Engineering and Applied Science Letters (EASL) (2617-9709 Online, 2617-9695 Print) is an international and fully open-access journal from the publishers of Ptolemy Research Press. We publish scientifically valid primary research from all areas of the Engineering and Applied Sciences. We publish one volume containing four issues in March, June, September and December each year. The accepted papers will be published online immediately in the currently running issue.
Nowadays, scholars are very interested to determine the solution of different Diophantine equations because these equations have numerous applications in the field of coordinate geometry, cryptography, trigonometry and applied algebra. These equations help us for finding the integer solution of famous Pythagoras theorem and Pell’s equation. Finding the solution of Diophantine equations have many challenges for scholars due to absence of generalize methods. In the present paper, author studied the exponential Diophantine equation \((2^{2m+1}-1)+(13)^n=z^2\), where \(m,n\) are whole numbers, for its solution in whole numbers. Results show that the exponential Diophantine equation \((2^{2m+1}-1)+(13)^n=z^2\), where \(m\), \(n\) are whole numbers, has no solution in whole number.
We theoretically present the physical realization of one dimensional (1D) atom localization by superposition of three standing wave fields in a four-level tripod atomic configuration. The most interesting result that we observe is the variation of the bandwidth of the localization peaks with the intensity of the space independent Rabi frequency. A sharp single and double localized peaks are observed at different direction of the wave numbers. The bandwidth of a localized peak is reduced as the intensity of the space independent Rabi frequency goes on increasing, which corresponds to the reduction in the uncertainty. These results will hopefully contribute to the development of current high tech-applications.
The purpose of this study is to explore the influence of factors on patients with chronic kidney disease (CKD) and to establish predictive models using machine learning methods. Data were collected from the Affiliated Hospital of Nanjing University of Chinese Medicine between January 2016 and December 2017, including 69 CKD patients and 155 healthy subjects. This study found that carotid intima-media thickness (cIMT) is the most important indicator among the top 9 important features of each model. In order to find the best model to diagnosis CKD, extreme gradient boosting (XGBoost), support vector machine (SVM) and logistic regression are established and XGBoost is the most suitable model for this study (accuracy, 0.93; specificity, 0.89; sensitivity, 0.94; F1 score, 0.91; AUC, 0.99).
Out of the top ten current global issues, climate change and pollution top the list. These issues have brought about adverse effects on our climate, health and communities. This study aims to investigate the structural performance of sawdust ash blended steel slag aggregate concrete and modelling their structural properties using a multivariate interpolation method. In order to achieve this, the physical properties, physio-chemical, chemical composition, mechanical properties tests were conducted. The result revealed that sawdust ash is classified as a class C type pozzolan having a total of 61.59% combined percentage masses of silica, alumina and ferric oxides, while steel slag aggregate is classified as poorly graded. The composite concrete recorded higher density, compressive and split tensile strengths when compared with normal concrete cured in potable water. The results revealed that normal concrete with normal aggregate is more durable than sawdust ash blended steel slag aggregate (composite) concrete when cured in an aggressive environment. The developed models were found to agree strongly with the experimental data, with an outstanding correlation level. This research has led to the creation of high strength pozzolan blended steel slag aggregate concrete, thus improving waste management, reduction in environmental pollution and \(CO_2\) gas emission.
Collocation methods are efficient approximate methods developed by utilizing suitable set of functions known as trial or basis functions. These methods are used for solving differential equations, integral equations and integro-differential equations, etc. In this study, the Laguerre polynomial of degree 10 is used as a basis function to propose a collocation method for solving higher order linear ordinary differential equations. Four examples on \(4th\), \(6th\), \(8th\) and \(10th\) order ordinary differential equations are selected to illustrate the effectiveness of the method. The numerical results show that the proposed collocation method is easy and straightforward to implement, nevertheless, it is very accurate.
In this paper, a new forms of extended hypergeometric functions are introduced. Some functional relations, integral representations and transformation formulas for these functions are derived.
In this work, we numerically study a dynamic frictional contact problem between a thermo-piezoelectric body and a conductive foundation. The linear thermo-electro-elastic constitutive law is employed to model the thermo-piezoelectric material. The contact is modelled by the Signorini condition and the friction by the Coulomb law. A frictional heat generation and heat transfer across the contact surface are assumed. The heat exchange coefficient is assumed to depend on contact pressure. Hybrid formulation is introduced, it is a coupled system for the displacement field, the electric potential, the temperature and two Lagrange multipliers. The discrete scheme of the coupled system is introduced based on a finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivate. The thermo-mechanical contact is treated by using an augmented Lagrangian approach. A solution algorithm is discussed and implemented. Numerical simulation results are reported, illustrating the mechanical behavior related to the contact condition.
This paper presents the variation of radiofrequencies intensities from the DTTV-transmitter in Kampala Metropolitan for the sub 700 MHz (470-694 MHz) and the 700 MHz (694-790 MHz) frequency bands. The results of this study showed that though all the measurement locations from the transmitter have a good reception of DTTV signals, their radiofrequency intensities varied at the different points on the same measurement location at a constant distance from the DTTV transmitter. The study further showed that there is a general decrease in the radiofrequency intensities for the sub 700 MHz frequency band and a slight general increase in the radiofrequency intensities for the 700 MHz frequency band. This research revealed that the measured Reference Signal Received Power (RSRP) values for all the measurement locations where within the IEEE and FCC recommended values for any DTTV signal reception.
In this paper, we establish some new Čebyšev type inequalities for functions whose modulus of the mixed derivatives are co-ordinated quasi-convex and \(\alpha\)-quasi-convex and \(s\)-quasi-convex functions.
In this study, a mathematical model of dual latency compartments is developed to investigate the transmission dynamics of COVID-19 epidemic in Oyo state, Nigeria. The model consists of non-pharmaceutical control strategies which include the use of face masks, social-distancing and impact of mass-media on the spread of novel coronavirus in the state. Results indicate control reproduction number \(R_C = 1.4\) with possibilities of high constructive influence of mass-media. Thus, at the fitted values of \(\sigma _f = 0.1,\; \sigma _d = 0.1,\;\sigma _m = 0.6\), the peak of the COVID-19 epidemic is attained after 59,217 infectious quarantined individuals and 328,440 infectious but not quarantined individuals have contracted COVID-19 in about 439 and 443 days respectively from the date of the first incidence. Therefore, efforts on mass-media with programs that can inform the people on effective use of face masks, social-distancing and other safety measures can aid reduction of reproduction number to a value below 1 necessary for eradication of the disease.