We introduce the concept of projective suprametrics and provide new part suprametrics in a normed vector space ordered by a cone. We then examine how the convergence of the underlying norm relates to that of the projective and given suprametrics, and we establish sufficient conditions for the completeness of certain subsets. Moreover, we prove a version of Krein-Rutman theorem via a fixed point theorem in suprametric spaces, and study spectral properties of positive linear operators. Furthermore, we show that operator equations involving some concave or convex operators satisfy a Geraghty contraction and therefore have solutions. As an application, we prove a Perron-Frobenius theorem for a tensor eigenvalue problem.