left[\beta_1\left(\frac{c_1^3}{2^2} – c_1c_2 + c_3\right)+\beta_2c_1\left(c_2-\frac{c_1^2}{2}\right)+\frac{1}{4}\beta_3c_1^3\right]\omega^3+\cdots. \end{align}
(21)
Now comparing the coefficients in (14) and (20) we get
\begin{equation}\label{a1f} \frac{[2]_q(1+[1]_q\lambda)a_2}{\tau}=\frac{\beta_1b_1}{2}\,, \end{equation}
(22)
\begin{equation}\label{a2f} \frac{[3]_q(1+[2]_q\lambda)a_3}{\tau}=\frac{1}{2}\left[\beta_1\left(b_2-\frac{b_1^2}{2}\right)+\frac{1}{2}\beta_2b_1^2\right]\,, \end{equation}
(23)
and comparing the coefficients in (15) and (21) gives
\begin{equation}\label{a1g} -\frac{[2]_q(1+\lambda[1]_q)a_2}{\tau}=\frac{\beta_1c_1}{2}\,, \end{equation}
(24)
\begin{equation}\label{a2g} \frac{[3]_q(1+[2]_q\lambda)(2a^2_2 – a_3)}{\tau}=\frac{1}{2}\left[\beta_1\left(c_2-\frac{c_1^2}{2}\right)+\frac{1}{2}\beta_2c_1^2\right]. \end{equation}
(25)
Now adding (22) and (24) and simplifying we get
\begin{equation}\label{Eqn:a1} b_1=-c_1 \text{&nbsp &nbsp and &nbsp &nbsp} b^2_1 = c^2_1. \end{equation}
(26)
Also from (22) and (24) we get
\begin{equation}\label{a^2_2} 8[2]^2_q(1+[1]_q\lambda)^2a^2_2 = \tau^2 \beta^2_1(b^2_1 + c^2_1)\,, \end{equation}
(27)
and adding (23) and (25) and using (26) we get
\begin{equation}\label{Eqn:b^2_1} 4[3]_q(1+[2]_q\lambda)a_2^2 =\tau \beta_1(b_2+c_2)-\tau b_1^2(\beta_1-\beta_2). \end{equation}
(28)
From (27) and using (26) we get
\begin{equation} b_1^2=\frac{4[2]^2_q(1+ [1]_q\lambda)^2a^2_2}{\tau^2 \beta^2_1}. \end{equation}
(29)
So that by substituting for \(b_1^2\) in (28) we get
\begin{equation}\label{Eqn:a22} a_2^2 = \frac{\tau^2 \beta_1^3 (b_2+c_2)}{4\{\tau \beta_1^2 [3]_q(1+[2]_q\lambda)+[2]_q^2(1+ [1]_q\lambda)^2(\beta_1-\beta_2)\}}\,, \end{equation}
(30)
and applying Lemma 2 gives (10).

Again by subtracting (23) from (25), using (26) and simplifying we get

\begin{equation}\label{a3witha22} a_3=a_2^2+\frac{\tau \beta_1(b_2-c_2)}{4[3]_q(1+[2]_q\lambda)}. \end{equation}
(31)
Thus, from (27), using (26) and simplifying we get
\begin{equation} a_3 = \frac{\tau^2\beta^2_1 b^2_1}{4[2]^2_q(1+[1]_q\lambda)^2} + \frac{\tau \beta_1(b_2-c_2)}{4[3]_q(1+[2]_q\lambda)}\label{a3}\,, \end{equation}
(32)
and applying Lemma 2 gives (11).

Let \(q\uparrow 1\), then Theorem 4 becomes

Corollary 5. Let \(f(z)\in\mathcal{B}_q(\tau, \lambda, \phi)\), then as \(q\uparrow 1\), \begin{align*} |a_2| &\leq \frac{|\tau|\beta_1^{3/2}} {\sqrt{|\tau[3]_q \beta_1^2 +[2]_q^2 (\beta_1-\beta_2)|}}\,,\\ |a_3| &\leq \frac{|\tau|^2 \beta_1^2}{[2]^2_q} + \frac{ |\tau| \beta_1}{[3]_q}\,. \end{align*} which is the result of Srivastava and Bansal [10].

Theorem 6.( Fekete-Szegö Estimate, \(\varrho\in\mathbb{R}\)). If \(f\in\mathcal{B}_q(\tau,\lambda,\phi)\) and \(\varrho\in\mathbb{R}\), then \[ \mbox{\(|a_3 – \varrho a_2^2|\)}\leq \left\{ \begin{array}{rl} \frac{|\tau|\beta_1}{[3]_q(1+[2]_q\lambda)} & \mbox{for \(0\leq |h(\varrho)|\leq\frac{1}{[3]_q(1+[2]_q\lambda)}\);}\\ |\tau|\beta_1|h(\rho)| & \mbox{for \(|h(\varrho)|\geq \frac{1}{[3]_q(1+[2]_q\lambda)}\),} \end{array}\right. \] where

\begin{equation}\label{h(rho)} h(\varrho) = \frac{\tau \beta_1^2(1-\varrho)}{\{\tau \beta_1^2[3]_q(1+[2]_q\lambda) + [2]_q^2(1+[1]_q\lambda)^2(\beta_1-\beta_2)\}}\,. \end{equation}
(33)

Proof. From (30) and (31), \begin{align*} |a_3 – \varrho a_2^2| &= \left|\frac{\tau \beta_1 (b_2 – c_2)}{4[3]_q(1+[2]_q\lambda)} + (1 – \varrho)a^2_2\right|\\ &= \left|\frac{\tau \beta_1}{4}\left\{\frac{(b_2 – c_2)}{[3]_q(1+[2]_q\lambda)} + (b_2+c_2)h(\varrho)\right\}\right|\,, \end{align*} where \(h(\varrho) \) is given in (33), so that by applying triangle inequality, (4), Lemma 2 and simplifying complete the proof.

Theorem 7( Fekete-Szegö Estimate, \(\rho\in\mathbb{C}\)). If \(f\in\mathcal{B}_q(\tau, \lambda, \phi)\) and \(\rho\in\mathbb{C}\), then

\begin{equation}\label{Step5} \mbox{\(|a_3 – \rho a_2^2|\)}\leq \left\{ \begin{array}{rl} \frac{|\tau|\beta_1}{[3]_q(1+[2]_q\lambda)} & \mbox{for \(|1-\rho|\in [0,\xi)\);}\\ \frac{\beta^2_1|\tau|^2}{[2]^2_q(1+[1]_q\lambda)^2}|1-\rho| & \mbox{for \(|1-\rho| \in [\xi,\infty)\),} \end{array}\right. \end{equation}
(34)
where \begin{equation*} \xi = \frac{[2]^2_q(1+[1]_q\lambda)^2}{|\tau|\beta_1[3]_q(1+[2]_q\lambda)}\,. \end{equation*}

Proof. From (27) and (31) and using (26),

\begin{equation} a_3 – \rho a^2_2 = (1-\rho)\frac{\beta_1^2 b_1^2 \tau^2}{4[2]^2_q(1+[1]_q\lambda)^2} + \frac{\beta_1\tau (b_2 – c_2)}{4[3]_q(1+[2]_q\lambda)}\label{a3-mua22}. \end{equation}
(35)
From Lemma 3 and (26)
\begin{equation}\label{b2-c2} b_2 – c_2 = \frac{1}{2}(4-b_1^2)(x-y)\,, \end{equation}
(36)
for some \(x, y,|x|\leq 1,|y|\leq 1\) and \(|b_1|\in[0,2]\). Thus using (36) in (35) simplifies to \begin{equation*} a_3 – \rho a^2_2 = (1-\rho)\frac{\beta_1^2 b_1^2 \tau^2}{4[2]^2_q(1+[1]_q\lambda)^2} + \frac{\beta_1\tau (4-b^2_1)}{8[3]_q(1+[2]_q\lambda)}(x-y). \end{equation*} For \(\delta(z)=1+b_1z + b_2z^2 + \cdots\in\mathcal{P}\), \(|b_1| \leq 2\) by Lemma 2. Letting \(b= b_1\), we may assume without any restriction that \(b\in [0,2]\). Now using triangle inequality, letting \(X=|x|\leq 1\) and \(Y = |y|\leq 1\), then we get \begin{align*} |a_3 – \rho a^2_2|&\leq |1-\rho|\frac{\beta_1^2 b^2|\tau|^2}{4[2]^2_q(1+[1]_q\lambda)^2} + \frac{\beta_1|\tau|(4-b^2)}{8[3]_q(1+[2]_q\lambda)}(X + Y) = H(X,Y). \end{align*} For \(X,Y\in [0,1]\); \begin{equation*} \max\{H(X,Y)\} = H(1,1) = \frac{\beta_1^2 |\tau|^2}{4[2]^2_q(1+[1]_q\lambda)^2}\left\{ |1-\rho| – \frac{[2]_q^2(1+[1]_q\lambda)^2}{\beta_1|\tau|[3]_q(1+[2]_q\lambda)}\right\}b^2 + \frac{\beta_1|\tau|}{[3]_q(1+[2]_q\lambda)} = G(b)\label{G(t)}. \end{equation*} For \(b\in[0,2]\);
\begin{equation} G'(b) = \frac{\beta_1^2 |\tau|^2}{2[2]^2_q(1+[1]_q\lambda)^2}\left\{ |1-\rho| – \frac{[2]_q^2(1+[1]_q\lambda)^2}{\beta_1|\tau|[3]_q(1+[2]_q\lambda)}\right\}b\,, \end{equation}
(37)
which implies that there is a critical point at \(G'(b)=0\), that is at \(b=0\). Hence for \[G'(b)< 0; \; |1-\rho|\in \left[0,\frac{[2]_q^2(1+[1]_q\lambda)^2}{\beta_1|\tau|[3]_q(1+[2]_q\lambda)}\right)\,,\] thus, \(G(b)\) is strictly a decreasing function of \(|1-\rho|\), therefore from (3), \[\max\{G(b):b\in[0,2]\}=G(0)=\frac{\beta_1|\tau|}{[3]_q(1+[2]_q\lambda)}.\] Also for \[G'(b)\geq 0; \; |1-\rho|\in \left[\frac{[2]_q^2(1+[1]_q\lambda)^2}{\beta_1|\tau|[3]_q(1+[2]_q\lambda)}, 0\right)\,,\] thus, \(G(b)\) is an increasing function of \(|1-\rho|\), therefore from (3), \[\max\{G(b):b\in[0,2]\}=G(2)=\frac{|1-\rho|\beta_1^2|\tau|^2}{[2]_q^2(1+[1]_q\lambda)^2}.\] So that by putting the results together leads to (34).

4. Conclusion

In this work, we were able to establish the first two coefficient bounds and also solve the Fekete-Szegö problem for the class \(\mathcal{B}_q(\tau,\lambda,\phi)\) of analytic and bi-univalent functions in \(\mathcal{U}\). The results in the first theorem generalized that of Srivastava and Bansal [10].

Acknowledgments

The authors thank the referees for their valuable suggestions to improve the paper.

Author Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References:

  1. Duren, P. L. (2001). Univalent Functions. Springer-Verlag Inc., New York. [Google Scholor]
  2. Ma, W.C. & Minda, D. (1994). A Unified Treatment of some Special Classes of Univalent Functions. Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics, Nankai University, Tianjin, China. 157-169. [Google Scholor]
  3. Fekete, M., & Szegö, G. (1933). Eine Bemerkung über ungerade schlichte Funktionen. Journal of the London Mathematical Society, 1(2), 85-89. [Google Scholor]
  4. Mazi, E. P., & Opoola, T. O. (2017). On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions. General Mathematics, 25, 85-95. [Google Scholor]
  5. Mazi, E.P. & Opoola, T.O. (2019). A newly defined subclass of bi-univalent functions satisfying subordinate conditions. Mathematica 61,(84)(2), 146-155. [Google Scholor]
  6. Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68. [Google Scholor]
  7. Murugusundaramoorthy, G. & Bulut, S. (2018). Bi-Bazilevic functions of complex order involving Ruscheweyh type \(q\)-difference operator. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, 17, 5-18. [Google Scholor]
  8. Bulut, S. (2017). Certain subclass of analytic and bi-univalent function involving the \(q\)-derivative operator. Communications de la Faculté des Sciences de l’Université d’Ankara. Séries A1, 66(1), 108-114. [Google Scholor]
  9. Shaba, T.G. (2020). On some new subclass of bi-univalent functions associated with the Opoola differential operator. Open Journal of Mathematical Analysis, 4(2), 74-79. [Google Scholor]
  10. Srivastava, H.M. & Bansal, D. (2015). Coefficient estimates for a subclass of analytic and bi-univalent functions. Journal of Egyptian Mathematical Society, 23, 242-246. [Google Scholor]
  11. Srivastava, H.M., Mishra, A.K. & Gochhayt, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192. [Google Scholor]
  12. Jackson, F.H. (1908). On \(q\)-functions and a certain difference operator. Transactions of the Royal Society of Edinburgh, 46(2), 64-72. [Google Scholor]
  13. Aral, A., Gupta, V. & Agarwal, R.P. (2013). Applications of \(q\)-Calculus in Operator Theory. Springer Science+Business Media, New York. [Google Scholor]
  14. Kac, V. & Cheung, P. (2002). Quantum Calculus. Springer-Verlag Inc., New York. [Google Scholor]
  15. Grenander, U. & Szegö, G. (1958). Toeplitz Form and Their Applications. California Monographs in Mathematical Sciences, University of California Press, Berkeley. [Google Scholor]
  16. Libera, R.J. & Zlotkiewicz, E.J. (1982). Early coefficients of the inverse of a regular convex function. Proceedings of the American Mathematical Society, 85(2), 225-230. [Google Scholor]