Engineering and Applied Science Letter

Degree based graph invariants for the molecular graph of Bismuth Tri-Iodide

Zehui Shao, Abaid ur Rehman Virk, Muhammad Samar Javed, M. A. Rehman, Mohammad Reza Farahani\(^1\)
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China. (Z.S)
Department of Mathematics, University of Management and Technology, Lahore 54000, Pakistan.(A.R.V & M.A.R)
Department of Mathematics, The University of Lahore Pakpattan Campus, Lahore 54000, Pakistan. (M.S.J)
Department of Applied Mathematics,~Iran University of Science and Technology (IUST), Iran. (M.R.F)
\(^{1}\)Corresponding Author: mrfarahani88@gmail.com

Abstract

In the fields of chemical graph theory (CGT), mathematical chemistry and molecular topology, a~topological index (TI) also known as a connectivity~index~is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. \(BiI_{3}\) is an excellent inorganic compound and is very useful in qualitative inorganic analysis and topological indices of \(BiI_{3} \) help to predict many properties like boiling point, heat of formation, strain energy, rigidity and fracture toughness and correlate the structure with various physical properties, chemical reactivity and biological activities. This paper computes several degree-based topological indices like multiplicative first Zagreb index, multiplicative second Zagreb index, multiplicative atomic bond connectivity index, multiplicative first and second hyper Zagreb index and multiplicative geometric arithmetic index for Bismuth Tri-Iodide chains and sheets.

Keywords:

Topological index, Bismuth Tri-Iodide, molecular graph, Zagreb index, Randić index.

The \(BiI_{3}\) is an inorganic compound which is the result of the reaction of iodine and bismuth, which inspired the enthusiasm for subjective inorganic investigations [1]. \(BiI_{3}\) is an excellent inorganic compound and is very useful in "qualitative inorganic analysis" [1, 2].

It was proved that $Bi$-doped glass optical strands are one of the most promising dynamic laser media. Different kinds of Bi-doped fiber strands have been created and have been used to construct Bi-doped fiber lasers and optical loudspeakers [3].

Layered \(BiI_{3}\) gemstones are considered to be a three-layered stack structure in which a plane of bismuth atoms is sandwiched between iodide particle planes to form a continuous \(I-Bi-I\) plane [4].

The periodic superposition of the diamond-shaped three layers forms \(BiI_{3}\) crystals with \(R\)-3 symmetry [5, 6]. A progressive stack of \(I-Bi-I\) layers forms a symmetric hexagonal structure [7] and jewel of \(BiI_{3}\) was integrated in [8].

Figure 1. Bismuth tri-iodide.

In the unit cell (Figure 1), Main cycles are \(C_{4}^{1} ,C_{4}^{2}\) central cycles are \(C_{4}^{3} ,C_{4}^{6}\) and Base cycles are \(C_{4}^{4} ,C_{4}^{5}\)

Mathematical chemistry is an area of research in chemistry in which mathematical tools are used to solve problems of chemistry. Chemical graph theory is an important area of research in mathematically chemistry which deals with topology of molecular structure such as the mathematical study of isomerism and the development of topological descriptors or indices. Infect, TIs are real numbers attached with graph networks and graph of chemical compounds and has applications in quantitative structure-property relationships. TIs remain invariant upto graph isomorphism and help to predict many properties of chemical compounds, networks and nanomaterials, for example, viscosity, boiling points, radius of gyrations, etc without going to lab [9, 10, 11, 12].

Other emerging field is Cheminformatics, in which we use QSAR and QSPR relationship to guess biological activity and chemical properties of nanomaterial and networks. In these investigations, some Physico-chemical properties and TIs are utilized to guess the behavior of chemical networks [13, 14, 15, 16, 17]. Like TIs, polynomials also fund considerable applications in network theory and chemistry, for example, Hosoya polynomial, which is also known as Wiener polynomial, introduced in [18] plays an important role in computation of distance-based TIs. M-polynomial [19] was defined in 2015 and plays a similar role in computation of numerous degree-based TIs [20, 21, 22, 23, 24]. The M-polynomial contains precious information about degree-based TIs and many TIs can be computed from this simple algebraic polynomial. The first TI was defined in 1947 by Weiner during studying boiling point of alkanes [25]. This index is now known as Weiner index. Thus Weiner established the framework of TIs and the Wiener index is initially the first and most concentrated TI [26, 27].

The other oldest TI is Randić index (RI), given by Milan Randić [28] in 1975. After the success of Randić index, in the year 1988, the generalized version of Randić index was introduced [29, 30]. This version attracts both the mathematicians and chemists [31]. Numerous numerical properties of this simple TI are studied in [32]. For comprehensive study about this index, the book [33] can be of great help.

The RI is a most mainstream regularly connected and most concentrated among all other TIs. Numerous research papers and text books, for example, [34, 35, 36] are published in different academic journals on this TI. Two surveys on RI was written by Milan Randi\'{c} [37, 38] and three more surveys are written on this TI by different scientists [39, 40 41]. The reason behind the success of such a simple TI is as yet a puzzle, although some conceivable clarifications were given.

After Randi\'{c} index, the most studied TIs are 1st Zagreb index (ZI) and 2nd ZI [42, 43, 44, 45, 46]. The modified 2nd ZI was defined in [47]. Another TI is symmetric division (SDI) [48], Harmonic index (HI) [49, 50], augmented ZI [51].

In this article, we compute general form of several degree-based topological indices for Bismuth Tri-Iodide chains and Bismuth Tri-Iodide sheets. For example we compute first and second multiplicative Zagreb indices, multiplicative atomic bond connectivity index, sum connectivity index, modify Randi\'c index, etc.

2. Basic definitions and Literature Review

In mathematical chemistry, precisely speaking, in chemical-graph-theory (CGT), a molecular graph and graph network is a simple and connected graph, in which atoms represents vertices and chemical bonds represents edges. We reserve \(G\) for simple connected graph, \(E\) for edge set and \(V\) for vertex set throughout the thesis. The degree of a vertex \(u\) of graph \(G\) is the number of vertices that are attached with \(u\) and is denoted by \(d_{v}\). With the help of TIs, many properties of molecular structure can be obtained without going to lab [52]. The reality is, many research paper has been written on computation of degree-based indices and polynomials of different molecular structure and networks but only few work has been done so far on distance based indices and polynomials. In this paper, we aim to compute multiplicative degree-based TIs. Some indices related to Wiener's work are the first and second multiplicative Zagreb indices [53], respectively \[II_{1} \left(G\right)=\prod_{u\in V\left(G\right)}\left(d_{u} \right) ^{2} \] \[II_{2} \left(G\right)=\prod_{uv\in E\left(G\right)}d_{u} \cdot d_{v} \] and the Narumi-Katayama index [52] \[NK\left(G\right)=\prod_{u\in V\left(G\right)}d_{u} \] Like the Wiener index, these types of indices are the focus of considerable research in computational chemistry [54, 55, 56]. For example, in the year 2011, Gutman in [54] characterized the multiplicative Zagreb indices for trees and determined the unique trees that obtained maximum and minimum values for \(M_{1}(G)\) and \(M_{2}(G)\), respectively. Wang et al. in [57] extended the results of Gutman to the following index for k-trees, \[W_{1}^{s} \left(G\right)=\prod_{u\in V\left(G\right)}\left(d_{u} \right)^{s} .\] Notice that \(s = 1, 2\) is the Narumi-Katayama and Zagreb index, respectively. Based on the successful consideration of multiplicative Zagreb indices, Eliasi et al. [58] continued to define a new multiplicative version of the first Zagreb index as \[II_{1}^{*} \left(G\right)=\prod_{uv\in E\left(G\right)}\left(d_{u} +d_{v} \right) .\] Furthering the concept of indexing with the edge set, the first author introduced the first and second hyper-Zagreb indices of a graph [59]. They are defined as \[HII_{1} \left(G\right)=\prod_{uv\in E\left(G\right)}\left(d_{u} +d_{v} \right) ^{2} ,\] \[HII_{2} \left(G\right)=\prod_{uv\in E\left(G\right)}\left(d_{u} \cdot d_{v} \right)^{2} .\] In [60] Kulli et al. defined the first and second generalized Zagreb indices \[MZ_{1}^{a} \left(G\right)=\prod_{uv\in E\left(G\right)}\left(d_{u} +d_{v} \right) ^{\alpha} ,\] \[MZ_{2}^{a} \left(G\right)=\prod_{uv\in E\left(G\right)}\left(d_{u} \cdot d_{v} \right)^{\alpha} . \] Multiplicative sum connectivity and multiplicative product connectivity indices [61] are define as: \[SCII\left(G\right)=\prod_{uv\in E\left(G\right)}\frac{1}{\sqrt{d_{u} +d_{v} } } , \] \[PCII\left(G\right)=\prod_{uv\in E\left(G\right)}\frac{1}{\sqrt{d_{u} \cdot d_{v} } }. \] Multiplicative atomic bond connectivity index and multiplicative Geometric arithmetic index are defined as \[ABCII\left(G\right)=\prod_{uv\in E\left(\; G\right)}\sqrt{\frac{d_{u} +d_{v} -2}{d_{u} \cdot d_{v} } }, \] \[GAII\left(G\right)=\prod _{uv\in E\left(G\right)}\frac{2\sqrt{d_{u} \cdot d_{v} } }{d_{u} +d_{v} } ,\] \[GA^{a} II\left(G\right)=\prod _{uv\in E\left(G\right)}\left(\frac{2\sqrt{d_{u} \cdot d_{v} } }{d_{u} +d_{v} } \right) ^{\alpha}. \] Shigehalli and Kanabur [62] introduced following new degree-based topological indices:\\ Arithmetic-Geometric (AG1) index \(AG_{1} (G)=\sum_{uv\in E(G)}\frac{d_{u} +d_{v} }{2\sqrt{d_{u} d_{v} } } ,\) \(SK(G)=\sum_{uv\in E(G)}\frac{d_{u} +d_{v} }{2} ,\) \(AG_{1} (G)=\sum_{uv\in E(G)}\frac{d_{u} +d_{v} }{2\sqrt{d_{u} d_{v} } } ,\) \(SK_{2} (G)=\sum_{uv\in E(G)}\left(\frac{d_{u} +d_{v} }{2} \right)^{2}.\)

3. Computational Results

This section contains the main results. In this section we give formulae of multiplicative versions of degree-based TIs of Bismuth Tri-Iodide chains and Bismuth Tri-Iodide sheets. We also give formulae for some new degree-based TIs of Bismuth Tri-Iodide chains and Bismuth Tri-Iodide sheets.

3.1. Bismuth Tri-Iodide Chain

Theorem 1. Let \(G\) be the molecular graph of \(m-BiI_{3}\). Then

  1. \(MZ_{1}^{\alpha} \left(G\right)=\left(7\right)^{\alpha (4p+8)} \times \left(8\right)^{\alpha (20p+4)} .\)
  2. \(MZ_{2}^{\alpha} \left(G\right)=\left(2\right)^{\alpha (44p+16)} \times \left(3\right)^{\alpha (24p+12)} .\)
  3. \(GA^{\alpha }II\left(G\right)=\left(\frac{2\sqrt{6} }{7} \right)^{\alpha (4p+8)} \times \left(\frac{\sqrt{3} }{2} \right)^{\alpha (20p+4)} .\)

Proof. Let \(G\) be the molecular graph of \(p-BiI_{3}\) bismuth tri-iodide chain. The edge set of \(p-BiI_{3}\) has following two partitions [1],
\(E_{1} =E_{\left\{1,6\right\}} =\left\{e=uv\in E\left(G\right) |d_{u} =1,\; d_{v} =6\right\},\)
\(E_{\left\{2,6\right\}} =\left\{e=uv\in E\left(G\right) |d_{u} =2,\; d_{v} =6\right\},\)
Such that
\(\left|E_{1} \left(G\right)\right|=4p+8,\)
\(\left|E_{2} \left(G\right)\right|=20p+4.\)
Now by definitions, we have

    1. \begin{eqnarray*} MZ_{1}^{\alpha } \left(G\right)&=&\prod _{uv\in E\left(G\right)}\left(d_{u} +d_{v} \right) ^{\alpha } \\ &=&\left(1+6\right)^{\alpha (4p+8)} \times \left(2+6\right)^{\alpha (20p+4)} \\ & =&\left(7\right)^{\alpha (4p+8)} \times \left(8\right)^{\alpha (20p+4)} . \end{eqnarray*} 2. \begin{eqnarray*} MZ_{2}^{\alpha } \left(G\right)&=&\prod _{uv\in E\left(G\right)}(d_{u} \cdot d_{v} )^{\alpha }\\ &=&\left(1\times 6\right)^{\alpha \left(4p+8\right)} \times \left(2\times 6\right)^{\alpha (20p+4) }\\ &=&\left(2\times 3\right)^{\alpha (4p+8)} \times \left(4\times 3\right)^{\alpha (20p+4)} \\ &=&\left(2\right)^{\alpha (44p+16)} \times \left(3\right)^{\alpha (24p+12)}. \end{eqnarray*} 3. \begin{eqnarray*} GA^{\alpha } II\left(G\right)&=&\prod _{uv\in E\left(G\right)}\left(\frac{2\sqrt{d_{u} \cdot d_{v} } }{d_{u} +d_{v} } \right)^{\alpha } \\ &=&\left(\frac{2\sqrt{1\cdot 6} }{1+6} \right)^{\alpha (4p+8)} \times \left(\frac{2\sqrt{2\cdot 6} }{2+6} \right)^{\alpha (20p+8)} \\ &=& \left(\frac{2\sqrt{6} }{7} \right)^{\alpha (4p+8)} \times \left(\frac{\sqrt{3} }{2} \right)^{\alpha (20p+4)}. \end{eqnarray*}

Corollary 2. Let \(G\) be the molecular graph of \(p-BiI_{3}\). Then

  1. \(MZ_{1} (G)=II_{2} \left(G\right){ =\; =}\left(2\right)^{44p+16} \times \left(3\right)^{24p+12} .\)
  2. \(MZ_{2} (G)=II_{1}^{*} \left(G\right)=\left(7\right)^{4p+8} \times \left(8\right)^{20p+4} .\)
  3. \(GAII\left(G\right){ \; =}\left(\frac{2\sqrt{6} }{7} \right)^{4p+8} \times \left(\frac{\sqrt{3} }{2} \right)^{20p+4} .\)

Proof. These results can be obtained immediately proved by taking \(\alpha =1\) in Theorem 1.

Corollary 3. Let \(G\) be the molecular graph of \(p-BiI_{3}\). Then

  1. \(HII_{1} \left(G\right){ =}\left(7\right)^{2(4p+8)} \times \left(8\right)^{2(20p+4)} .\)
  2. \(HII_{2} \left(G\right){ =}\left(2\right)^{88p+32} \times \left(3\right)^{48p+24} .\)

Proof. These results can be obtained immediately proved by taking \(\alpha =2\) in Theorem 1.

Corollary 4. Let \(G\) be the molecular graph of \(p-BiI_{3}\). Then

  1. \(SCII\left(G\right)=\left(\frac{1}{\sqrt{7} } \right)^{4p+8} \times \left(\frac{1}{\sqrt{8} } \right)^{20p+4} .\)
  2. \(PCII\left(G\right)=\left(\frac{1}{2} \right)^{22p+8} \times \left(\frac{1}{\sqrt{3} } \right)^{24p+12} .\)

Proof. These results can be obtained immediately proved by taking \(\alpha =-\frac{1}{2}\) in Theorem 1.

Theorem 5. Let \(G\) be the molecular graph of \(p-BiI_{3}\). Then \[ABCII\left(G\right)=\left(\sqrt{\frac{5}{6} } \right)^{4p+8} \times \left(\sqrt{\frac{1}{2} } \right)^{20p+4} .\]

Proof. Using the edge partition given in Theorem 1 and definition of multiplicative Atomic bond Connectivity index, we have \begin{eqnarray*}ABCII\left(G\right)&=&\prod _{uv\in E\left(G\right)}\sqrt{\frac{d_{u} +d_{v} -2}{d_{u} \cdot d_{v} } } \\ &=&\left(\sqrt{\frac{1+6-2}{1\cdot 6} } \right)^{4p+8} \times \left(\sqrt{\frac{2+6-2}{2\cdot 6} } \right)^{20p+4} \\\ &=&\left(\sqrt{\frac{5}{6} } \right)^{4p+8} \times \left(\sqrt{\frac{1}{2} } \right)^{20p+4} . \end{eqnarray*}

Theorem 6. Let \(G\) be the graph of \(p-BiI_{3}.\) Then

  1. \(SC\left(G\right){ =}\left(\frac{4}{\sqrt{7} } +\frac{10}{\sqrt{2} } \right)p+\left(\frac{8}{\sqrt{7} } +\sqrt{2} \right).\)
  2. \(AG_{1} \left(G\right){ =}\left(\frac{14}{\sqrt{6} } +\frac{40}{\sqrt{3} } \right)p+\left(\frac{28}{\sqrt{6} } +\frac{8}{\sqrt{3} } \right).\)
  3. \(SK\left(G\right)=94p+44.\)
  4. \(SK_{1} \left(G\right)=132p+48.\)
  5. \(SK_{2} \left(G\right)=369p+162.\)
  6. \(R'\left(G\right)=4p+2.\)

Proof. Using edge partition given in Theorem 1 and definitions, we have 1. \begin{eqnarray*} SC\left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{1}{\sqrt{d_{u} +d_{v} } } \\ &=&\frac{1}{\sqrt{7} } \left(4p+8\right)+\frac{1}{2\sqrt{2} } \left(20p+4\right) \\ &=&\left(\frac{4}{\sqrt{7} } +\frac{10}{\sqrt{2} } \right)p+\left(\frac{8}{\sqrt{7} } +\sqrt{2} \right). \end{eqnarray*} 2. \begin{eqnarray*} AG_{1} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} +d_{v} }{2\sqrt{d_{u} \times d_{v} } } \\ &=&\frac{7}{2\sqrt{6} } \left(4p+8\right)+\left(20p+4\right)\frac{2}{\sqrt{3} } \\ &=&\left(\frac{14}{\sqrt{6} } +\frac{40}{\sqrt{3} } \right)p+\left(\frac{28}{\sqrt{6} } +\frac{8}{\sqrt{3} } \right). \end{eqnarray*} 3. \begin{eqnarray*} SK\left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} +d_{v} }{2} \\ &=&\frac{7}{2} \left(4p+8\right)+4\left(20p+4\right) \\ &=&94p+44. \end{eqnarray*} 4. \begin{eqnarray*} SK_{1} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} \times d_{v} }{2} \\ &=&3\left(4p+8\right)+6\left(20p+4\right)\\ &=&132p+48.\end{eqnarray*} 5. \begin{eqnarray*}SK_{2} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\left(\frac{d_{u} +d_{v} }{2} \right) ^{2} \\ &=&\frac{49}{4} \left(4p+8\right)+16\left(20p+4\right) \\ &=&369p+162.\end{eqnarray*} 6. \begin{eqnarray*}R'\left(G\right)&=&\sum _{uv\in E\left(G\right)}\left(\frac{1}{\max \left\{d_{u} ,d_{v} \right\}} \right) \\ &=&\frac{1}{6} \left(4p+8\right)+\frac{1}{6} \left(20p+4\right) \\ &=&4p+2.\end{eqnarray*}

3.2. Bismuth Tri-Iodide sheet

In this section we compute several indices for Bismuth Tri-Iodide sheet.

Theorem 7. Let \(G\) be the molecular graph of \(BiI_{3} \left(p\times q\right)\). Then

  1. \(MZ_{1}^{a} \left(G\right){ =}\left(7\right)^{\alpha (4p+4q+4)} \times \left(8\right)^{\alpha (12pq+8p+8q-4)} \times \left(9\right)^{\alpha (6pq-6q)} .\)
  2. \(MZ_{2}^{a} \left(G\right)=\left(2\right)^{\alpha (30pq+20p+14q-4)} \times \left(3\right)^{\alpha (24pq+12p)} .\)
  3. \({ GA}^{\alpha}{II}\left(G\right){ =}\left(\frac{2\sqrt{6} }{7} \right)^{\alpha (4p+4q+4)} \times \left(\frac{\sqrt{3} }{2} \right)^{\alpha (12pq+8p+8q-4)} \times \left(\frac{6\sqrt{2} }{9} \right)^{\alpha (6pq-6q)} .\)

Proof. Let \(G\) be the graph of \(BiI_{3} \left(p\times q\right)\) bismuth tri-iodide sheet. The edge set of \(BiI_{3} \left(p\times q\right)\) has following three partitions [1],
\(E_{1} =E_{\left\{1,6\right\}} =\left\{e=uv\in E\left(G\right){ |}d_{u} =1,\; d_{v} =6\right\},\)
\(E_{2} =E_{\left\{2,6\right\}} =\left\{e=uv\in E\left(G\right){ |}d_{u} =2,\; d_{v} =6\right\},\)
\(E_{3} =E_{\left\{3,6\right\}} =\left\{e=uv\in E\left(G\right){ |}d_{u} =3,\; d_{v} =6\right\},\)
such that
\(\left|E_{1} \left(G\right)\right|=4p+4q+4,\)
\(\left|E_{2} \left(G\right)\right|=12pq+8p+8q-4,\)
\(\left|E_{3} \left(G\right)\right|=6pq-6q.\)
Now by definition

    1. \begin{eqnarray*}{ MZ}_{1}^{\alpha } \left(G\right)&=&\prod_{uv\in E\left(G\right)}\left(d_{u} +d_{v} \right)^{\alpha } \\ &=&\left(1+6\right)^{\alpha (4p+4q+4)} \times \left(2+6\right)^{\alpha (12pq+8p+8q-4)} \times \left(3+6\right)^{\alpha (6pq-6q)} \\ & =&\left(7\right)^{\alpha (4p+4q+4)} \times \left(8\right)^{\alpha (12pq+8p+8q-4)} \times \left(9\right)^{\alpha (6pq-6q)} . \end{eqnarray*} 2. \begin{eqnarray*}{ MZ}_{2}^{\alpha } \left(G\right)&=&\prod _{uv\in E\left(G\right)}(d_{u} \cdot d_{v} )^{\alpha } \\ &=&\left(6\right)^{\alpha (4p+4q+4)} \times \left(2\right)^{\alpha (12pq+8p+8q-4)} \times \left(3\right)^{\alpha (6pq-6q)} \\ &=&\left(2\right)^{\alpha (30pq+20p+14q-4)} \times \left(3\right)^{\alpha (24pq+12p)} .\end{eqnarray*} 3. \begin{eqnarray*} GA^{\alpha } II\left(G\right)&=&\prod _{uv\in E\left(G\right)}\left(\frac{2\sqrt{d_{u} \cdot d_{v} } }{d_{u} +d_{v} } \right)^{\alpha } \\ &=&\left(\frac{2\sqrt{1\cdot 6} }{1+6} \right)^{\alpha (4p+4q+4)} \times \left(\frac{2\sqrt{2\cdot 6} }{2+6} \right)^{\alpha (12pq+8p+8q-4)} \times \left(\frac{2\sqrt{3\cdot 6} }{3+6} \right)^{\alpha (6pq-6q)} \\ &=&\left(\frac{2\sqrt{6} }{7} \right)^{\alpha (4p+4q+4)} \times \left(\frac{\sqrt{3} }{2} \right)^{\alpha (12pq+8p+8q-4)} \times \left(\frac{6\sqrt{2} }{9} \right)^{\alpha (6pq-6q)} .\end{eqnarray*}

Corollary 8. Let \(G\) be the molecular graph of \(BiI_{3} \left(p\times q\right)\). Then

  1. \(MZ_{1} (G)=II_{2} \left(G\right)=\left(2\right)^{30pq+20p+14q-4} \times \left(3\right)^{24pq+12p} .\)
  2. \(MZ_{2} (G)=II_{1}^{*} \left(G\right){ =}\left(7\right)^{4p+4q+4} \times \left(8\right)^{12pq+8p+8q-4} \times \left(9\right)^{6pq-6q} .\)
  3. \(GAII\left(G\right){ \; =}\left(\frac{2\sqrt{6} }{7} \right)^{4p+4q+4} \times \left(\frac{\sqrt{3} }{2} \right)^{12pq+8p+8q-4} \times \left(\frac{6\sqrt{2} }{9} \right)^{6pq-6q} .\)

Proof. These result can be obtained immediately proved by taking \(\alpha =1\) in Theorem 7.

Corollary 9. Let \(G\) be the molecular graph of \(BiI_{3} \left(p\times q\right)\). Then

  1. \(HII_{1} \left(G\right){ =}\left(7\right)^{2(4p+4q+4)} \times \left(8\right)^{2(12pq+8p+8q-4)} \times \left(9\right)^{2(6pq-6q)} .\)
  2. \(HII_{2} \left(G\right){ =}\left(2\right)^{4(15pq+10p+7q-2)} \times \left(3\right)^{24(2pq+p)} .\)

Proof. These result can be obtained immediately proved by taking \(\alpha =2\) in Theorem 7.

Corollary 10. Let \(G\) be the molecular graph of \(BiI_{3} \left(p\times q\right)\). Then

  1. \(SCII\left(G\right)=\left(\frac{1}{\sqrt{7} } \right)^{4p+4q+4} \times \left(\frac{1}{\sqrt{8} } \right)^{12pq+8p+8q-4} \times \left(\frac{1}{\sqrt{9} } \right)^{6pq-6q} .\)
  2. \(PCII\left(G\right){ =}\left(\frac{1}{\sqrt{2} } \right)^{30pq+20p+14q-4} \times \left(\frac{1}{\sqrt{3} } \right)^{24pq+12p} .\)

Proof. These result can be obtained immediately proved by taking \(\alpha =-\frac{1}{2}\) in Theorem 7.

Theroem 11. Let \(G\) be the molecular graph of \(BiI_{3} \left(p\times q\right)\). Then \[ABCII\left(G\right)=\left(\sqrt{\frac{5}{6} } \right)^{4p+4q+4} \times \left(\sqrt{\frac{1}{2} } \right)^{12pq+8p+8q-4} \times \left(\sqrt{\frac{7}{18} } \right)^{6pq-6q} .\]

Proof. \begin{eqnarray*} ABCII\left(G\right)&=&\prod _{uv\in E\left(G\right)}\sqrt{\frac{d_{u} +d_{v} -2}{d_{u} \cdot d_{v} } } \\ &=&\left(\sqrt{\frac{1+6-2}{1\cdot 6} } \right)^{4p+4q+4} \times \left(\sqrt{\frac{2+6-2}{2\cdot 6} } \right)^{12pq+8p+8q-4} \times \left(\sqrt{\frac{3+6-2}{3\cdot 6} } \right)^{6pq-6q} \\ &=&\left(\sqrt{\frac{5}{6} } \right)^{4p+4q+4} \times \left(\sqrt{\frac{1}{2} } \right)^{12pq+8p+8q-4} \times \left(\sqrt{\frac{7}{18} } \right)^{6pq-6q} . \end{eqnarray*}

Theroem 12. Let \(G\) be the graph of \(BiI_{3} \left(p\times q\right)\). Then

  1. \(SC\left(G\right){ =}\left(\frac{6}{\sqrt{2} } +2\right)pq+\left(\frac{4}{\sqrt{7} } +\frac{4}{\sqrt{2} } \right)p+\left(\frac{4}{\sqrt{7} } +\frac{4}{\sqrt{2} } -2\right)q+\left(\frac{4}{\sqrt{7} } -\frac{2}{\sqrt{2} } \right).\)
  2. \(AG_{1} \left(G\right){ =}\left(\frac{24}{\sqrt{3} } +\frac{9}{\sqrt{2} } \right)pq+\left(\frac{14}{\sqrt{6} } +\frac{16}{\sqrt{3} } \right)p+\left(\frac{14}{\sqrt{6} } +\frac{16}{\sqrt{3} } -\frac{9}{\sqrt{2} } \right)q+\left(\frac{14}{\sqrt{6} } -\frac{8}{\sqrt{3} } \right)\).
  3. \(SK\left(G\right)=75pq+46p+19q-2.\)
  4. \(SK_{1} \left(G\right)=126pq+60p+6q-12.\)
  5. \(SK_{2} \left(G\right)=\frac{627}{2} pq+177p-\frac{111}{2} q-15.\)
  6. \(R'\left(G\right)=3pq+2p+q.\)

Proof. Using the edge partition given in Theorem 7, we have

    1. \begin{eqnarray*}SC\left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{1}{\sqrt{d_{u} +d_{v} } } \\ &=&\frac{1}{\sqrt{7} } \left(4p+4q+4\right)+\frac{1}{2\sqrt{2} } \left(12pq+8p+8q-4\right)+\frac{1}{3} \left(6pq-6q\right) \\ &=&\left(\frac{6}{\sqrt{2} } +2\right)pq+\left(\frac{4}{\sqrt{7} } +\frac{4}{\sqrt{2} } \right)p+\left(\frac{4}{\sqrt{7} } +\frac{4}{\sqrt{2} } -2\right)q+\left(\frac{4}{\sqrt{7} } -\frac{2}{\sqrt{2} } \right).\end{eqnarray*} 2. \begin{eqnarray*}AG_{1} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} +d_{v} }{2\sqrt{d_{u} \times d_{v} } } \\ &=&\frac{7}{2\sqrt{6} } \left(4p+4q+4\right)+\left(12pq+8p+8q-4\right)\frac{2}{\sqrt{3} } +\left(6pq-6q\right)\frac{3}{2\sqrt{2} } \\ &=&\left(\frac{24}{\sqrt{3} } +\frac{9}{\sqrt{2} } \right)pq+\left(\frac{14}{\sqrt{6} } +\frac{16}{\sqrt{3} } \right)p+\left(\frac{14}{\sqrt{6} } +\frac{16}{\sqrt{3} } -\frac{9}{\sqrt{2} } \right)q+\left(\frac{14}{\sqrt{6} } -\frac{8}{\sqrt{3} } \right).\end{eqnarray*} 3. \begin{eqnarray*}SK\left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} +d_{v} }{2} \\ &=&\frac{7}{2} \left(4p+4q+4\right)+4\left(12pq+8p+8q-4\right)+\frac{9}{2} \left(6pq-6q\right) \\ &=&75pq+46p+19q-2.\end{eqnarray*} 4. \begin{eqnarray*}SK_{1} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\frac{d_{u} \times d_{v} }{2} \\ &=&3\left(4p+4q+4\right)+6\left(12pq+8p+8q-4\right)+9\left(6pq-6q\right) \\ &=&126pq+60p+6q-12.\end{eqnarray*} 5. \begin{eqnarray*}SK_{2} \left(G\right)&=&\sum _{uv\in E\left(G\right)}\left(\frac{d_{u} +d_{v} }{2} \right) ^{2} \\ &=&\frac{49}{4} \left(4p+4q+4\right)+16\left(12pq+8p+8q-4\right)+\frac{81}{4} \left(6pq-6q\right) \\ &=&\frac{627}{2} pq+177p-\frac{111}{2} q-15.\end{eqnarray*} 6. \begin{eqnarray*}R'\left(G\right)&=&\sum _{uv\in E\left(G\right)}\left(\frac{1}{\max \left\{d_{u} ,d_{v} \right\}} \right) \\ &=&\frac{1}{6} \left(4p+4q+4\right)+\frac{1}{6} \left(12pq+8p+8q-4\right)+\frac{1}{6} \left(6pq-6q\right) \\ &=&3pq+2p+q.\end{eqnarray*}

4. Conclusions

In the present article, we computed closed form of 17 degree-based TIs for Bismuth Tri-Iodide chain and sheet. TIs thus calculated for these Bismuth Tri-Iodides can help us to understand the physical features, chemical reactivity, and biological activities. In this perspective, a TIs can be viewed as a score work which maps each sub-atomic structure to a real number and is utilized as descriptors of the particle under testing. These outcomes can likewise have a crucial influence in the assurance of the importance of Bismuth Tri-Iodide. For instance, it has been proved that the first Zagreb index is straightforwardly related with all out \(\pi\)-electron energy. Additionally Randic index is helpful for deciding physio-chemical properties of alkanes as seen by scientific expert Melan Randic in 1975. He saw the relationship between's the Randic index and a few physico--chemical properties of alkanes like, "enthalpies of formation, boiling points, chromatographic retention times, vapor pressure and surface areas" [52].

Competing Interests

The authors declare that they have no competing interests.

References

  1. Imran, M., Ali, M. A., Ahmad, S., Siddiqui, M. K. & Baig, A. Q. (2018). Topological Characterization of the Symmetrical Structure of Bismuth Tri-Iodide. Symmetry 2018, 10, 201.[Google Scholor]
  2. McGraw-Hill, P. S., & Parker, S. P. (2003). McGraw-Hill Dictionary of scientific and technical terms. McGraw-Hill: New York, NY, USA. [Google Scholor]
  3. Mackay, R. A., & Henderson, W. (2002). Introduction to modern inorganic chemistry. CRC Press: Boca Raton, FL, USA, 2002; pp. 122-126, ISBN 0-7487-6420-8. [Google Scholor]
  4. Smart, L. E., & Moore, E. A. (2016). Solid state chemistry: an introduction. CRC Press: Boca Raton, FL, USA, 2005; p. 40, ISBN 0-7487-7516-1. [Google Scholor]
  5. Watanabe, K., Karasawa, T., Komatsu, T., & Kaifu, Y. (1986). Optical properties of extrinsic two-dimensional excitons in $BiI_3$ single crystals. Journal of the Physical Society of Japan, 55(3), 897 - 907.[Google Scholor]
  6. Wyckoff, R. W. G. (1964). Crystal Structures, 2nd ed. John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia. [Google Scholor]
  7. Yorikawa, H., & Muramatsu, S. (2008). Theoretical study of crystal and electronic structures of $BiI_3$. Journal of Physics: Condensed Matter, 20(32), 325 - 335. [Google Scholor]
  8. Nason, D., & Keller, L. (1995). The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport. Journal of crystal growth, 156(3), 221 - 226. [Google Scholor]
  9. Gao, W., Wang, W., Dimitrov, D., & Wang, Y. (2018). Nano properties analysis via fourth multiplicative ABC indicator calculating. Arabian journal of chemistry, 11(6), 793 - 801. [Google Scholor]
  10. Gao, W., Wu, H., Siddiqui, M. K., & Baig, A. Q. (2018). Study of biological networks using graph theory. Saudi journal of biological sciences, 25(6), 1212 - 1219.[Google Scholor]
  11. Yang, K., Yu, Z., Luo, Y., Yang, Y., Zhao, L., & Zhou, X. (2018). Spatial and temporal variations in the relationship between lake water surface temperatures and water quality-A case study of Dianchi Lake. Science of the total environment, 624, 859 - 871. [Google Scholor]
  12. Gao, W., Guirao, J. L. G., Abdel-Aty, M., & Xi, W. (2018). An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems-S. 12(4-5): 877-886. [Google Scholor]
  13. Gao, W., Wang, W., & Farahani, M. R. (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016, Article ID 3216327, 8 pages [Google Scholor]
  14. Naeem, M., Siddiqui, M. K., Guirao, J. L. G., & Gao, W. (2018). New and Modified Eccentric Indices of Octagonal Grid \(O^m_n\). Applied Mathematics and Nonlinear Sciences, 3(1), 209 - 228. [Google Scholor]
  15. Gao, W., & Farahani, M. R. (2016). Degree-based indices computation for special chemical molecular structures using edge dividing method. Applied Mathematics and Nonlinear Sciences, 1(1), 99-122. [Google Scholor]
  16. Gao, W., & Farahani, M. R. (2016). Degree-based indices computation for special chemical molecular structures using edge dividing method. Applied Mathematics and Nonlinear Sciences, 1(1), 99-122. [Google Scholor]
  17. Gao, W., Farahani, M. R., & Shi, L. (2016). Forgotten topological index of some drug structures. Acta Medica Mediterranea,32, 579-585.[Google Scholor]
  18. Gutman, I. (1993). Some properties of the Wiener polynomials. Graph Theory Notes New York. 125, 13-18. [Google Scholor]
  19. Deutsch, E. & Klavzar, S. (2015). M-Polynomial, and degree-based topological indices. Iran. J. Math. Chem. 6, 93-102. [Google Scholor]
  20. Munir, M., Nazeer, W., Rafique, S. & Kang, S. M. (2016). M-polynomial and related topological indices of Nanostar dendrimers. Symmetry, 8(9), 97; 10.3390/sym8090097[Google Scholor]
  21. Munir, M., Nazeer, W., Rafique, S., Nizami, A. R. & Kang, S. M. 2016). M-polynomial and degree-based topological indices of titania nanotubes. Symmetry, 8(11), 117; 10.3390/sym8110117 [Google Scholor]
  22. Munir, M., Nazeer, W., Rafique, S. & Kang, S. M. (2016). M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes. Symmetry, 8(12), 149; 10.3390/sym8120149[Google Scholor]
  23. Ajmal, M., Nazeer, W., Munir, M., Kang, S. M., & Jung, C. Y. (2017). The M-polynomials and topological indices of toroidal polyhex network. International Journal of Mathematical Analysis, 11(7), 305-315. [Google Scholor]
  24. Munir, M., Nazeer, W., Shahzadi, S. & Kang, S. M. Some invariants of circulant graphs. Symmetry, 8(11), 134; 10.3390/sym8110134 (2016).[Google Scholor]
  25. Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17-20. [Google Scholor]
  26. Dobrynin, A. A., Entringer, R., & Gutman, I. (2001). Wiener index of trees: theory and applications. Acta Applicandae Mathematica, 66(3), 211-249. [Google Scholor]
  27. Gutman, I. & Polansky, O. E. (1986). Mathematical Concepts in Organic Chemistry. (Springer-Verlag New York, USA). [Google Scholor]
  28. Randi\'c, M. (1975). Characterization of molecular branching. Journal of the American Chemical Society, 97(23), 6609-6615. [Google Scholor]
  29. Bollobás, B., & Erdös, P. (1998). Graphs of extremal weights. Ars Combinatoria, 50, 225-233.[Google Scholor]
  30. Amić, D., Bešlo, D., Lučić, B., Nikolić, S., & Trinajstić, N. (1998). The vertex-connectivity index revisited. Journal of chemical information and computer sciences, 38(5), 819-822. [Google Scholor]
  31. Hu, Y., Li, X., Shi, Y., Xu, T., & Gutman, I. (2005). On molecular graphs with smallest and greatest zeroth-order general Randić index. MATCH Commun. Math. Comput. Chem, 54(2), 425-434. [Google Scholor]
  32. Caporossi, G., Gutman, I., Hansen, P., & Pavlović, L. (2003). Graphs with maximum connectivity index. Computational Biology and Chemistry, 27(1), 85-90. [Google Scholor]
  33. Li, X. & Gutman, I. (2006). Mathematical Chemistry Monographs, No 1. Kragujevac. [Google Scholor]
  34. Kier, L. B. & Hall, L. H. (1976). Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York.[Google Scholor]
  35. Kier, L. B. & Hall, L. H. (1986). Molecular Connectivity in Structure-Activity Analysis. Wiley, New York. [Google Scholor]
  36. Li, X. & Gutman, I. (2006). Mathematical Aspects of Randić-Type Molecular Structure Descriptors. Univ. Kragujevac, Kragujevac. [Google Scholor]
  37. Randić, M. (2008). On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem, 59, 5-124. [Google Scholor]
  38. Randić, M. (2001). The connectivity index 25 years after. Journal of Molecular Graphics and Modelling, 20(1), 19-35. [Google Scholor]
  39. Gutman, I. & Furtula, B. (2008). Recent Results in the Theory of Randić Index. Univ. Kragujevac, Kragujevac. [Google Scholor]
  40. Li, X., & Shi, Y. (2008). A survey on the Randić index. MATCH Commun. Math. Comput. Chem, 59(1), 127-156.[Google Scholor]
  41. Li, X., Shi, Y. & Wang, L. (2008). In: Recent Results in the Theory of Randić Index, I. Gutman and B. Furtula (Eds.) 9-47, Univ. Kragujevac, Kragujevac.
  42. Nikolić, S., Kovačević, G., Miličević, A., & Trinajstić, N. (2003). The Zagreb indices 30 years after. Croatica chemica acta, 76(2), 113-124. [Google Scholor]
  43. Gutman, I. & Das, K. C. (2004). The first Zagreb indices 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83--92. [Google Scholor]
  44. Das, K. & Gutman, I. (2004). Some Properties of the Second Zagreb Index. MATCH Commun. Math. Comput. Chem. 52, 103--112. [Google Scholor]
  45. Gao, W., Wang, Y., Basavanagoud, B., & Jamil, M. K. (2017). Characteristics studies of molecular structures in drugs. Saudi Pharmaceutical Journal,25(4), 580-586. [Google Scholor]
  46. Vukičević, D., & Graovac, A. (2004). Valence connectivity versus Randić, Zagreb and modified Zagreb index: A linear algorithm to check discriminative properties of indices in acyclic molecular graphs. Croatica chemica acta, 77(3), 501-508. [Google Scholor]
  47. Miličević, A., Nikolić, S., & Trinajstić, N. (2004). On reformulated Zagreb indices. Molecular diversity, 8(4), 393-399. [Google Scholor]
  48. Gupta, C. K., Lokesha, V., Shwetha, S. B., & Ranjini, P. S. (2016). On the Symmetric Division deg Index of Graph. Southeast Asian Bulletin of Mathematics, 40(1),59-80. [Google Scholor]
  49. Fajtlowicz, S. (1987). On conjectures of Graffiti-II. Congr. Numer, 60, 187-197. [Google Scholor]
  50. Favaron, O., Mahéo, M., & Saclé, J. F. (1993). Some eigenvalue properties in graphs (conjectures of Graffiti—II). Discrete Mathematics, 111(1-3), 197-220. [Google Scholor]
  51. Balaban, A. T. (1982). Highly discriminating distance based numerical descriptor. Chem. Phys. Lett, 89, 399-404.[Google Scholor]
  52. Kwun, Y. C., Munir, M., Nazeer, W., Rafique, S., & Kang, S. M. (2018). Computational Analysis of topological indices of two Boron Nanotubes. Scientific reports,8 1, 14843.[Google Scholor]
  53. Narumi, H., & Katayama, M. (1984). Simple topological index: A newly devised index characterizing the topological nature of structural isomers ofsaturated hydrocarbons. Memoirs of the Faculty of Engineering, Hokkaido University 16(3), 209-214. [Google Scholor]
  54. Gutman, I. (2011). Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka, 18, 17-23. [Google Scholor]
  55. Todeschini, R., Ballabio, D., & Consonni, V. (2010). Novel molecular descriptors based on functions of new vertex degrees. Mathematical Chemistry Monographs, 2010, 73-100.[Google Scholor]
  56. Todeschini, R., & Consonni, V. (2010). New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem, 64(2), 359-372. [Google Scholor]
  57. Wang, S., & Wei, B. (2015). Multiplicative Zagreb indices of k-trees. Discrete Applied Mathematics, 180, 168-175. [Google Scholor]
  58. Eliasi, M., Iranmanesh, A., & Gutman, I. (2012). Multiplicative versions of first Zagreb index. Match-Communications in Mathematical and Computer Chemistry, 68(1), 217. [Google Scholor]
  59. Kulli, V. R. (2016). Multiplicative hyper-Zagreb indices and coindices of graphs: computing these indices of some nanostructures. International Research Journal of Pure Algebra, 6(7), 342-347. [Google Scholor]
  60. Kulli, V. R., Stone, B., Wang, S., & Wei, B. (2017). Generalised multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems. Zeitschrift für Naturforschung A, 72(6), 573-576. [Google Scholor]
  61. Kulli, V. R. (2016). Multiplicative connectivity indices of \(TUC_4C_8 [m, n]\) and \(TUC_4 [m, n]\) nanotubes. Journal of Computer and Mathematical Sciences, 7(11), 599-605.[Google Scholor]
  62. Shigehalli, V. S., & Kanabur, R. (2016). Computation of New Degree-Based Topological Indices of Graphene. Journal of Mathematics, 2016, Article ID 4341919, 6 pages. [Google Scholor]