Search for Articles:

Engineering and Applied Science Letters (EASL)

The Engineering and Applied Science Letters (EASL) (2617-9709 Online, 2617-9695 Print) is an international peer-reviewed journal dedicated to publishing scientifically valid primary research across all areas of engineering and applied sciences. It provides a platform for both theoretical and applied contributions, supporting the advancement of interdisciplinary knowledge.

  • Open Access: EASL follows the Diamond Open Access model—completely free for both authors and readers, with no APCs. Articles are freely accessible online without financial, legal, or technical barriers.
  • Visibility: Specific details on visibility are not provided, but articles are published online immediately upon acceptance.
  • Rapid Publication: Accepted papers are published online immediately in the currently running issue, ensuring timely dissemination.
  • Scope: Publishes scientifically valid primary research from all areas of engineering and applied sciences.
  • Publication Frequency: One volume with four issues per year (March, June, September, December).
  • Indexing: Indexed in WorldCat, Scilit, Dimensions, ROAD, Publons, Crossref, ZDB, Wikidata, SUDOC, OpenAlex, EZB, and FATCAT, ensuring wide accessibility and scholarly recognition.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Rasul Rasuli1
1Department of Mathematics, Payame Noor University(PNU), Tehran, Iran.
Abstract:

In this paper, by using \(t\)-norms, we introduce fuzzy subalgebras and fuzzy \(d\)-ideals of \(d\)-algebra and investigate some properties of them. Moreover, we define the cartesian product and intersection of fuzzy subalgebras and fuzzy \(d\)-ideals of \(d\)-algebra. Finally, by homomorphisms of \(d\)-algebras, we consider the image and pre-image of them.

Dr. Adesogan1, Sunday Olufemi1
1Civil Engineering Department, University of Ibadan, Nigeria.
Abstract:

Water scarcity comes with its attendant socio-economic effects. This paper evaluated the potential water supply and sanitation facilities in Dagbolu-Nigeria to boost economy. Facilities survey was carried out for the study including information from water, sanitation and health institutions across the State. GIS approach was used to depict the groundwater recharge potential of the study area.15.3% of the populace have access to potable water while 32.5% have access to good sanitation. Water-related diseases in the area are preponderantly malaria (81.2%), diarrhoea (8.41%), typhoid fever (3.40%), dysentery (3.22%) and cholera (2.76%). Annual loss due to unproductive downtime sickness in the Nigeria is estimated to be N 414,763,442,768:00. Improve management through effective policies of water resources leading to good water supply, hygiene and sanitation will enhance development or our underdeveloped countries.

Pranay Dutta1, Md. Razaya Rabbi2, Mohammad Abu Sufian3, Shahnaz Mahjebin4
1Department of Textile Technology, Chittagong Technical College, Chattogram, Bangladesh.
2Department of Merchandising, Opex and Sinha Textile Group, Narayangonj, Bangladesh.
3Department of Wet Processing, Textile Engineering College, Zorargonj, Chattogram, Bangladesh.
4Department of Industrial Engineering, Regency Garments Ltd., Chattogram, Bangladesh.
Abstract:

Wastewater discharged by dye manufacturing and textile finishing industries has become an environmental concern. The textile dyeing plants utilize a variety of synthetic dyes and dump massive amounts of dyeing effluent because the uptake of these dyes by fabrics is very low. The plant’s photosynthetic activity is significantly harmed by this highly colored textile dyeing effluent, impairs aquatic life because of its low light penetration and oxygen consumption. Owing to the presence of heavy metallic materials and chlorine in synthetic dyes, it could also be harmful to some aquatic creatures. Therefore, these textile wastewaters need to be treated before their discharge. Various techniques for dealing with textile dyeing effluent have been discussed in this paper. Treatment techniques presented in this study include oxidation methods, physical methods, and biological methods. Also, the paper is prepared to compile all the updated data on textile dyeing effluents’ characterization and their impact on the environment from various journals and websites and some from personal communication with some factories. Since an extensive range of synthetic dyes, namely, azo dye, vat dye, reactive dye, disperse dye, is widely used in the textile industry, some of the dyeing effluents’ physicochemical parameters surpassed their standard limits. Hence, these days, the proper monitoring and corrective steps such as the elimination process have become the most thoughtful tasks globally, particularly the developing and transition economies. It is crucial to take immediate action to minimize environmental emissions due to the discharge of untreated textile dye waste.

Mohamed Lounis1, Farhan Mohammad Khan2
1Department of Agro-veterinary Science, Faculty of Natural and Life Sciences, University of Ziane Achour, BP 3117, Road of Moudjbara, Djelfa 17000, Algeria.
2Department of Civil Engineering, BITS Pilani, Pilani Campus, India.
Abstract:

In the presented work we applied three machine learning techniques to forecast and predict COVID-19 cases, deaths ad recoveries numbers in Algeria for the next six months using data from February 25th, 2020 to April 26th , 2021. These models are represented by the Gaussian process regression (GPR), the support vector machine (SVM) and the decision tree (DT). The plotting results and parameters evaluation pointed out that the Gaussian Process Regression (GPR) has the best performance. Prediction with this model showed that the number of cases, deaths and recoveries will increase in the next months Algeria recording a peak in the month of August and the curve will tend to decrease later.

Edward Bwayo1, Willy Okullo1, Daniel Mukiibi1, Denis Okello1, Robert Lugolole1, Tumps Winston Ireeta1
1Department of Physics, School of Physical Sciences, College of Natural Sciences, Makerere University, Uganda.
Abstract:

This paper presents the spectral reflectance of thermally evaporated ZnS/Ag nanostructures. The coating of ZnS/Ag nanostructures was performed in two steps while varying the film thickness and deposition angle. Silver metal wire (99.99% purity) was heated under vacuum at a pressure of \(2.5 \times 10^{-5}\) mBars and deposited on glass slide substrates in the diffusion pump microprocessor vacuum coater (Edwards AUTO 306). Pieces of zinc sulphide (99.99% purity) were heated and deposited to the glass slides previously coated with silver to form the ZnS/Ag/glass composite. The optical reflectance of the samples was studied by the UV/Vis/NIR spectrometer (Perkin Elmer Lambda 19) with UV-WinLab software. The reflectance was measured at angles of incidence between \(15^o\) and \(75^o\). Spectrophotometric studies showed that reflectance decreased with decrease in film thickness and decreased with increase in deposition angle of silver nanoparticles. The reflectance of ZnS/Ag nanostructures decreased with increase in deposition angle of zinc sulphide.

Albert Adu-Sackey1, Gabriel Obed Fosu2, Buckman Akuffo1
1Department of Applied Mathematics, Koforidua Technical University, Ghana.
2Department of Mathematics, Kwame Nkrumah University of Science and Technology, Ghana.
Abstract:

This paper discusses a gallery of useful results in connection with integrating factors that are often left as problems for discovery learning and are generally not taught in typical Ordinary Differential Equations courses. Most often than not the approach earlier writers employ is to give a possible form for an integrating factor that may results in an integrating curve without practical prove as far as the subject matter is concerned. In this write-up, an attempt is made by solving the resulting partial differential equation emanating from an underlining general differential equation of a non-exact form, by the use of the ratio theorem to establish various intricate possibilities of integrating factors that are seldom and often relegated to the background, even though they may be equally be applied as a function of a unitary variable or a linear combination of both the dependent and independent variables under certain conditions. Granted an integrating factor is found and such a function applied, the benefit is enormous especially the non-exact differential equation reduces into a known type which may be identified as exact, homogeneous, and or separable that yields a solution.

Muhammad Usman Farooq1, Abdul Ahad2, Zeeshan Maqsood3, Niranjan Devkota4, Syed Naqi Raza5
1Department of Civil Engineering and Architecture, University of Sialkot, Pakistan.
2Department of Management Sciences, National College of Business Administration \& Economics, Pakistan.
3Department of Statistics, University of Sialkot, Pakistan.
4Department of Economics, Quest international University, Nepal.
5Department of Electrical Engineering, University of Sialkot, Pakistan.
Abstract:

Green buildings are supposed to provide a sustainable solution for energy usage, but their low performance raised some questions in the literature. The researchers determine that occupants are the key factor for this energy deficiency. In the last two decades, a stream of research focuses on the greening of occupants, but a synthesis of findings and results are absent in the literature. In this study, we reviewed the literature on green buildings and occupants. Based on the findings we classified four classes. The first class consists of green occupants and green buildings, which is the ideal solution for high-energy efficiency. The second class is of brown occupants and green buildings and is the prime reason behind outperformed green buildings and yields negative-medium level efficiency. The third class comprises green occupants and brown buildings and yields positive-medium level efficiency, which helps to start the journey towards sustainability. The fourth class is the combination of brown buildings and brown occupants and has the lowest efficiency and worst impact on the environment throughout the lifecycle. Further, we link these classes with the energy-saving efficiency of buildings and finally recommended an efficient solution for second and third world countries. The study contributes to green building literature and packed with managerial implications to gain the maximum benefits of green buildings.

Winston Tumps Ireeta1, Esther Nabadda1, George Isoe2
1Department of Physics, Makerere University, Kampala, Uganda.
2Department of Physics, Nelson Mandela University, Port Elizabeth, South Africa.
Abstract:

Most radio stations use frequency modulation (FM) to broadcast yet amplitude modulation (AM) ensures long distance modulation. The limitations of FM reception are the line of sight and the area of reception. These two parameters are much smaller in FM compared to AM which makes AM modulation have an added advantage over FM modulation. The results presented in this paper include; direct modulation at different bias currents and different transmission fiber lengths and the amplitude modulation using the Mach-Zehnder. The results show the possibility to transmit huge data at high speeds to over 100Gbps.

Youssef Ouafik1
1National School of Applied Sciences of Safi, Cadi Ayyad University, Safi, Morocco
Abstract:

In this work, we numerically study a dynamic frictional contact problem between a thermo-piezoelectric body and a conductive foundation. The linear thermo-electro-elastic constitutive law is employed to model the thermo-piezoelectric material. The contact is modelled by the Signorini condition and the friction by the Coulomb law. A frictional heat generation and heat transfer across the contact surface are assumed. The heat exchange coefficient is assumed to depend on contact pressure. Hybrid formulation is introduced, it is a coupled system for the displacement field, the electric potential, the temperature and two Lagrange multipliers. The discrete scheme of the coupled system is introduced based on a finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivate. The thermo-mechanical contact is treated by using an augmented Lagrangian approach. A solution algorithm is discussed and implemented. Numerical simulation results are reported, illustrating the mechanical behavior related to the contact condition.

Saad Ihsan Butt1, Muhammad Tariq1, Muhammad Nadeem1
1Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan.
Abstract:

In this paper, we introduce the concept of a new family of convex functions namely \(n\)-polynomial generalized convex functions of Raina type. We investigate the algebraic properties of a newly introduced idea and discuss their connections with convex functions. Furthermore, we establish the new version of Hermite–Hadamard and some refinements of Hermite-Hadamard type inequalities this class of functions. Finally, we investigate some applications to special means of real numbers. Results obtained in this paper can be viewed as a significant improvement of previously known results and also may stimulate and energize for further activities in this research area field.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more