Search for Articles:

Contents

Projective suprametrics in spectral theory and operator equations

Maher Berzig1
1Université de Tunis, École Nationale Supérieure d’Ingénieurs de Tunis, Département de Mathématiques, 5 avenue Taha Hussein Montfleury, 1008 Tunis, Tunis, Tunisie
Copyright © Maher Berzig. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We introduce the concept of projective suprametrics and provide new part suprametrics in a normed vector space ordered by a cone. We then examine how the convergence of the underlying norm relates to that of the projective and given suprametrics, and we establish sufficient conditions for the completeness of certain subsets. Moreover, we prove a version of Krein-Rutman theorem via a fixed point theorem in suprametric spaces, and study spectral properties of positive linear operators. Furthermore, we show that operator equations involving some concave or convex operators satisfy a Geraghty contraction and therefore have solutions. As an application, we prove a Perron-Frobenius theorem for a tensor eigenvalue problem.

Keywords: projective suprametric, fixed point theorem, positive operator, eigenvalue problem