Search for Articles:

Contents

Upper Estimates For Initial Coefficients and Fekete-Szegö Functional of A Class of Bi-univalent Functions Defined by Means of Subordination and Associated with Horadam Polynomials

Atinuke Ayanfe Amao1, Timothy Oloyede Opoola1
1Department of Mathematics, Faculty of Physical Sciences, University of Ilorin. PMB 1515, Ilorin, Nigeria.
Copyright © Atinuke Ayanfe Amao, Timothy Oloyede Opoola. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this work, a new class of bi-univalent functions \(I^{n+1}_{\Gamma_m,\lambda}(x,z)\) is defined by means of subordination. Upper bounds for some initial coefficients and the Fekete-Szegö functional of functions in the new class were obtained.

Keywords: Analytic functions,subordination, bi-univalent functions,Höradam polynomial,Opoola differential operator

1. Introduction

Let \(A\) denote the class of functions that are analytic within the unit disk, defined as \[U = \{ z \in \mathbb{C} : |z| < 1 \}.\] Furthermore, let \(S\) be a subclass of \(A\), comprising functions that are univalent in \(U\) and adhere to the normalization \[\label{eq1} f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \tag{1}\]

The Koebe one-quarter theorem [1] assures that for every univalent function \(f \in S\), its image in \(U\) encompasses a disk with a minimum radius of \(\frac{1}{4}\). Consequently, every univalent function \(f\) possesses an inverse \(f^{-1}\) satisfying \[f^{-1}(f(z)) = z \quad (z \in U), \quad f(f^{-1}(w)) = w \quad (|w| < r_0(f)), \quad r_0(f) \geq \frac{1}{4}. \tag{2}\]

Definition 1. A function \(f \in S\) is termed bi-univalent in \(U\) if \(f\) is univalent in \(U\) and its inverse \(f^{-1}\) extends univalently to \(U\).

The class of bi-univalent functions in \(U\) is denoted by \(\Sigma\). Since each function \(f \in \Sigma\) can be expressed by the Maclaurin series (1), it follows that its inverse \(g = f^{-1}\) can be expanded as \[g(w) = w – a_2 w^2 + (2a_2^2 – a_3) w^3 + \ldots. \tag{3}\]

Recent studies have focused on several classes of bi-univalent functions (see, for instance, references [24]).

Definition 2. For functions \(f\) and \(g\) in the class \(A\), \(f\) is said to be subordinate to \(g\) if there exists a Schwarz function \(w(z)\) with \(w(0) = 0\) and \(|w(z)| < 1\), such that \(f(z) = g(w(z))\).

In particular, if \(g\) is univalent in \(U\), subordination implies \[f(0) = g(0) \quad \text{and} \quad f(U) \subseteq g(U).\]

We denote by \[S^* = \{ f \in S : \Re \left( \frac{zf'(z)}{f(z)} \right) > 0, \, z \in U \}\] and \[K = \{ f \in S : \Re \left( 1 + \frac{zf''(z)}{f'(z)} \right) > 0, \, z \in U \}.\]

The classes \(S^*\) and \(K\) are referred to as the classes of starlike and convex functions, respectively.

A noteworthy concept in the theory of univalent functions, recently revisited in the context of singularity theory[5] and power series with integral coefficients, is the Hankel determinant \(H_{\delta}(n)\) for functions \(f(z) \in A\) with the form (1). For \(\delta \geq 1\) and \(m \geq 1\), \[H_{\delta}(n) = \begin{vmatrix} a_{m} & a_{m+1} & \cdots & a_{m+\delta-1} \\ a_{m+1} & a_{m+2} & \cdots & a_{m+\delta} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m+\delta-1} & a_{m+\delta} & \cdots & a_{m+2(\delta-1)} \end{vmatrix}. \tag{4}\]

This determinant has been extensively investigated in the literature [68]. The Hankel determinant \(H_2(1) = a_3 – a_2^2\) is well known as the Fekete-Szegö functional. Identifying the upper bound for \(\lambda_{\sigma}(f) = |a_3 – \sigma a_2^2|\) over the class \(S\), a generalization of \(H_2(1)\), is recognized as the Fekete-Szegö problem, where \(\sigma\) is a real or complex number.

Using the Loewner method, Fekete and Szegö demonstrated in [9] that \[\max_{f \in S} \lambda_{\sigma}(f) = \begin{cases} 1 + 2\exp\left(\frac{-2\sigma}{1-\sigma}\right), & \sigma \in [0,1], \\ 1, & \sigma = 1. \end{cases}\]

In 1969, the Fekete-Szegö problem for the classes of starlike functions \(S^*\) and convex functions \(K\) was investigated by Koegh and Merkes [10].

Recently, Hörcum and Gokcen [11] considered the Horadam polynomials \(J_m(x)\), defined by the recurrence relation \[J_m(x) = pxJ_{m-1}(x) + qJ_{m-2}(x), \tag{5}\] where \(m \in \mathbb{N} \setminus \{1, 2\}\), \(\mathbb{N} = \{1, 2, 3, \ldots\}\), and \(a\), \(h\), \(p\), \(q\) are specific real constants.

For particular cases:

  1. For \(a = h = p = q = 1\), we obtain the Fibonacci polynomial \(F_n(x)\).

  2. For \(a = 1\), \(h = p = 2\) and \(q = -1\), we acquire the Chebyshev polynomial \(U_n(x)\) of the second kind.

Definition 3. [12] Let \(f \in A\). Define the operator \(D^n(\mu,\beta,t)f(z)\) as follows: \[\begin{aligned} D^n(\mu,\beta,t)f(z): A &\rightarrow A, \quad n \in N_0 = N \cup \{0\}, \\ D^0(\mu,\beta,t)f(z) &= f(z), \\ D^1(\mu,\beta,t)f(z) &= tzf'(z) – z(\beta – \mu)t + (1 + (\beta – \mu – 1)t)f(z), \\ D^n(\mu,\beta,t)f(z) &= zD_t[D^{n-1}(\mu,\beta,t)f(z)], \end{aligned}\] where \(D_tf(z) = 1 + \sum_{k=2}^{\infty}[1 + (k + \beta – \mu – 1)t]a_kz^k\). If \(f(z)\) is expressed as in equation (1), then \[D^n(\mu,\beta,t)f(z) = z + \sum_{k=2}^{\infty}[1 + (k + \beta – \mu – 1)t]^n a_k z^k,\] with \(0 \leq \mu \leq \beta\) and \(t \geq 0\).

Remark 1.

  • When \(\beta = \mu\) and \(t = 1\), \(D^n_{\beta,\mu,t}f(z)\) reduces to the \(D^n f(z)\) differential operator as defined by Salagean [13].

  • For \(\beta = \mu\), \(D^n(\beta,\mu,t)f(z)\) corresponds to the differential operator \(D^n_{\lambda}f(z)\) as defined by Al-boudi [14].

Definition 4. A function \(f(z) \in A\) belongs to the class \(I^{n+1}_{\Gamma_m,\lambda}(x,z)\) if \[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + \left(\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)}\right)^{\frac{1}{\lambda}}\right] \prec \prod(x,z) + 1 – a, \tag{6}\] and similarly for \(g(w)\), \[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)} + \left(\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)}\right)^{\frac{1}{\lambda}}\right] \prec \prod(x,w) + 1 – a, \tag{7}\] where \(n \in N_0 = N \cup \{0\}\), \(\Gamma_m = 1 + (m + \beta – \mu)t\), \(m \in N\), \(\mu \in [0, \beta]\), \(t \geq 0\), \(0 < \lambda \leq 1\), and \(f(z)\), \(g(w)\) are as previously defined. Here, \(D^n_{\Gamma_m}f(z)\) denotes the Opoola differential operator, \(\prod(x,z) = \sum_{m=1}^{\infty} j_m(x)z^{m-1}\), and \(z, w \in U\).

Remark 2.

  • For \(n = 0\), we obtain the class \(W_\Sigma(\mu;x)\) of functions satisfying: \[\frac{1}{2}\left[\frac{zf'(z)}{f(z)} + \left(\frac{zf'(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right] \prec \prod(x,z) + 1 – a, \tag{8}\] and similarly for \(g(w)\). When \(n = 0\) and \(\lambda = 1\), this class reduces to \(W_\Sigma(x)\), comprising functions \(f \in A\) satisfying certain criteria, as studied by Srivastava et al. [15].

  • For \(n = 0\), \(a = 1\), and other specific parameters, the class \(S_\Sigma(\mu;t)\), as studied by Altinkaya and Yakin [16], is obtained.

Let \(P\) denote the class of functions with positive real part. A function \(p \in P\) implies that \[p(z) = 1 + b_1z + b_2z^2 + b_3z^3 + \ldots, \quad z \in U, \tag{9}\] with \(\Re p(z) > 0\). It is known that \[p(z) = \frac{w(z) – 1}{w(z) + 1}, \tag{10}\] where \(w(z)\) is a Schwarz function.

Lemma 1. [17] If \(p(z) = 1 + b_1z + b_2z^2 + b_3z^3 + \ldots\) is in \(P\), then \(|b_m| \leq 2\).

Lemma 1 [17]:

Lemma 2. [17] If \(p(z) = 1 + b_1z + b_2z^2 + b_3z^3 + \ldots\) is in \(P\), then \[\left|b_2 – \sigma b_1^2\right| \leq \begin{cases} 2 – \sigma|b_1|^2, & \sigma \leq \frac{1}{2}, \\ 2 – (1 – \sigma)|b_1|^2, & \sigma \geq \frac{1}{2}. \end{cases} \tag{11}\]

2. Main results

Theorem 1. . Let \(f(z) \in I^{n+1}_{\Gamma_m,\lambda}(x,z)\), then \[\label{important} |a_2| \leq \frac{2\lambda\sqrt{|hx|}|hx|}{\sqrt|{[2\lambda(1+\lambda)\Gamma_2^{n}(\Gamma_2 -1)+\Gamma_1^{2n}(4\lambda\Gamma_1-1-3\lambda)](hx)^2+(hx-(phx^2+qa))(1+\lambda)^2(\Gamma_1-1)^2\Gamma_1^{2n}|}} \tag{12}\] \[|a_3|\leq \frac{2\lambda|hx|(1+2\lambda)}{\Gamma_2^n(\Gamma_2-1)(1+\lambda)}+\frac{4\lambda^2(hx)^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2} \tag{13}\]

Proof. Let \(f(z)\in I^{n+1}_{\Gamma_m,\lambda}(x,z)\).By definition of Subordination, there exists functions \(\Theta(z)\) and \(\Phi(z)\), \(\Theta(0)=\Phi(0)=0\) and \(|\Theta(z)|<1\) and \(|\Phi(w)|<1\) \(\forall z, w \in U\) such that
\[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + (\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)})^{\frac{1}{\lambda}}\right] = \prod(x,\Theta(z))+1-a \tag{14}\] and
\[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)} + (\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)})^{\frac{1}{\lambda}}\right] = \prod(x,\Phi(w))+1-a \tag{15}\] From \(15\), \[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + (\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)})^{\frac{1}{\lambda}}\right]= \sum_{m=1}^{\infty} j_m(x)(\Theta(z))^{m-1}+1-a\] \[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + (\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)})^{\frac{1}{\lambda}}\right]=j_1(x)+j_2(x)\Theta(z)+j_3(x)[\Theta(z)]^2+j_4(x)[\Theta(z)]^3+…+1-a \tag{16}\] Also, from \(16\)
\[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)} + (\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)})^{\frac{1}{\lambda}}\right]=j_1(x)+j_2(x)\Phi(w)+j_3(x)[\Phi(w)]^2+j_4(x)[\Phi(w)]^3+…+1-a \tag{17}\] From equations \(11\) and \(12\)
\[\Theta(z)= \frac{p(z)-1}{p(z)+1}\] \[=(b_1 z+b_2 z^2+b_3z^3+b_4z^4+…)(2+b_1 z+b_2 z^2+b_3z^3+b_4z^4+…)^{-1}\] \[\Theta(z)= \frac{1}{2}[b_1 z+(b_2-\frac{b_1^{2}}{2}) z^2+(b_3-b_1b_2+\frac{b_1^{3}}{4})z^3+…] \tag{18}\] \[^2= \frac{1}{4}[b_1^2 z^2+2(b_1b_2-\frac{b_1^{3}}{2}) z^3+(b_1b_3-b_1^2b_2+\frac{2b_1^{4}}{4}-b_1^3b_2+b_1^2b_2^2)z^4+…] \tag{19}\] \[^3= \frac{1}{8}[b_1^3z^3+3(b_1^2b_2-\frac{b_1^{4}}{2}) z^4+…] \tag{20}\] \[\Phi(w)= \frac{\rho(w)-1}{\rho(w)+1}\] \[=(d_1 w+d_2 w^2+d_3w^3+b_4z^4+…)(2+d_1 w+d_2 w^2+d_3w^3+b_4w^4+…)^{-1}\] \[\Phi(w)= \frac{1}{2}[d_1 w+(d_2-\frac{d_1^{2}}{2}) w^2+(d_3-d_1d_2+\frac{d_1^{3}}{4})w^3+…] \tag{21}\] \[^2= \frac{1}{4}[d_1^2 w^2+2(d_1d_2-\frac{d_1^{3}}{2}) w^3+(d_1d_3-d_1^2d_2+\frac{2d_1^{4}}{4}-d_1^3d_2+d_1^2d_2^2)w^4+…] \tag{22}\] \[^3= \frac{1}{8}[d_1^3w^3+3(d_1^2d_2-\frac{d_1^{4}}{2}) w^4+…] \tag{23}\] Substituting \(19\), \(20\) and \(21\) into \(RHS\) of \(17\), we have
\[\begin{gathered} \small \frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + (\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)})^{\frac{1}{\lambda}}\right]= 1+j_2(x)\frac{b_1}{2}z+ \frac{1}{2}[j_3(x)\frac{b_1^2}{2}+j_2(x)(b_2-\frac{b_1^2}{2})] z^2\\+ \frac{1}{2}[j_4(x)\frac{b_1^3}{4}+j_3(x)(b_1b_2-\frac{b_1^3}{2})+j_2(x)(b_3-b_1b_2+\frac{b_1^3}{4})]z^3+… \end{gathered} \tag{24}\] Substituting \(22\), \(23\) and \(24\) into \(RHS\) of \(18\), we have
\[\begin{gathered} \frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)} + (\frac{D^{n+1}_{\Gamma_m}g(w)}{D^{n}_{\Gamma_m}g(w)})^{\frac{1}{\lambda}}\right]= 1+j_2(x)\frac{d_1}{2}z+ \frac{1}{2}[j_3(x)\frac{d_1^2}{2}+j_2(x)(d_2-\frac{d_1^2}{2})] z^2\\+ \frac{1}{2}[j_4(x)\frac{d_1^3}{4}+j_3(x)(d_1d_2-\frac{d_1^3}{2})+j_2(x)(d_3-d_1d_2+\frac{d_1^3}{4})]z^3+… \end{gathered} \tag{25}\] Considering the \(LHS\) of \(17\)
\[\frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)} + (\frac{D^{n+1}_{\Gamma_m}f(z)}{D^{n}_{\Gamma_m}f(z)})^{\frac{1}{\lambda}}\right]= \frac{1}{2}\left[\frac{D^{n+1}_{\Gamma_m}f(z)(D^{n}_{\Gamma_m}f(z))^{\frac{1}{\lambda}}+(D^{n+1}_{\Gamma_m}f(z))^{\frac{1}{\lambda}}D^{n}_{\Gamma_m}f(z)}{(D^{n}_{\Gamma_m}f(z))^{\frac{1+\lambda}{\lambda}}}\right] \tag{26}\] \[D^{n+1}_{\Gamma_m}f(z)=z+\sum_{k=2}^{\infty} [1+(k+\beta-\mu-1)t]^{n+1}a_kz^k=z+\Gamma_1^{n+1}a_2z^2+\Gamma_2^{n+1}a_3z^3+\Gamma_3^{n+1}a_4z^4+… \tag{27}\] \[^{\frac{1}{\lambda}}=[z+\Gamma_1^{n+1}a_2z^2+\Gamma_2^{n+1}a_3z^3+\Gamma_3^{n+1}a_4z^4+…]^{\frac{1}{\lambda}} \tag{28}\] \[D^{n}_{\Gamma_m}f(z)=z+\sum_{k=2}^{\infty} [1+(k+\beta-\mu-1)t]^{n}a_kz^k=z+\Gamma_1^{n}a_2z^2+\Gamma_2^{n}a_3z^3+\Gamma_3^{n}a_4z^4+… \tag{29}\] \[^{\frac{1}{\lambda}}=[z+\Gamma_1^{n}a_2z^2+\Gamma_2^{n}a_3z^3+\Gamma_3^{n}a_4z^4+…]^{\frac{1}{\lambda}} \tag{30}\] \[^{\frac{1+\lambda}{\lambda}}=[z+\Gamma_1^{n}a_2z^2+\Gamma_2^{n}a_3z^3+\Gamma_3^{n}a_4z^4+…]^{\frac{1+\lambda}{\lambda}} \tag{31}\] Equation \(28\) multiplied by \(31\), gives
\[\begin{gathered} ^{\frac{1}{\lambda}}=z^{\frac{1}{\lambda}}+ (\frac{1}{\lambda}\Gamma_1^na_2+\Gamma_1^{n+1}a_2)z^{\frac{1+2\lambda}{\lambda}}\\+(\frac{1}{\lambda}\Gamma_2^{n}a_3+\frac{1}{\lambda}\Gamma_1^{2n+1}a_2^2+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2+\Gamma_2^{n+1}a_3)z^{\frac{1+3\lambda}{\lambda}}\\+(\frac{1}{\lambda}\Gamma_3^na_4+\frac{1-\lambda}{\lambda^2}\Gamma_1^n\Gamma_2^na_2a_3+\frac{(1-\lambda)(1-2\lambda)\Gamma_1^{3n+3}a_2^3}{6\lambda^3}\\+\frac{1}{\lambda}\Gamma_1^{n+1}\Gamma_2^{n}a_2a_3+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{3n+1}a_2^3\\+\frac{1}{\lambda}\Gamma_1^{n}\Gamma_2^{n+1}a_2a_3+\Gamma_3{n+1}a_4)z^{\frac{1+4\lambda}{\lambda}}+… \end{gathered} \tag{32}\] Equation \(29\) multiplied by \(30\), gives \[\begin{gathered} ^{\frac{1}{\lambda}}[D^{n}_{\Gamma m} f(z)]=z^{\frac{1+\lambda}{\lambda}}+(\frac{1}{\lambda}\Gamma_1^{n+1}a_2 + \Gamma_1^n a_2)z^{\frac{1+2\lambda}{\lambda}}+\\ (\frac{1}{\lambda}\Gamma_2^{n+1}a_3+\frac{1}{\lambda}\Gamma_1^{2n+1}+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n+2}a_2^2+\Gamma_2^n a_3)z^{\frac{1+3\lambda}{\lambda}}\\+(\frac{1}{\lambda}\Gamma_1^{n+1}a_4+\frac{1-\lambda}{\lambda^2}\Gamma_1^{n+1}\Gamma_2^{n+1}a_2a_3\\+\frac{(1-\lambda)(1-2\lambda)}{6\lambda^3}\Gamma_1^{3n+3}a_2^3+\frac{1}{\lambda}\Gamma_2^{n+1}\Gamma_1^n a_2a_3+ \frac{1-\lambda}{2\lambda^2}\Gamma_1^{3n+2}a_2^3+\frac{1}{\lambda}\Gamma_1^{n+1}\Gamma_2^n a_2a_3+\Gamma_3^n a_4)z^{\frac{1+4\lambda}{\lambda}}+…. \end{gathered} \tag{33}\]

\[\begin{gathered} \begin{split} 2(D^n_\Gamma m f(z))^\frac{1+\lambda}{\lambda} &= 2z^{\frac{1+\lambda}{\lambda}}+\frac{2(1+\lambda)}{\lambda}\Gamma_1^n a_2z^{\frac{1+2\lambda}{\lambda}}\\ &\quad+2\left(\frac{1+\lambda}{\lambda}\Gamma_2^na_3+\frac{1+\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2\right)z^{\frac{1+3\lambda}{\lambda}}\\ &\quad+2\left(\frac{1+\lambda}{\lambda}\Gamma_3^na_4+\frac{1+\lambda}{\lambda^2}\Gamma_1^n\Gamma_2^na_2a_3+\frac{(1+\lambda)(1-\lambda)}{6\lambda^3}\Gamma_1^{3n}a_2^3\right)z^{\frac{1+4\lambda}{\lambda}}+\dots \end{split} \end{gathered} \tag{34}\]

Substituting \(33\), \(34\) and \(35\) into \(25\) and simplifying further, we have
\[\begin{gathered} 1+[\frac{1+\lambda}{2\lambda}\Gamma_1^n(\Gamma_1+1)]a_2z+\frac{1}{2}[(\frac{1+\lambda}{\lambda}\Gamma_2^n(\Gamma_2+1))a_3+\frac{2}{\lambda}\Gamma_1^{2n+1}a_2^2+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n}(\Gamma_1+1)a_2^2]z^2+…= 1\\+[\frac{1+\lambda}{\lambda}\Gamma_1^na_2+\frac{j_2(x)}{2}b_1]z\\+[\frac{1+\lambda}{\lambda}\Gamma_2^na_3+\frac{1+\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2+\frac{1+\lambda}{2\lambda}j_2(x)b_1+j_3(x)\frac{b_1^2}{4}+\frac{j_2(x)}{2}(b_2-\frac{b_1^2}{2})]z^2+… \end{gathered} \tag{35}\] Also, \(18\) becomes,
\[\begin{gathered} 1-[\frac{1+\lambda}{2\lambda}\Gamma_1^n(\Gamma_1+1)]a_2z+\frac{1}{2}[(\frac{1+\lambda}{\lambda}\Gamma_2^n(\Gamma_2+1))(2a_2^2-a_3)+\frac{2}{\lambda}\Gamma_1^{2n+1}a_2^2+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n}(\Gamma_1+1)a_2^2]z^2+…=\\ 1+[\frac{1+\lambda}{\lambda}\Gamma_1^na_2+\frac{j_2(x)}{2}d_1]z\\+[\frac{1+\lambda}{\lambda}\Gamma_2^na_3+\frac{1+\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2+\frac{1+\lambda}{2\lambda}j_2(x)d_1+j_3(x)\frac{d_1^2}{4}+\frac{j_2(x)}{2}(d_2-\frac{d_1^2}{2})]z^2+… \end{gathered} \tag{36}\] Comparing the coefficients of \(z\) in \(36\), we have
\[[\frac{1+\lambda}{2\lambda}\Gamma_1^n(\Gamma_1+1)]a_2 = \frac{1+\lambda}{\lambda}\Gamma_1^na_2+\frac{j_2(x)}{2}b_1\] \[\frac{1+\lambda}{2\lambda}\Gamma_1^n(\Gamma_1-1)a_2= j_2(x)\frac{b_1}{2} \tag{37}\] \[a_2=\frac{\lambda j_2(x)b_1}{(1+\lambda)\Gamma_1^n(\Gamma_1-1)} \tag{38}\] \[ [\frac{1+\lambda}{\lambda}\Gamma^n_2(\Gamma_2+1)]a_3+\frac{2}{\lambda}\Gamma_1^{2n+1}a_2^2+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n}(\Gamma_1+1)a_2^2= [\frac{1+\lambda}{\lambda}\Gamma_2^na_3+\frac{1+\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2+\frac{1+\lambda}{2\lambda}j_2(x)b_1+j_3(x)\frac{b_1^2}{4}+\frac{j_2(x)}{2}(b_2-\frac{b_1^2}{2})] \tag{39}\] \[\begin{gathered} \frac{(\Gamma_2-1)(1+\lambda)}{\lambda j_2(x)}\Gamma_2^na_3+\frac{4\lambda\Gamma_1-1-3\lambda}{2\lambda^2 j_2(x)}\Gamma_1^{2n}a_2^2=b_2-\left(\frac{j_2(x)-j_3(x)}{j_2(x)}\right)\frac{b_1^2}{2}+\frac{1+\lambda}{\lambda}b_1 \end{gathered} \tag{40}\] Comparing the coefficient of \(z\) in \(37\)
\[[\frac{1+\lambda}{2\lambda}\Gamma_1^n(\Gamma_1+1)]a_2 = \frac{1+\lambda}{\lambda}\Gamma_1^na_2+\frac{j_2(x)}{2}d_1\] \[-[\frac{1+\lambda}{2\lambda}]\Gamma_1^n(\Gamma_1-1)a_2= j_2(x)\frac{d_1}{2} \tag{41}\] \[-a_2=\frac{\lambda j_2(x)d_1}{(1+\lambda)\Gamma_1^n(\Gamma_1-1)} \tag{42}\] \[\begin{gathered} (2a_2^2-a_3)+\frac{2}{\lambda}\Gamma_1^{2n+1}a_2^2+\frac{1-\lambda}{2\lambda^2}\Gamma_1^{2n}(\Gamma_1+1)a_2^2= [\frac{1+\lambda}{\lambda}\Gamma_2^n(2a_2^2-a_3)+\\\frac{1+\lambda}{2\lambda^2}\Gamma_1^{2n}a_2^2+\frac{1+\lambda}{2\lambda}j_2(x)d_1+j_3(x)\frac{d_1^2}{4}+\frac{j_2(x)}{2}(d_2-\frac{d_1^2}{2})] \end{gathered} \tag{43}\] \[\begin{gathered} \frac{(\Gamma_2-1)(1+\lambda)}{\lambda j_2(x)}\Gamma_2^n(2a_2^2-a_3)+\frac{4\lambda\Gamma_1-1-3\lambda}{2\lambda^2 j_2(x)}\Gamma_1^{2n}a_2^2=d_2-\left(\frac{j_2(x)-j_3(x)}{j_2(x)}\right)\frac{d_1^2}{2}+\frac{1+\lambda}{\lambda}d_1 \end{gathered} \tag{44}\] Substituting \(39\) into \(43\), gives
\[-\frac{\lambda j_2(x)b_1}{(1+\lambda)\Gamma_1^n(\Gamma_1-1)}=\frac{\lambda j_2(x)d_1}{(1+\lambda)\Gamma_1^n(\Gamma_1-1)} \tag{45}\] \[\Longrightarrow b_1=-d_1\Rightarrow b_1^2=d_1^2\Rightarrow b_1^3=-d_1^3 \tag{46}\] Square and add \(38\) and \(42\), we have
\[2\frac{(1+\lambda)^2}{\lambda^2}\Gamma_1^{2n}(\Gamma_1-1)^2a_2^2= j_2^2(x)[b_1+d_1]^2 \tag{47}\] Adding \(66\) and \(45\) with further simplification
\[\begin{gathered} \frac{2(\Gamma_2-1)(1+\lambda)}{\lambda j_2(x)}\Gamma_2^na_2^2+\frac{4\lambda\Gamma_1-1-3\lambda}{\lambda^2 j_2(x)}\Gamma_1^{2n}a_2^2=\\(b_2+d_2)-\left(\frac{j_2(x)-j_3(x)}{j_2(x)}\right)(\frac{b_1^2}{2}+\frac{d_1^2}{2})+\frac{1+\lambda}{\lambda}(b_1+d_1) \end{gathered} \tag{48}\] \[\begin{gathered} \left[\frac{2(\Gamma_2-1)(1+\lambda)}{\lambda j_2(x)}\Gamma_2^n+\frac{4\lambda\Gamma_1-1-3\lambda}{\lambda^2 j_2(x)}\Gamma_1^{2n}\right]a_2^2=\\(b_2+d_2)-\left(\frac{j_2(x)-j_3(x)}{j_2(x)}\right)(\frac{b_1^2}{2}+\frac{d_1^2}{2})+\frac{1+\lambda}{\lambda}(b_1+d_1) \end{gathered} \tag{49}\] Using \(47\) in \(50\), gives
\[\left[\frac{2\lambda(\Gamma_2-1)(1+\lambda)\Gamma_2^n+(4\lambda\Gamma_1-1-3\lambda)\Gamma_1^{2n}}{\lambda^2 j_2(x)}\right]a_2^2=(b_2+d_2)-\left(\frac{j_2(x)-j_3(x)}{j_2(x)}\right)(\frac{d_1^2}{2}) \tag{50}\] Using \(47\) to simplify \(48\), gives
\[d_1^2=\frac{(1+\lambda)^2}{j_2^2(x)\lambda^2}\Gamma_1^{2n}(\Gamma_1-1)^2a_2^2 \tag{51}\] substituting \(52\) in \(51\) with further simplification, we obtain
\[\begin{gathered} a_2^2=\frac{\lambda^2 j_2^3(x)(b_2+d_2)}{2\lambda j_2^2(x)(\Gamma_2-1)(1+\lambda)\Gamma_2^n+j_2^2(x)(4\lambda\Gamma_1-1-3\lambda)\Gamma_1^{2n}+(j_2(x)-j_3(x))(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2} \end{gathered} \tag{52}\] \[\begin{gathered} |a_2|^2= \left|\frac{\lambda^2 j_2^3(x)(b_2+d_2)}{2\lambda j_2^2(x)(\Gamma_2-1)(1+\lambda)\Gamma_2^n+j_2^2(x)(4\lambda\Gamma_1-1-3\lambda)\Gamma_1^{2n}+(j_2(x)-j_3(x))(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2}\right| \end{gathered} \tag{53}\] Using Lemma \(1\) and \(2\), we have
\[|a_2|^2 = \left| \frac{4\lambda^2 |hx|^2 |hx|}{ \left| 2\lambda (hx)^2 (\Gamma_2 – 1)(1 + \lambda) \Gamma_2^n \right. } \\ \left. + (hx)^2 (4\lambda \Gamma_1 – 1 – 3\lambda) \Gamma_1^{2n} \right. \\ \left. + (hx – (phx^2 + qa))(1 + \lambda)^2 \Gamma_1^{2n} (\Gamma_1 – 1)^2 \right| \right|. \tag{54}\]

Therefore,
\[|a_2| \leq \frac{2\lambda\sqrt{|hx|}|hx|}{\sqrt{[2\lambda(1+\lambda)\Gamma_2^{n}(\Gamma_2 -1)+(4\lambda\Gamma_1-1-3\lambda)](hx)^2+(hx-(phx^2+qa))(1+\lambda)^2(\Gamma_1-1)^2\Gamma_1^{2n}}} \tag{55}\] Subtracting \(45\) from \(46\) and using \(47\) for further simplification, we have
\[\frac{2(\Gamma_2-1)(1+\lambda)\Gamma_2^n}{\lambda j_2(x)}(a_3-a_2^2)= (b_2-d_2)-\frac{2(1+\lambda)}{\lambda}d_1 \tag{56}\] \[a_3= \frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)}-\frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n}+a_2^2 \tag{57}\] Obtain \(a_2^2\) from \(52\) and substitute it into \(58\), gives
\[a_3= \frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)}-\frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n}+\frac{j_2^2(x)d_1^2\lambda^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2} \tag{58}\] \[|a_3|= |\frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)}-\frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n}+\frac{j_2^2(x)d_1^2\lambda^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2}| \tag{59}\] \[|a_3|\leq |\frac{4\lambda(b_2-d_2)j_2(x))}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)}-\frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n}|+|\frac{j_2^2(x)d_1^2\lambda^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2}| \tag{60}\] \[|a_3|\leq \frac{2\lambda|hx|}{\Gamma_2^n(\Gamma_2-1)(1+\lambda)}+\frac{2|hx|}{(\Gamma_2-1)\Gamma_2^n}+\frac{4\lambda^2(hx)^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2} \tag{61}\] \[|a_3|\leq \frac{2\lambda|hx|(1+2\lambda)}{\Gamma_2^n(\Gamma_2-1)(1+\lambda)}+\frac{4\lambda^2(hx)^2}{(1+\lambda)^2\Gamma_1^{2n}(\Gamma_1-1)^2} \tag{62}\] From \(56\) and \(63\), we have the desired result. 0◻ ◻

Remark 3. It has been observed that when \(n=0\), \(t=1\) and \(\beta=\mu\),the result obtained gives an improved estimate of the second coefficient of \(W_\Sigma(x;z)\) studied by Srivastava, et al(2018).

Theorem 2. Let \(f(z) \in I^{n+1}_{\Gamma_m,\lambda}(x,z)\), also let \(\sigma \in \Re\) then \[ |a_3-\sigma a_2^2| \leq \left\{ \begin{array}{l} \frac{4(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|},~~\text{for}~~ |1-\sigma|\leq\frac{(1+2\lambda)|hx||\Upsilon+\Psi|}{2\lambda^2|hx|^3|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}\\ \frac{8|1-\sigma|\lambda^2|hx|^3}{|\Upsilon+\Psi|},~~\text{for}~~|1-\sigma|\geq \frac{1+2\lambda|hx||\Upsilon+\Psi|}{2\lambda^2|hx|^3|\Gamma_2^n(\Gamma_2-1(1+\lambda))|} \end{array} \right. \tag{63}\]

Where
\[\Upsilon=[2\lambda(1+\lambda)\Gamma_2^{n}(\Gamma_2 -1)+(4\lambda\Gamma_1-1-3\lambda)](hx)^2 \tag{64}\] and
\[\Psi=(hx-(phx^2+qa))(1+\lambda)^2(\Gamma_1-1)^2\Gamma_1^{2n} \tag{65}\]

Proof. From \(53\) and \(58\),
\[a_3-\sigma a_2^2=\frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)}-\frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n}+a_2^2-\sigma a_2^2 \tag{66}\] Let
\[\Upsilon=[2\lambda(1+\lambda)\Gamma_2^{n}(\Gamma_2 -1)+(4\lambda\Gamma_1-1-3\lambda)](hx)^2\]
and
\[\Psi=(hx-(phx^2+qa))(1+\lambda)^2(\Gamma_1-1)^2\Gamma_1^{2n}\] \[a_3 – \sigma a_2^2 = \frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)} – \frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n} + (1-\sigma)\left(\frac{\lambda^2j_2^3(b_2+d_2)}{\Upsilon+\Psi}\right) \tag{67}\]

\[|a_3-\sigma a_2^2| = \left| \frac{\lambda(b_2-d_2)j_2(x)}{2\Gamma_2^n(\Gamma_2-1)(1+\lambda)} – \frac{j_2(x)d_1}{(\Gamma_2-1)\Gamma_2^n} + (1-\sigma)\left\{ \frac{\lambda^2j_2^3(b_2+d_2)}{\Upsilon+\Psi} \right\} \right| \tag{68}\]

\[|a_3-\sigma a_2^2|\leq \frac{2(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}+|1-\sigma|\frac{4\lambda^2|hx|^3}{|\Upsilon+\Psi|} \tag{69}\] If
\[|1-\sigma|\frac{4\lambda^2|hx|^3}{|\Upsilon+\Psi|}\leq\frac{2(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}, \tag{70}\] then
\[|a_3-\sigma a_2^2|\leq \frac{4(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}\ \tag{71}\] Also, if
\[|1-\sigma|\frac{4\lambda^2|hx|^3}{|\Upsilon+\Psi|}\geq\frac{2(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}, \tag{72}\] then
\[|a_3-\sigma a_2^2|\leq \frac{8|1-\sigma|\lambda^2|hx|^3}{|\Upsilon+\Psi|} \tag{73}\] From \(71\),\(72\),\(73\) and \(74\), we have the desired result. 0◻ ◻

Corollary 1: If \(f(z) \in S\) and \(I^{n+1}_{\Gamma_m,\lambda}(x,z)\), then

\[|a_3-a_2^2|\leq \frac{4(1+2\lambda)|hx|}{|\Gamma_2^n(\Gamma_2-1)(1+\lambda)|}\]

3. Concclusion

The investigation in this work was driven from Geometric Function Theory\((GFT)\) where several interesting and various special functions and polynomials can be studied. Horadam polynomials \(j_n(x)\) and a generalized differential operator were used to define a new class \(I^{n+1}_{\Gamma_m,\lambda}(x,z)\) of bi-univalent functions by means of subordination. We obtained upper estimates for initial coefficient and Fekete-szegö functional of the newly defined class of bi-univalent function.
The results obtained have important roles in complex and potential theory, with application in real life like: error analysis in numerical method, controlled growth of analytic function, design of approximation algorithms, electrical engineering, physics and materials science, statistics and probability theory.In essence, these mathematical concepts provide tools and insights that transcend pure mathematics, finding applications in diverse fields where analytical and computational methods are employed for modeling, analysis and design.
The geometric properties of the function class \(I^{n+1}_{\Gamma_m,\lambda}(x,z)\) vary when the parameters in the class are changed: when \(n=0\),\(t=1\), \(\beta=\mu\), then we have
\[\frac{1}{2}[\frac{zf'(z)}{f(z)}+(\frac{zf'(z)}{f(z)})^{\frac{1}{\lambda}}]\prec \prod (x,z)+1-a\]
Also, when \(n=0\), \(t=1\), \(\beta=\mu\), \(a=p=x\), \(\lambda=1\) and \(q=0\), then we have \[\frac{zf'(z)}{f(z)}\prec \frac{1+z}{1-z}\].

References

  1. Duren, P. L. (1983). Univalent Functions. New York: Springer-Verlag Inc.

  2. Ayinla, R. O., & Opoola, T. O. (2023). Initial Coefficient Bounds and Second Hankel Determinant for a certain Class of Bi-univalent Functions using Chebyshev Polynomial. Gulf Journal of Mathematics, 14(1), 160-172.

  3. Bulut, S., Magesh, N., & Balaji, V. K. (2017). Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomial. Journal of Classical Analysis, 11(1), 83-89.

  4. Lasode, A. O., & Opoola, T. O. (2022). Hankel determinant of a subclass of analytic and bi-univalent functions defined by means of subordination and \(q\)-differentiation. International Journal of Nonlinear Analysis and Applications, In press, 1-10.

  5. Dienes, P. (1957). The Taylor Series: An Introduction to the Theory of Functions of a Complex. New York: Dover Publication.

  6. Marjono, & Thomas, D. K. (2016). The Second Hankel Determinant of Functions Convex in one Direction. International Journal of Mathematical Analysis, 10(9), 423-428.

  7. Lasode, A. O., & Opoola, T. O. (2021). Fekete-Szegö estimates and second Hankel determinant for a generalized subfamily of analytic functions defined by \(q\)-differential operator. International Journal of Nonlinear Analysis and Applications, In press, 11(2), 36-43.

  8. Panigrahi, T., & Sokol, J. (2010). Upper Bound of Third Hankel Determinant for a New Class of Analytic Functions. Asian-European Journal of Mathematics, 1(1), 1-10.

  9. Fekete, M., & Szegö, G. (1933). Eine bemerkung über ungerade schlichte funktionen [A remark on odd univalent functions]. Journal of the London Mathematical Society, 8, 85-89.

  10. Koegh, F. R., & Merkes, E. P. (1969). A coefficient inequality for certain classes of starlike functions. Proceedings of the American Mathematical Society, 8-12.

  11. Hörcum, T., & Gökcen Kocer, E. (2009). On Some Properties of Horadam Polynomials. International Mathematical Forum, 4, 1243-1252.

  12. Opoola, T. O. (2017). On a Subclass of Functions Defined by a Generalized Differential Operator. International Journal of Mathematical Analysis, 11, 869-876.

  13. Salagean, G. S. (1983). Subclasses of Univalent Functions. Lecture Notes in Mathematics, 1013, 362-372.

  14. Al-boudi, F. M. (2004). On Univalent Functions Defined by a Generalized Salagean Operator. Indian Journal of Pure and Applied Mathematics, 2004(27), 1429-1436.

  15. Srivastava, H. M., Altinkaya, S., & Yalcin, S. (2018). Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomial. Iranian Journal of Science and Technology, Transactions A: Science, 42(1), 205-212.

  16. Altinkaya, S., & Yalcin, S. (2017). On the Chebyshev Polynomial Coefficient Problem of Some Subclasses of Bi-Univalent Functions. Gulf Journal of Mathematics, 5(3), 34-40.

  17. Pommerenke, C. (1967). On the Hankel Determinants of Univalent Functions. Mathematika, 14, 108-112.