Contents

Chromatically unique \(6\)-bridge graph \(\theta (r,r,s,s,t,u)\)

Author(s): Syed Ahtsham Ul Haq Bokhary1, Shehr Bano1
1Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan.
Copyright © Syed Ahtsham Ul Haq Bokhary, Shehr Bano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(A\) and \(B\) be two graph and \(P(A,z)\) and \(P(B,z)\) are their chromatic polynomial, respectively. The two graphs \(A\) and \(B\) are said to be chromatic equivalent denoted by \( A \sim B \) if \(P(A,z)=P(B,z)\). A graph \(A\) is said to be chromatically unique(or simply \(\chi\)- unique) if for any graph \(B\) such that \(A\sim B \), we have \(A\cong B\), that is \(A\) is isomorphic to \(B\). In this paper, the chromatic uniqueness of a new family of \(6\)-bridge graph \(\theta(r,r,s,s,t,u)\) where \(2\leq r\leq s \leq t\leq u\) is investigated.

Keywords: Chromatic polynomial; Chromatically unique; multi-bridge graph.

1. Introduction

Let \(A\) be a finite undirected graph with a vertex set \(V(A)\) and an edge set \(E(A)\). A function \(f: V(A) \rightarrow \{1, \dots, k\}\) is called a proper coloring if for any two adjacent vertices \(x\) and \(y\) (i.e., \(xy \in E(A)\)), it holds that \(f(x) \neq f(y)\). The chromatic polynomial of the graph \(A\), denoted by \(P(A, z)\), is defined as the number of all proper colorings of \(A\). Consider two graphs \(A\) and \(B\) with their respective chromatic polynomials \(P(A, z)\) and \(P(B, z)\). These graphs are said to be chromatically equivalent, denoted by \(A \sim B\), if \(P(A, z) = P(B, z)\). A graph \(A\) is termed a chromatically unique graph if no other graph shares the same chromatic polynomial as \(A\).

For each integer \(k \geq 2\), let \(\theta_{k}\) denote the multi-graph with two vertices and \(k\) edges. Any subdivision of \(\theta_{k}\) is referred to as a multi-bridge graph or a \(k\)-bridge graph, denoted by \(\theta(y_{1}, y_{2}, y_{3}, \dots, y_{k})\), where \(y_{1}, y_{2}, \dots, y_{k} \in \mathbb{N}\) and \(y_{1} \leq y_{2} \leq \dots \leq y_{k}\). The graph \(\theta(y_{1}, y_{2}, y_{3}, \dots, y_{k})\) is obtained by replacing the edges of \(\theta_{k}\) with paths of lengths \(y_{1}, y_{2}, y_{3}, \dots, y_{k}\), respectively. Consequently, the graph \(\theta(y_{1}, y_{2}, y_{3}, \dots, y_{k})\) possesses \(y_1 + y_2 + \dots + y_k – k + 2\) vertices and \(y_1 + y_2 + \dots + y_k\) edges.

2. Chromaticity Of \(k\)-bridge graphs

The chromaticity of \(k\)-bridge graphs has been extensively studied by numerous researchers. A \(2\)-bridge graph, which is essentially a cycle graph, is known to be \(\chi\)-unique. The theta graph, a type of \(3\)-bridge graph, is denoted by \(\theta(1,y_{1},y_{2})\). Chao and Whitehead [1] established that every theta graph is \(\chi\)-unique. Extending their work, Loerinc [2] demonstrated that all \(3\)-bridge graphs are \(\chi\)-unique. The chromaticity of \(4\)-bridge graphs was successfully addressed by Chen et al. [3] and Xu et al. [4]. Research on the chromaticity of \(5\)-bridge graphs has been conducted by several scholars, as cited in [5-8].

Theorem 1. (Xu et al. [3] ) For \(k \geq 2\), the graph \(\theta_{k}(h)\) is \(\chi\) unique.

Theorem 2. (Dong et al. [9] ) If 2 \(\leq y_{1} \leq y_{2} \leq\dots\leq y_{k} < y_{1} + y_{2}\) where \(k \geq 3\), then the graph \(\theta ( y_{1},y_{2},\dots,y_{k})\) is \(\chi\)-unique.

For any graph \(A\) and real number \(z\), write \[\nonumber Q(A,z)=(-1)^{1+|E(A)|}(1-z)^{|V(A)|+|E(A)|+1}P(A,1-z).\]

Theorem 3. (Dong et al. [9] ) For any \(k\), \(y_{1},y_{2},…,y_{k} \in N\), \[Q(\theta (y_{1},y_{2},…,y_{k}),z)= z \prod^{k}_{i=1}(z^{y_{i}}-1)-\prod^{k}_{i=1}(z^{y_{i}}-z)\tag{1}\]

Theorem 4. (Dong et al. [9] ) For any graph \(A\) and B,
1. If \(B \sim A\), then Q(B,z)= Q(A,z).
2. If Q(B,z)= Q(A,z) and v(B)= v(A), then \(B\sim A\).

Theorem 5. (Dong et al. [9] ) Suppose that \(\theta (y_{1},y_{2},\dots,y_{k}) \sim \theta (x_{1},x_{2},…,x_{k} )\), where \(k\geq 3\), \(2 \leq y_{1}\leq y_{2}\leq\dots\leq y_{k}\) and \(2 \leq x_{1}\leq x_{2}\leq\dots\leq x_{k}\), then \(y_{i} = x_{i}\) for all \(i= 1,2,3,…k.\)

Theorem 6. (Dong et al. [9] ) Let \(B \sim \theta (y_{1},y_{2},\dots,y_{k})\) ,where \(k\geq 3\) and \(y_{i}\geq 2\) for all i, then one of them is true:
1. \(B\) \(\cong \theta ( y_{1},y_{2},\dots,y_{k})\)
2. \(B\) \(\in g_{e}(\theta( x_{1},x_{2},\dots,x_{k}) C_{x_{i+1}},\dots, C_{x_{k+1}})\), where \(3 \leq t \leq k-1\) and \(x_{i} \geq 2\) for all \(i=1,2,3,..k.\)

Theorem 7. (Dong et al. [9] ) Let \(k, t ,x_{1},x_{2},\dots,x_{k} \in N\) where \(3\leq t\leq k-1\) and \(x_{i} \geq 2\) for all \(i= 1,2,3,\dots,k\). If \(B \in g_{e} (\theta ( x_{1},x_{2},…,x_{t}),C_{x_{t+1}+1},…,C_{x_{k+1}})\), then \[\label{equation1} Q(B,z)= z\prod^{k}_{i=1}(z^{x_{i}}-1)- \prod^{t}_{i=1}(z^{x_{i}}- z) \prod^{k}_{i=t+1}(z^{x_{i}} – 1).\tag{2}\]

Theorem 8. (Koh & Teo [])If \(A \sim B\), then
1. \(v(A)= v(B)\),
2. \(e(A)= e(B)\),
3. \(g(A)= g(B)\),
4. \(A\) and \(B\) have the same number of shortest cycle.
where \(v(A)\), \(v(B)\), \(e(A)\), \(e(B)\), \(g(A)\) and \(g(B)\) denote the number of vertices, the number of edges and the girth of \(A\) and \(B\), respectively.

The chromaticity on several families of \(6\)-bridge graph has been done by several authors which are given below.

Lemma 9. [11] A 6-bridge graph \(\theta(y_{1},y_{2},\dots,y_{6})\) is \(\chi\) unique if the positive integer \(y_{1},y_{2},\dots,y_{6}\) assume exactly two distinct values.

Lemma 10. [13] The graph 6-bridge \(\theta (3,3,3,s,s,t)\), where \(r\leq s\leq t\), is \(\chi\)-unique.

Lemma 11. [13] The graph \(6\)-bridge \(\theta (r,r,r,s,s,t)\), where \(r\leq s\leq t\), is \(\chi\)-unique.

Lemma 12. [14] The graph \(6\)-bridge \(\theta (3,3,3,s,t,u)\), where \(3\leq s\leq t\), is \(\chi\)-unique.

Lemma 13. [15] The graph \(6\)-bridge \(\theta (r,r,s,s,t,t)\), where \(r\leq s\leq t\), is \(\chi\)-unique.

Lemma 14. [16] The graph \(6\)-bridge \(\theta (r,r,s,s,s,t)\), where \(r\leq s\leq t\), is \(\chi\)-unique.

Lemma 15. [18] The graph \(6\)-bridge \(\theta (r,r,r,s,t,u)\), where \(r\leq s\leq t\leq u\), is \(\chi\)-unique.

In this paper, we have extended this study to a new family of \(6\)-bridge graph \(\theta(r,r,s,s,t,u)\) where \(2\leq r\leq s \leq t\leq u\) and showed that this family of \(6\)-bridge graph is chromatically unique.

3. Discussion and Main Results

In this section we present our main result on the chromaticity of \(6\)– bridge graph.

Theorem 16. The \(6\)-bridge graph \(\theta (r,r,s,s,t,u)\) where \(r\leq s\leq t\leq u\) is chromatically unique.

Proof. Let \(A\) be the \(6\)-bridge graph of the form \(\theta (r,r,s,s,t,u)\) and \(2\leq r\leq s\leq t\leq u\). By Theorem 2, \(A\) is \(\chi\) unique if \(u < 2r\). Suppose \(r \geq 2\) and \(B \sim A\). We shall solve \(Q(A)= Q(B)\) to get all the solutions. The lowest remaining power (l.r.p) means the lowest remaining power of \(z\) in the expression after simplification and highest remaining power (h.r.p) mean the maximum power of \(z\) in the expression after simplification. By Theorem 8, \(g(A)= g(B)= 2r\) and \(B\) has the same number of shortest cycles as \(A\). Thus, we have \[2r + 2s + t + u = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6}.\tag{3}\]] By Theorem 6 and 7, there are three cases to consider, that are
\(B \in g_{e} (\theta (x_{1},x_{2},x_{3}), C_{x_{4}+1}, C_{x_{5}+1},C_{x_{6}+1})\), where \(2 \leq x_{1}\leq x_{2} \leq x_{3}\) and \(2 \leq x_{4},x_{5},x_{6}\), or
\(B \in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4}), C_{x_{5}+1},C_{x_{6}+1})\) , where \(2 \leq x_{1}\leq x_{2} \leq x_{3} \leq x_{4 }\) and \(2 \leq x_{5},x_{6}\), or
\(B \in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4},x_{5}), C_{x_{6}+1})\) , where \(2 \leq x_{1}\leq x_{2} \leq x_{3} \leq x_{4} \leq x_{5}\) and \(2 \leq x_{6}\).
\(\underline{\mathbf{ Case\ A}}\) \(B \in g_{e} (\theta (x_{1},x_{2},x_{3}), C_{x_{4}+1}, C_{x_{5}+1},C_{x_{6}+1})\) , where \(2 \leq x_{1}\leq x_{2} \leq x_{3}\) and \(2 \leq x_{4},x_{5},x_{6}\).
As \(A \cong \theta (r,r,r,s,t,u)\) and \(B \in g_{e} (\theta (x_{1},x_{2},x_{3}), C_{x_{4}+1}, C_{x_{5}+1},C_{x_{6}+1})\), then by Theorem 7, we have
\(Q(A)= z(z^{r}-1)^{2}(z^{s}-1)^{2}(z^{t}-1)(z^{u}-1)- (z^{r}-z)^{2}(z^{s}-z)^{2}(z^{t}-z)(z^{u}-z)\).
\(Q(B)=z(z^{x_{1}}-1)(z^{x_{2}}-1)(z^{x_{3}}-1)(z^{x_{4}}-1)(z^{x_{5}}-1)(z^{x_{6}}-1)- (z^{x_{1}}-z)(z^{x_{2}}-z)(z^{x_{3}}-z)(z^{x_{4}}-1)(z^{x_{5}}-1)(z^{x_{6}}-1)\).
Let \(Q_1(A)\) is a new polynomial obtained by comparing \(Q(A)= Q(B)\).
\(Q_{1}(A)= z^{2r+2s+1}+z^{2r+t+u+1}+2z^{2r+s+u+1}+2z^{2r+s+t+1}+2z^{2r+u+t+1}+z^{2r+1}+z^{2s+1}+z^{t+u+1}+2z^{s+t+1}+2z^{s+u+1} +2z^{r+s+1}+2z^{r+u+1}+2z^{r+2s+t+1}+2z^{r+2s+u+1}+4z^{r+s+t+u+1}+2z^{s+t+u+3}+2z^{r+t+u+3}+2z^{r+2s+t+u+1}+z^{2r+t+3}+z^{2s+t+3} z^{t+5}+4z^{r+s+t+3}+z^{2r+u+3}+z^{2s+u+3}z^{u+5}+4z^{r+s+u+3}+z^{r+s+3}+z^{r+2s+3}+2z^{s+5}+2z^{r+5}+4z^{r+s+1}-(z^{2r+t+1}+ z^{2r+s+1}+z^{2r+u+1}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+1}+2z^{s+t+u+1}+2z^{r+1}+z^{u+1}+2z^{r+2s+t+u+1}+2z^{r+t+u+1}+4z^{r+s+t+1} +4z^{r+s+u+1}+2z^{r+2s+1}+z^{2r+2s+2}+z^{2r+t+u+2}+z^{2r+4}+2z^{2r+s+t+2}+2z^{2r+s+u+2}+2z^{2r+t+u+2}+z^{2s+4}+z^{t+u+4}+2z^{s+t+4} +2z^{s+u+4}+2z^{r+t+4}+2z^{r+u+4}+2z^{r+2s+t+2}+2z^{r+2s+u+2}+4z^{r+s+t+u+2}+4z^{r+s+4}+z^{6})\).
\(Q_{1}(B)= z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{6}}+ z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+ x_{6}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+1}+ z^{x_{1}+ x_{2}+ x_{3}}+ z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{1}+ x_{4}+ x_{5}+ 2}+ z^{x_{1}+ x_{4}+ x_{6}+ 2}+ z^{x_{1}+ x_{5}+ x_{6}+ 2}+ z^{x_{1}+ x_{4}+1}+ z^{x_{1}+ x_{5}+1}+ z^{x_{1}+ x_{6}+1}+ z^{x_{1}+ 2}+ z^{x_{2}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{2}+x_{4}+ x_{5}+ 2}+ z^{x_{2}+x_{4}+ x_{6}+ 2}+ z^{x_{2}+x_{4}+1}+ z^{x_{2}+ x_{5}+ x_{6}+ 2}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+ x_{6}+1}+ z^{x_{2}+ 2}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ x_{6}+ 2}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ x_{6}+ 2}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 2}+ z^{x_{4}+x_{5}+ x_{6}+ 3}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+ x_{6}+1}+ z^{x_{4}+3}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+3}+ z^{x_{6}+3}- ( z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{6}+1}+ z^{x_{1}+ x_{2}+ x_{3}+ x_{4}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+ x_{6}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}}+ z^{x_{1}+ x_{2}+ x_{3}+1}+ z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{1}+ x_{4}+ x_{5}+ 1}+ z^{x_{1}+ x_{4}+ x_{6}+ 1}+ z^{x_{1}+ x_{5}+ x_{6}+ 1}+ z^{x_{1}+ x_{4}+2}+ z^{x_{1}+ x_{5}+2}+ z^{x_{1}+ x_{6}+2}+ z^{x_{1}+1}+ z^{x_{2}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{2}+x_{4}+ x_{5}+ 1}+ z^{x_{2}+x_{4}+ x_{6}+ 1}+ z^{x_{2}+x_{4}+2}+ z^{x_{2}+ x_{5}+ x_{6}+ 2}+ z^{x_{2}+ x_{5}+2}+ z^{x_{2}+ x_{6}+2}+ z^{x_{2}+ 1}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+ x_{6}+ 1}+ z^{x_{3}+x_{4}+2}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+2}+z^{x_{3}+ x_{6}+2}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+ x_{6}+ 1}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+ x_{6}+3}+ z^{x_{4}+1}+ z^{x_{5}+ x_{6}+3}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{3} )\).
Compare the l.r.p in \(Q_{1}(A)\) and the l.r.p in \(Q_{1}(B)\). Thus, \(r = 2\). Therefore, \(g(A)= g(B)= 2r\) = \(4\). Since \(A\) has one cycle of length four, therefore \(B\) has one cycle of length \(4\). Without loss of generality, we have four cases to consider.
1. \(x_{4}= x_{5}= x_{6}= 3\) or
2. \(x_{4}= x_{5}= 3 , x_{6} \neq 3\) or
3. \(x_{4}= 3 , x_{5} \neq 3 ,x_{6} \neq 3\) or
4. \(x_{4}\neq 3 , x_{5} \neq 3 ,x_{6} \neq 3\).
\(\underline{\mathbf{Case\ 1}:}\) \(x_{4}= x_{5}= x_{6}= 3\).
Therefore, \(B\) has at least three cycles of length \(4\). While \(A\) has one cycle of the same length, by Theorem 8 a contradiction.
\(\underline{\mathbf{Case\ 2}:}\) \(x_{4}= x_{5}=3\), \(x_{6}\neq 3\)
Therefore, \(B\) has at least two cycles of length \(4\). While \(A\) has one cycle of the same length, by Theorem 8 this is a contradiction.
\(\underline{\mathbf{Case\ 3}:}\) \(x_{4}=3\), \(x_{5}\neq3\), \(x_{6}\neq 3\) \[2s + t + u + 1 = x_{1} + x_{2} + x_{3} + x_{5} + x_{6}.\tag{4}\]
\(Q_{2}(A)=3z^{2s+5}+3z^{t+u+5}+6z^{s+u+5}+6z^{s+t+5}+z^{t+u+1}+z^{2s+1} +2z^{s+t+1}+2z^{s+u+1}+3z^{2s+u+3}+3z^{2s+t+3}+2z^{t+3}+2z^{u+3}+4z^{s+3}+6z^{s+t+u+3}+z^{t+7}+z^{u+7}+2z^{7}+z^{5} -(z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+1}+2z^{s+t+u+1}+2z^{t+u+3}+4z^{s+t+3}+4z^{s+u+3}+z^{u+1}+2z^{2s+3}+z^{2s+6}+z^{t+u+6}+2z^{s+t+6} +2z^{s+u+6}+z^{2s+4}+z^{t+u+4}+2z^{s+t+4}+2z^{s+u+4}+2z^{2s+t+4}+2z^{2s+u+4}+2z^{t+6}+2z^{u+6}+4z^{s+6}+4z^{s+t+u+3}+z^{8}+z^{6})\).
\(Q_{2}(B)= z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+3} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+3}+ z^{x_{1}+ x_{2}+ x_{3}+4} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+ x_{6}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+1}+ z^{x_{1}+ x_{2}+ x_{3}}+ z^{x_{1}+ x_{5}+ x_{6}+4}+ z^{x_{1}+ x_{5}+ 5}+ z^{x_{1}+ x_{6}+ 5}+ z^{x_{1}+ x_{5}+ x_{6}+ 2}+ z^{x_{1}+4}+ z^{x_{1}+ x_{5}+1}+ z^{x_{1}+ x_{6}+1}+ z^{x_{1}+ 2}+ z^{x_{2}+ x_{5}+ x_{6}+4}+ z^{x_{2}+x_{5}+5}+ z^{x_{2}+ x_{6}+ 5}+ z^{x_{2}+4}+ z^{x_{2}+ x_{5}+ x_{6}+ 2}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+ x_{6}+1}+ z^{x_{2}+ 2}+ z^{x_{3}+ x_{5}+ x_{6}+4}+ z^{x_{3}+ x_{5}+ 5}+ z^{x_{3}+ x_{6}+ 5}+ z^{x_{3}+4}+ z^{x_{3}+ x_{5}+ x_{6}+ 2}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 2}+ z^{x_{5}+ x_{6}+ 5}+ z^{x_{5}+4}+ z^{x_{6}+4}+ z^{6}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+3}+ z^{x_{6}+3}- ( z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+4} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+4}+ z^{x_{1}+ x_{2}+ x_{3}+3} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+ x_{6}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}}+ z^{x_{1}+ x_{2}+ x_{3}+1}+ z^{x_{1}+ x_{5}+ x_{6}+5}+ z^{x_{1}+ x_{5}+ 4}+ z^{x_{1}+ x_{6}+ 4}+ z^{x_{1}+ x_{5}+ x_{6}+ 1}+ z^{x_{1}+5}+ z^{x_{1}+ x_{5}+2}+ z^{x_{1}+ x_{6}+2}+ z^{x_{1}+1}+ z^{x_{2}+ x_{5}+ x_{6}+5}+ z^{x_{2}+x_{5}+4}+ z^{x_{2}+ x_{6}+ 4}+ z^{x_{2}+5}+ z^{x_{2}+ x_{5}+ x_{6}+ 2}+ z^{x_{2}+ x_{5}+2}+ z^{x_{2}+ x_{6}+2}+ z^{x_{2}+ 1}+ z^{x_{3} x_{5}+ x_{6}+5}+ z^{x_{3}+ x_{5}+ 4}+ z^{x_{3}+ x_{6}+ 4}+ z^{x_{3}+5}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+2}+z^{x_{3}+ x_{6}+2}+ z^{x_{3}+ 1}+ z^{x_{5}+ x_{6}+ 4}+ z^{ x_{5}+6}+ z^{ x_{6}+6}+ z^{4}+ z^{x_{5}+ x_{6}+3}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{3} )\).
Compare the l.r.p in \(Q_{2}(A)\) and the l.r.p in \(Q_{2}(B)\). We have \(x_{1}= 2\) or \(x_{2}= 2\) or \(x_{3}= 2\)
\(\underline{\mathbf{Case\ 3.1}:}\) \(x_{1}=2\). Then \(2\leq x_{2}\leq x_{3}\).
\(Q_{3}(B)= z^{x_{2}+x_{3}+x_{5}+5}+z^{x_{2}+x_{3}+x_{6}+5}+z^{x_{2}+x_{3}+6}+z^{x_{2}+x_{3}+x_{5}+3}+z^{x_{2}+x_{3}+x_{6}+3} +z^{x_{2}+x_{3}+2}+z^{x_{5}+x_{6}+6}+z^{x_{5}+7}+z^{x_{6}+7}+z^{6} +z^{x_{5}+x_{6}+4}+z^{x_{5}+3}+z^{x_{6}+3}+z^{x_{2}+x_{5}+x_{6}+4}+z^{x_{2}+x_{5}+5}+z^{x_{2}+x_{6}+5} +z^{x_{2}+4}+z^{x_{2}+x_{5}+x_{6}+2}+z^{x_{2}+x_{5}+1}+z^{x_{2}+x_{6}+1}+z^{x_{2}+2}+z^{x_{3}+x_{5}+x_{6}+4}+z^{x_{3}+x_{5}+5} +z^{x_{3}+x_{6}+5}+z^{x_{3}+4}+z^{x_{3}+x_{5}+x_{6}+2}+z^{x_{3}+x_{5}+1}+z^{x_{3}+x_{6}+1}+z^{x_{3}+2}+z^{x_{5}+x_{6}+6} +z^{x_{5}+4}+z^{x_{6}+4}+z^{6}+z^{x_{5}+x_{6}+1}+z^{x_{5}+3}+z^{x_{6}+3}- (z^{x_{2}+x_{3}+x_{5}+6}+z^{x_{2}+x_{3}+x_{6} +6}+z^{x_{2}+x_{3}+5}+z^{x_{2}+x_{3}+x_{5}+2}+z^{x_{2}+x_{3}+x_{6}+2} +z^{x_{2}+x_{3}+3}+z^{x_{5}+x_{6}+7}+z^{x_{5}+6}+z^{x_{6}+6}+z^{7} +z^{x_{5}+x_{6}+3}+z^{x_{5}+4}+z^{x_{6}+4}+z^{x_{2}+x_{5}+x_{6}+5}+z^{x_{2}+x_{5}+4}+z^{x_{2}+x_{6}+4}+z^{x_{2}+5} +z^{x_{2}+x_{5}+x_{6}+1}+z^{x_{2}+x_{5}+2}+z^{x_{2}+x_{6}+2}+z^{x_{2}+1}+z^{x_{3}+x_{5}+x_{6}+5}+z^{x_{3}+x_{5}+4} +z^{x_{3}+x_{6}+4}+z^{x_{3}+5}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{5}+2}+z^{x_{3}+x_{6}+2}+z^{x_{3}+1}+z^{x_{5}+x_{6}+4} +z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{5}+x_{6}+3}+z^{x_{5}+1}+z^{x_{6}+1})\).
Consider the l.r.p in \(Q_{2}(A)\) and the l.r.p in \(Q_{3}(B)\), we have \(s = 4\) or \(t = 4\) or \(u = 4\).
\(\underline{\mathbf{Case\ 3.1.1}:}\)
\(s = 4\).
Since the coefficient of \(-z^{s+1}\) in \(Q_{2}(A)\) is \(2\), then there shall have one \(-x^{5}\) in \(Q_{3}(B)\). Hence, we have to consider for \(x_{2}= 4\) or \(x_{3}= 4\) or \(x_{5}= 4\) or \(x_{6}= 4\).
\(\underline{\mathbf{Case\ 3.1.1.1}:}\) \(x_{2}=4\).
\(Q_{3}(A)=5z^{t+9}+2z^{t+5}+3z^{t+11}+2z^{t+3}+5z^{u+9}+2z^{u+5}+3z^{u+11}+2z^{u+3}+z^{t+u+5}+3z^{13}+6z^{7}+z^{9}- (z^{t+1}+3z^{t+7}+2z^{t+10}+2z^{t+8}+2z^{t+12}+2z^{t+6}+z^{u+1}+3z^{u+7}+2z^{u+10}+2z^{u+8}+2z^{u+12}+2z^{u+6}+2z^{t+u+3}+z^{t+u+6}+z^{t+u+4}+2z^{t+u+7} +4z^{10}+2z^{14}+2z^{11}+z^{12}+z^{8}+z^{6})\).
\(Q_{4}(B)= z^{x_{3}+x_{5}+9}+z^{x_{3}+x_{6}+9}+z^{x_{3}+10}+z^{x_{3}+x_{5}+7}+z^{x_{3}+x_{6}+7} +z^{x_{3}+6}+z^{x_{5}+x_{6}+6}+z^{x_{5}+7}+z^{x_{6}+7}+3z^{6} +z^{x_{5}+x_{6}+4}+z^{x_{5}+3}+z^{x_{6}+3}+z^{x_{5}+x_{6}+8}+z^{x_{5}+9}+z^{x_{2}+x_{6}+9} +z^{8}+z^{x_{5}+x_{6}+6}+z^{x_{5}+5}+z^{x_{6}+5}+z^{x_{3}+x_{5}+x_{6}+4}+z^{x_{3}+x_{5}+5} +z^{x_{3}+x_{6}+5}+z^{x_{3}+4}+z^{x_{3}+x_{5}+x_{6}+2}+z^{x_{3}+x_{5}+1}+z^{x_{3}+x_{6}+1}+z^{x_{3}+2}+z^{x_{5}+x_{6}+6} +z^{x_{5}+4}+z^{x_{6}+4}+z^{x_{5}+x_{6}+1}+z^{x_{5}+3}+z^{x_{6}+3}- (z^{x_{3}+x_{5}+10}+z^{x_{3}+x_{6} +10}+z^{x_{3}+9}+z^{x_{3}+x_{5}+6}+z^{x_{3}+x_{6}+6} +z^{x_{3}+7}+z^{x_{5}+x_{6}+7}+z^{x_{5}+6}+z^{x_{6}+6}+z^{7} +z^{x_{5}+x_{6}+3}+z^{x_{5}+4}+z^{x_{6}+4}+z^{x_{5}+x_{6}+9}+z^{x_{5}+8}+z^{x_{6}+8}+z^{9} +z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{3}+x_{5}+x_{6}+5}+z^{x_{3}+x_{5}+4} +z^{x_{3}+x_{6}+4}+z^{x_{3}+5}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{5}+2}+z^{x_{3}+x_{6}+2}+z^{x_{3}+1}+z^{x_{5}+x_{6}+4} +z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{5}+x_{6}+3}+z^{x_{5}+1}+z^{x_{6}+1})\).
Consider the l.r.p in \(Q_{3}(A)\) and the l.r.p in \(Q_{4}(B)\), we have\(x_{3}=x_{5}=x_{6}=5\).
\(Q_{5}(B)=2z^{19}+2z^{17}+z^{18}+3z^{15}+z^{10}+5z^{8}+z^{6}-(3z^{20}+z^{14}+z^{12}+2z^{11}+4z^{13})\)
\(Q_{3}(A)\neq Q_{5}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.1.2}:}\) \(x_{3}=4\).
\(Q_{6}(B)=z^{x_{2}+x_{5}+9}+z^{x_{2}+x_{6}+9}+z^{x_{2}+10}+z^{x_{2}+x_{5}+7}+z^{x_{2}+x_{6}+7} +z^{x_{2}+6}+z^{x_{5}+x_{6}+6}+z^{x_{5}+7}+z^{x_{6}+7}+3z^{6} +z^{x_{5}+x_{6}+4}+z^{x_{5}+3}+z^{x_{6}+3}+z^{x_{2}+x_{5}+x_{6}+4}+z^{x_{2}+x_{5}+5}+z^{x_{2}+x_{6}+5} +z^{x_{2}+4}+z^{x_{2}+x_{5}+x_{6}+2}+z^{x_{2}+x_{5}+1}+z^{x_{2}+x_{6}+1}+z^{x_{2}+2}+z^{x_{5}+x_{6}+8}+z^{x_{5}+9} +z^{x_{6}+9}+z^{9}+z^{x_{5}+x_{6}+6}+z^{x_{5}+5}+z^{x_{6}+5}+z^{x_{5}+x_{6}+6} +z^{x_{5}+4}+z^{x_{6}+4}z^{x_{5}+x_{6}+1}+z^{x_{5}+3}+z^{x_{6}+3}- (z^{x_{2}+x_{5}+10}+z^{x_{2}+x_{6} +10}+z^{x_{2}+9}+z^{x_{2}+x_{5}+6}+z^{x_{2}+x_{6}+6} +z^{x_{2}+7}+z^{x_{5}+x_{6}+7}+z^{x_{5}+6}+z^{x_{6}+6}+z^{7} +z^{x_{5}+x_{6}+3}+z^{x_{5}+4}+z^{x_{6}+4}+z^{x_{2}+x_{5}+x_{6}+5}+z^{x_{2}+x_{5}+4}+z^{x_{2}+x_{6}+4}+z^{x_{2}+5} +z^{x_{2}+x_{5}+x_{6}+1}+z^{x_{2}+x_{5}+2}+z^{x_{2}+x_{6}+2}+z^{x_{2}+1}+z^{x_{3}+x_{5}+x_{6}+5}+z^{x_{3}+x_{5}+4} +z^{x_{6}+8}+z^{9}+z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{5}+x_{6}+4} +z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{5}+x_{6}+3}+z^{x_{5}+1}+z^{x_{6}+1})\).
Consider the l.r.p in \(Q_{3}(A)\) is \(-z^{6}\) and the l.r.p in \(Q_{6}(B)\) is \(3z^{6}\), since \(2 \leq x_{2}\leq 4\) and \(x_{5},x_{6}\geq 4\)
\(Q_{3}(A)\neq Q_{6}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.1.3}:}\) \(x_{5}=4\).
\(Q_{7}(B)= z^{x_{2}+x_{3}+9}+z^{x_{2}x_{6}+9}+z^{x_{2}+x_{3}+6}+z^{x_{2}+x_{3}+8}+z^{x_{2}+x_{3}+x_{6}+3} +z^{x_{2}+x_{3}+2}+z^{x_{6}+10}+z^{11}+z^{x_{6}+7}+2z^{6} +z^{x_{6}+10}+z^{7}+z^{x_{6}+3}+z^{x_{2}+x_{6}+8}+z^{x_{2}+9}+z^{x_{2}+x_{6}+5} +z^{x_{2}+4} +z^{x_{2}+x_{6}+6}+z^{x_{2}+5}+z^{x_{2}+x_{6}+1}+z^{x_{2}+2}+z^{x_{3}+x_{6}+8}+z^{x_{3}+9} +z^{x_{3}+x_{6}+5}+z^{x_{3}+4}+z^{x_{3}+x_{6}+6}+z^{x_{3}+5}+z^{x_{3}+x_{6}+1}+z^{x_{3}+2}+z^{x_{6}+10} +z^{x_{6}+4}+z^{x_{6}+5}+z^{7}+z^{x_{6}+3}- (z^{x_{2}+x_{3}+10}+z^{x_{2}+x_{3}+x_{6} +6}+z^{x_{2}+x_{3}+5}+z^{x_{2}+x_{3}+6}+z^{x_{2}+x_{3}+x_{6}+2} +z^{x_{2}+x_{3}+3}+z^{x_{6}+11}+z^{10}+z^{x_{6}+6}+z^{7} +z^{x_{6}+7}+z^{x_{6}+4}+z^{x_{2}+x_{6}+9}+z^{x_{2}+8}+z^{x_{2}+x_{6}+4}+z^{x_{2}+5} +z^{x_{2}+x_{6}+5}+z^{x_{2}+6}+z^{x_{2}+x_{6}+2}+z^{x_{2}+1}+z^{x_{3}+x_{6}+9}+z^{x_{3}+8} +z^{x_{3}+x_{6}+4}+z^{x_{3}+5}+z^{x_{3}+x_{6}+5}+z^{x_{3}+6}+z^{x_{3}+x_{6}+2}+z^{x_{3}+1}+z^{x_{6}+8} +z^{10}+z^{x_{6}+6}+z^{x_{6}+7}+z^{x_{6}+1})\).
Consider the l.r.p in \(Q_{3}(A)\) and the l.r.p in \(Q_{7}(B)\), we have \(x_{2}=x_{3}=x_{6}=5\).
\(Q_{4}(A)=5z^{t+9}+2z^{t+5}+3z^{t+11}+2z^{t+3}+5z^{u+9}+2z^{u+5}+3z^{u+11}+2z^{u+3}+z^{t+u+5}+3z^{13}+6z^{7}+z^{9}- (z^{t+1}+3z^{t+7}+2z^{t+10}+2z^{t+8}+2z^{t+12}+2z^{t+6}+z^{u+1}+3z^{u+7}+2z^{u+10}+2z^{u+8}+2z^{u+12}+2z^{u+6}+2z^{t+u+3}+z^{t+u+6}+z^{t+u+4}+2z^{t+u+7} +4z^{10}+2z^{14}+2z^{11}+z^{12}+z^{8})\).
\(Q_{8}(B)=3z^{18}+z^{15}+z^{17}+z^{16}+3z^{7}+2z^{9}+2z^{8}-(z^{21}+z^{11}+4z^{12}+3z^{13}+z^{19})\).
Compare the l.r.p in \(Q_{4}(A)\) and the l.r.p in \(Q_{8}(B)\), we have
\(Q_{4}(A)\neq Q_{8}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.1.4}:}\) \(x_{6}=4\).
Similar to Case 3.1.1.3, we obtain a contradiction.
\(\underline{\mathbf{Case\ 3.1.2}:}\) \(t = 4\).
Therefore \(s = 2\) or \(s = 3\) or \(s = 4\)
If \(s = 2\), \(A \cong\theta(2,2,2,2,4,u)\) implies \(A\) is \(\chi\)-unique by Lemma 15.
If \(s = 4\), \(A\cong\theta(2,2,4,4,4,u)\) implies \(A\) is \(\chi\)-unique by Lemma 14.
If \(s = 3\).
\(Q_{5}(A)=6z^{u+9}+3z^{u+8}+z^{u+11}+z^{u+5}+2z^{u+4}+2z^{u+3}+3z^{13}+6z^{12}+4z^{11}+5z^{7}+4z^{6}-( 2z^{u+7}+4z^{u+6}+z^{u+1}+z^{u+10}+2z^{u+7}+2z^{u+6}+z^{11}+6z^{9}+7z^{10}+2z^{4}+z^{12}+2z^{14}+2z^{11}+z^{6})\).
\(Q_{9}(B)= z^{x_{2}+x_{3}+x_{5}+5}+z^{x_{2}+x_{3}+x_{6}+5}+z^{x_{2}+x_{3}+6}+z^{x_{2}+x_{3}+x_{5}+3}+z^{x_{2}+x_{3}+x_{6}+3} +z^{x_{2}+x_{3}+2}+z^{x_{5}+x_{6}+6}+z^{x_{5}+7}+z^{x_{6}+7}+z^{6} +z^{x_{5}+x_{6}+4}+z^{x_{5}+3}+z^{x_{6}+3}+z^{x_{2}+x_{5}+x_{6}+4}+z^{x_{2}+x_{5}+5}+z^{x_{2}+x_{6}+5} +z^{x_{2}+4}+z^{x_{2}+x_{5}+x_{6}+2}+z^{x_{2}+x_{5}+1}+z^{x_{2}+x_{6}+1}+z^{x_{2}+2}+z^{x_{3}+x_{5}+x_{6}+4}+z^{x_{3}+x_{5}+5} +z^{x_{3}+x_{6}+5}+z^{x_{3}+4}+z^{x_{3}+x_{5}+x_{6}+2}+z^{x_{3}+x_{5}+1}+z^{x_{3}+x_{6}+1}+z^{x_{3}+2}+z^{x_{5}+x_{6}+6} +z^{x_{5}+4}+z^{x_{6}+4}+z^{6}+z^{x_{5}+x_{6}+1}+z^{x_{5}+3}+z^{x_{6}+3}- (z^{x_{2}+x_{3}+x_{5}+6}+z^{x_{2}+x_{3}+x_{6} +6}+z^{x_{2}+x_{3}+5}+z^{x_{2}+x_{3}+x_{5}+2}+z^{x_{2}+x_{3}+x_{6}+2} +z^{x_{2}+x_{3}+3}+z^{x_{5}+x_{6}+7}+z^{x_{5}+6}+z^{x_{6}+6}+z^{7} +z^{x_{5}+x_{6}+3}+z^{x_{5}+4}+z^{x_{6}+4}+z^{x_{2}+x_{5}+x_{6}+5}+z^{x_{2}+x_{5}+4}+z^{x_{2}+x_{6}+4}+z^{x_{2}+5} +z^{x_{2}+x_{5}+x_{6}+1}+z^{x_{2}+x_{5}+2}+z^{x_{2}+x_{6}+2}+z^{x_{2}+1}+z^{x_{3}+x_{5}+x_{6}+5}+z^{x_{3}+x_{5}+4} +z^{x_{3}+x_{6}+4}+z^{x_{3}+5}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{5}+2}+z^{x_{3}+x_{6}+2}+z^{x_{3}+1}+z^{x_{5}+x_{6}+4} +z^{x_{5}+6}+z^{x_{6}+6}+z^{x_{5}+x_{6}+3}+z^{x_{5}+1}+z^{x_{6}+1})\).
Compare the l.r.p in \(Q_{5}(A)\) and the l.r.p in \(Q_{9}(B)\), we have \(x_{2}= x_{3}=3\).
\(Q_{6}(A)=6z^{u+9}+3z^{u+8}+z^{u+11}+z^{u+5}+2z^{u+4}+2z^{u+3}+3z^{13}+6z^{12}+4z^{11}+5z^{7}+z^{6}-( 2z^{u+7}+4z^{u+6}+z^{u+1}+z^{u+10}+2z^{u+7}+2z^{u+6}+z^{11}+6z^{9}+7z^{10}+z^{12}+2z^{14}+2z^{11})\).
\(Q_{10}(B)=z^{x_{5}+x_{6}+6}+z^{x_{5}+x_{6}+4}+2z^{x_{5}+x_{6}+7}+2z^{x_{5}+x_{6}+5}+z^{x_{5}+x_{6}+6}+z^{x_{5}+x_{6}+1} +z^{x_{5}+11} +z^{x_{5}+9}+2z^{x_{5}+3}+2z^{x_{5}+8} +2z^{x_{5}+4}+z^{x_{6}+11} +z^{x_{6}+9}+2z^{x_{6}+3}+2z^{x_{6}+8} +2z^{x_{6}+4}+z^{12}+2z^{7}+2z^{5}-(2z^{x_{5}+x_{6}+8}+2z^{x_{5}+x_{6}+3}+2z^{x_{5}+x_{6}+7}+3z^{x_{5}+x_{6}+4}+ +z^{x_{5}+12} +2z^{x_{5}+6}+2z^{x_{5}+5}+z^{x_{5}+8} +z^{x_{5}+7}+z^{x_{5}+1}+z^{x_{6}+12} +z^{x_{6}+8}+2z^{x_{6}+5} +2z^{x_{6}+7}+z^{x_{6}+6}+z^{x_{6}+1}+z^{11}+z^{9}+z^{7}+z^{8})\).
Compare the l.r.p in \(Q_{6}(A)\) and the l.r.p in \(Q_{10}(B)\), we have u = 5, \(x_{5}= x_{6}=4\).
\(Q_{7}(A)=z^{16}+4z^{14}+4z^{13}+z^{12}+2z^{9}+3z^{8}-(5z^{11}+z^{15}+6z^{10}+6z^{9}+2z^{14})\)
\(Q_{11}(B)=4z^{15}+2z^{14}+4z^{13}+6z^{12}-(4z^{16}+2z^{15}+6z^{11}+5z^{12}+3z^{10}+z^{8})\)
Compare the l.r.p in \(Q_{7}(A)\) and the l.r.p in \(Q_{11}(B)\), we have
\(Q_{7}(A)\neq Q_{11}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.3}:}\) \(u=4\).
Therefore, we have \(2\leq s\leq t\leq 4\).
If \(s = 2\), then \(t = 2\) or \(t = 3\) or \(t = 4\)
\(s = 2\), \(t = 2\), \(A\cong\theta(2,2,2,2,2,4)\), \(A\) is \(\chi\)-unique, by Lemma 9.
\(s = 2\), \(t = 3\), \(A\cong\theta(2,2,2,2,3,4)\), \(A\) is \(\chi\)-unique by Lemma 15.
\(s = 2\), \(t = 4\), \(A\cong\theta(2,2,2,2,4,4)\), \(A\) is \(\chi\)-unique, by Lemma 9.
If \(s = 3\),
\(s = 3\), \(t = 3\), \(A\cong\theta(2,2,3,3,3,4)\), \(A\) is \(\chi\)-unique, by Lemma 14.
\(s = 3\), \(t = 4\), \(A\cong\theta(2,2,3,3,4,4)\), \(A\) is \(\chi\)-unique, by Lemma 13.
If \(s = 4\)
\(s = 4\), \(t = 4\), \(A\cong\theta(2,2,4,4,4,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(\underline{\mathbf{Case\ 3.2}:}\) \(x_{2}=2\).
Then \(x_{1}=2\). Hence \(B\) has at least two cycles of length \(4\), a contradiction.
\(\underline{\mathbf{Case\ 3.3}:}\) \(x_{3}=2\). Then \(x_{1}=x_{2}=2\). Hence \(B\) has at least four cycles of length \(4\), a contradiction.
\(\underline{\mathbf{Case\ 4}:}\) \(x_{4}\neq 3, x_{5}\neq 3, x_{6}\neq 3\)
We know that \(x_{4}, x_{5}, x_{6} >3\). Given that \(B\) shall has one cycle of length \(4\), then \(x_{1}+x_{2}= 4\), \(x_{1}=x_{2}= 2\).
Then \(s = 2\) or \(t = 2\) or \(u = 2\) .
If \(s = 2\), \(A\cong\theta(2,2,2,2,t,u)\), \(A\) is \(\chi\)-unique by Lemma 15.
If \(t = 2\), \(A\cong\theta(2,2,2,2,2,u)\), \(A\) is \(\chi\)-unique, by Lemma 9.
If \(u = 2\), \(A\cong\theta(2,2,2,2,2,2)\), \(A\) is \(\chi\)-unique, by Theorem 1.
\(\underline{\mathbf{Case\ B}:}\) \(B \in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4}), C_{x_{5}+1},C_{x_{6}+1})\), where \(2 \leq x_{1}\leq x_{2} \leq x_{3} \leq x_{4 }\) and \(2 \leq x_{5},x_{6}\).
As \(A\) \(\cong \theta(r,r,s,s,t,u)\) and \(B\) \(\in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4}), C_{x_{5}+1},C_{x_{6}+1})\), then by Theorem 1, we have
\(Q_{8}(A)\)= \(z(z^{r}-1)^{2}(z^{s}-1)^{2}(z^{t}-1)(z^{u}-1)- (z^{r}-z)^{2}(z^{s}-z)^{2}(z^{t}-z)(z^{u}-z)\).
\(Q_{12}(B)\)= \(z(z^{x_{1}}-1)(z^{x_{2}}-1)(z^{x_{3}}-1)(z^{x_{4}}-1)(z^{x_{5}}-1)(z^{x_{6}}-1)- (z^{x_{1}}-z)(z^{x_{2}}-z)(z^{x_{3}}-z)(z^{x_{4}}-z)(z^{x_{5}}-1)(z^{x_{6}}-1)\).
\(Q_{8}(A)= Q_{12}(B)\), yields
\(Q_{9}(A)= z^{2r+2s+1}+z^{2r+t+u+1}+2z^{2r+s+u+1}+2z^{2r+s+t+1}+2z^{2r+u+t+1}+z^{2r+1}+z^{2s+1}+z^{t+u+1}+2z^{s+t+1}+2z^{s+u+1} +2z^{r+s+1}+2z^{r+u+1}+2z^{r+2s+t+1}+2z^{r+2s+u+1}+4z^{r+s+t+u+1}+2z^{s+t+u+3}+2z^{r+t+u+3}+2z^{r+2s+t+u+1}+z^{2r+t+3}+z^{2s+t+3} z^{t+5}+4z^{r+s+t+3}+z^{2r+u+3}+z^{2s+u+3}z^{u+5}+4z^{r+s+u+3}+z^{r+s+3}+z^{r+2s+3}+2z^{s+5}+2z^{r+5}+4z^{r+s+1}-(z^{2r+t+1}+ z^{2r+s+1}+z^{2r+u+1}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+1}+2z^{s+t+u+1}+2z^{r+1}+z^{u+1}+2z^{r+2s+t+u+1}+2z^{r+t+u+1}+4z^{r+s+t+1} +4z^{r+s+u+1}+2z^{r+2s+1}+z^{2r+2s+2}+z^{2r+t+u+2}+z^{2r+4}+2z^{2r+s+t+2}+2z^{2r+s+u+2}+2z^{2r+t+u+2}+z^{2s+4}+z^{t+u+4}+2z^{s+t+4} +2z^{s+u+4}+2z^{r+t+4}+2z^{r+u+4}+2z^{r+2s+t+2}+2z^{r+2s+u+2}+4z^{r+s+t+u+2}+4z^{r+s+4}+z^{6})\).
\(Q_{13}(B)= z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{6}}+ z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+1} + z^{x_{1}+ x_{2}+ x_{5}+ x_{6}+1} + z^{x_{1}+ x_{2}+ x_{5}+2} + z^{x_{1}+ x_{2}+ x_{6}+2}+ z^{x_{1}+ x_{2}+1}+ z^{x_{1}+ x_{3}+ x_{5}+ x_{6}+1}+ z^{x_{1}+ x_{3}+ x_{5}+ 2}+ z^{x_{1}+ x_{3}+ x_{6}+ 2}+ z^{x_{1}+ x_{3}+ 1}+ z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{1}+ x_{4}+ x_{5}+ 2}+ z^{x_{1}+ x_{4}+ x_{6}+ 2}+ z^{x_{1}+ x_{4}+ 1}+ z^{x_{1}+ x_{5}+ x_{6}+ 3}+ z^{x_{1}+ x_{5}+1}+ z^{x_{1}+ x_{6}+1}+ z^{x_{1}+ 3}+ z^{x_{2}+ x_{3}+ x_{5}+ x_{6}+1}+ z^{x_{2}+x_{3}+ x_{5}+ 2}+ z^{x_{2}+x_{3}+x_{6}+2}+z^{x_{2}+ x_{3}+ 1}+ z^{x_{2}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{2}+x_{4}+ x_{5}+ 2}+ z^{x_{2}+x_{4}+ x_{6}+ 2}+ z^{x_{2}+x_{4}+1}+ z^{x_{2}+ x_{5}+ x_{6}+ 3}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+ x_{6}+1}+ z^{x_{2}+ 3}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ x_{6}+ 2}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ x_{6}+ 2}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 3}+ z^{x_{4}+x_{5}+ x_{6}+ 3}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+ x_{6}+1}+ z^{x_{4}+3}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+4}+ z^{x_{6}+4}- ( z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{6}+1}+ z^{x_{1}+ x_{2}+ x_{3}+ x_{4}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{5}+ x_{6}+2} + z^{x_{1}+ x_{2}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{6}+1}+ z^{x_{1}+ x_{2}+2}+ z^{x_{1}+ x_{3}+ x_{5}+ x_{6}+2}+ z^{x_{1}+ x_{3}+ x_{5}+ 1}+ z^{x_{1}+ x_{3}+ x_{6}+ 1}++ z^{x_{1}+ x_{3}+2} +z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{1}+ x_{4}+ x_{5}+ 1}+ z^{x_{1}+ x_{4}+ x_{6}+ 1}+ z^{x_{1}+ x_{5}+ x_{6}+ 1}+ z^{x_{1}+ x_{4}+2}+ z^{x_{1}+ x_{5}+3}+ z^{x_{1}+ x_{6}+3}+ z^{x_{1}+1}+z^{x_{2}+ x_{3}+ x_{5}+ x_{6}+2}+ z^{x_{2}+x_{3}+ x_{5}+ 1}+ z^{x_{2}+x_{3}+ x_{6}+ 1}+ z^{x_{2}+x_{3}+2}+ z^{x_{2}+x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{2}+x_{4}+ x_{5}+ 1}+ z^{x_{2}+x_{4}+ x_{6}+ 1}+ z^{x_{2}+x_{4}+2}+ z^{x_{2}+ x_{5}+ x_{6}+ 1}+ z^{x_{2}+ x_{5}+3}+ z^{x_{2}+ x_{6}+3}+ z^{x_{2}+ 1}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+ x_{6}+ 1}+ z^{x_{3}+x_{4}+2}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+ x_{6}+3}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+ x_{6}+ 1}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+ x_{6}+3}+ z^{x_{4}+1}+ z^{x_{5}+ x_{6}+4}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{4} )\).
Since \(2\leq r\leq s\leq t\leq u\). Therefore, by comparing the l.r.p in \(Q_{9}(A)\) and the l.r.p in \(Q_{13}(B)\), we have \(r =2\) or \(r = 3\).
\(\underline{\mathbf{Case\ 1}:}\) \(r = 2\)
Then \(g(A)= g(B)= 2r =4\). Since \(A\) has one cycle of length four, therefore \(B\) has one cycle of length \(4\). Without loss of generality, we have three cases to consider ,
1. \(x_{5}= x_{6}= 3\) or
2. \(x_{5}= 3 , x_{6} \neq 3\) or
3. \(x_{5} \neq 3 ,x_{6} \neq 3\)
\(\underline{\mathbf{Case\ 1.1}:}\) \(x_{5}= x_{6}= 3\).
Since \(B\) has at least two cycles of length \(4\), a contradiction.
\(\underline{\mathbf{Case\ 1.2}:}\) \(x_{5}= 3\), \(x_{6}\neq 3\)
We know that \(x_{6} > 3\). Substituting into \(Q_{9}(A)\) and \(Q_{13}(B)\). We obtain that there is \(-2z^{3}\) in \(Q_{9}(A)\). Hence there are six cases to be considered, that are \(x_{1}=x_{2}=2\) or \(x_{1}=x_{3}=2\) or \(x_{1}=x_{4}=2\) or \(x_{2}=x_{3}=2\) or \(x_{3}=x_{4}=2\) or \(x_{2}=x_{4}=2\).
For \(x_{1}=x_{2}=2\), \(B\) has at least two cycles of length \(4\), a contradiction. \(B\) has at least three cycles of length \(4\) for all other cases. Thus, a contradiction.
\(\underline{\mathbf{Case\ 1.3}:}\) \(2\leq x_{5}\leq x_{6}\)
We know that \(x_{5}, x_{6} > 3\). Hence \(x_{1}+x_{2}=4\), implying \(x_{1}=x_{2}=2\).
Considering the l.r.p in \(Q_{9}(A)\) and the l.r.p in \(Q_{13}(B)\), we have \(s = 3\) or \(t = 3\) or \(u = 3\).
\(\underline{\mathbf{Case\ 1.3.1}:}\) \(s = 3\).
Note that the term \(-z^{s+1}\) in \(Q_{9}(A)\) has coefficient \(2\), then \(x_{3}=3\) or \(x_{4}=3\).
\(\underline{\mathbf{Case\ 1.3.1.1}:}\) \(x_{3}=3\)
\(Q_{14}(B)=z^{x_{4}+x_{5}+7}+z^{x_{4}+x_{6}+7}+z^{x_{4}+8}+z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+6}+2z^{5}+3z^{x_{5}+x_{6}+6}+2z^{x_{5}+7} +2z^{x_{6}+7}+3z^{x_{4}+x_{5}+x_{6}+3}+2z^{x_{4}+x_{5}+4}+2z^{x_{4}+x_{6}+4}+3z^{x_{4}+3}+2z^{x_{5}+x_{6}+5} +2z^{x_{5}+3}+2z^{x_{6}+3}+z^{x_{4}+x_{5}+x_{6}+4}+z^{x_{4}+x_{5}+5}+z^{x_{4}+x_{6}+5}+z^{x_{4}+4}+2z^{x_{5}+4}+2z^{x_{6}+4}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}- (z^{x_{4}+x_{5}+8}+z^{x_{4}+x_{6}+8}+z^{x_{4}+7}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+3z^{x_{6}+5}+z^{6}+z^{x_{5}+x_{6}+7}+3z^{x_{5}+6} +3z^{x_{6}+6}+2z^{7}+2z^{x_{4}+x_{5}+x_{6}+4} +3z^{x_{4}+x_{5}+3}+3z^{x_{4}+x_{6}+3}+2z^{x_{4}+4}+2z^{x_{5}+x_{6}+3}+z^{x_{5}+x_{6}+7}+z^{x_{4}+x_{5}+x_{6}+5}+z^{x_{4}+x_{5}+4} +z^{x_{4}+x_{6}+4}+z^{x_{4}+5}+2z^{x_{5}+x_{6}+4}+z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+1}+z^{x_{5}+1}+z^{x_{6}+1}).\)
Considering the l.r.p in \(Q_{9}(A)\) and the l.r.p in \(Q_{14}(B)\), we have \(x_{4}= x_{5}=4\), or \(x_{4}= x_{6}=4\), or \(x_{5}= x_{6}=4\). .
\(\underline{\mathbf{Case\ 1.3.1.1.1}:}\) \(x_{4}= x_{5}=4\).
\(Q_{15}(B)=z^{15}+3z^{x_{6}+11}+2z^{12}+3z^{x_{6}+9}+2z^{x_{6}+10}+2z^{x_{6}+3} +z^{x_{6}+12}+z^{13}+2z^{8}+2z^{x_{6}+4}-(z^{16}+3z^{x_{6}+6}+3z^{11}+3z^{9}+z^{x_{6}+5}+z^{6}+2z^{10}+2z^{x_{6}+6}+3z^{x_{6}+7}+z^{+13}+z^{x_{6}+8}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{9}(A)\) and the l.r.p in \(Q_{15}(B)\), we have \(t = 5\) or \(u = 5\).
If \(u = 5\) \(3\leq t \leq 5\)
If \(t = 3\), \(A\cong\theta(2,2,3,3,3,5)\), \(A\) is \(\chi\)-unique by Lemma 14.
If \(t = 4\). \(Q_{10}(A)=4z^{14}+6z^{12}+7z^{13}+z^{10}+z^{15}+3z^{11}-(3z^{13}+5z^{12}+7z^{10}+8z^{11}+2z^{14}+2z^{15}).\)
\(Q_{16}(B)=z^{15}+3z^{x_{6}+11}+2z^{12}+3z^{x_{6}+9}+2z^{x_{6}+10}+2z^{x_{6}+3} +z^{x_{6}+12}+z^{13}+2z^{8}+2z^{x_{6}+4}-(z^{16}+3z^{x_{6}+6}+3z^{11}+3z^{9}+z^{x_{6}+5}+z^{6}+2z^{10}+2z^{x_{6}+6}+3z^{x_{6}+7}+z^{+13}+z^{x_{6}+8}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{10}(A)\) and the l.r.p in \(Q_{16}(B)\), we have \(x_{6} = 4\).
\(Q_{11}(A)=4z^{14}+6z^{12}+7z^{13}+z^{10}+z^{15}+3z^{11}-(3z^{13}+5z^{12}+7z^{10}+8z^{11}+2z^{14}+2z^{15}).\)
\(Q_{17}(B)=5z^{15}+5z^{13}+2z^{14}-(3z^{16}+6z^{11}+z^{15}+4z^{10}+z^{13}).\) \(Q_{11}(A)\neq Q_{17}(B)\), a contradiction.
If \(t = 5\), \(A\cong\theta(2,2,3,3,5,5)\), \(A\) is \(\chi\)-unique by Lemma 13.
\(\underline{\mathbf{Case\ 1.3.1.1.2}:}\) \(x_{4}= x_{6}=4\).
Similarly to Case 1.3.1.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.3.1.1.3}:}\) \(x_{5}= x_{6}=4\).
Similarly to Case 1.3.1.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.3.1.2}:}\) \(x_{4}= 3\).
Similarly to Case 1.3.1.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.3.2}:}\) \(t = 3\).
Since \(2\leq s\leq 3\). We know that \(s = 2\) or \(s = 3\).
If \(s = 2\), \(A\cong\theta(2,2,2,2,3,u)\), \(A\) is \(\chi\)-unique by Lemma 15.
If \(s = 3\), \(A\cong\theta(2,2,3,3,3,u)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(\underline{\mathbf{Case\ 1.3.3}:}\) \(u = 3\). \(2\leq s\leq t\leq 3\). We know that \(s = t = 2\) or \(s = 2\), \(t = 3\) or \(s = t = 3\).
If \(s = t = 2\), \(A\cong\theta(2,2,2,2,2,u)\), \(A\) is \(\chi\)-unique by Lemma 8.
If \(s = 2\), \(t = 3\), \(A\cong\theta(2,2,2,2,3,u)\), \(A\) is \(\chi\)-unique by Lemma 15.
If \(s = t = 3\), \(A\cong\theta(2,2,3,3,3,u)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(\underline{\mathbf{Case\ 2}:}\) \(r = 3\).
Then \(g(A)= g(B)= 2r = 6\). Since \(A\) has one cycle of length \(6\), therefore \(B\) has one cycle of length \(6\). Without loss of generality, we have three cases to consider,
1. \(x_{5}= x_{6}= 5\) or
2. \(x_{5}= 5 , x_{6} \neq 5\) or
3. \(x_{5} \neq 5 ,x_{6} \neq 5\)
\(\underline{\mathbf{Case\ 2.1}:}\) \(x_{5}= x_{6}= 5\).
\(B\) has at least two cycles of length \(6\), a contradiction.
\(\underline{\mathbf{Case\ 2.2}:}\)
\(x_{5}= 5\) , \(x_{6} \neq 5\).
compare the l.r.p in \(Q_{10}(A)\) and \(Q_{21}(B)\), we have a contradiction.
\(\underline{\mathbf{Case\ 2.3}:}\) \(x_{5} \neq 5\), \(x_{6} \neq 5\).
We know that \(x_{5}, x_{6}\geq 5\). Hence \(x_{1}+ x_{2}= 6\).
\(x_{1}= x_{2}= 3\).
\(Q_{11}(A)=z^{2s+7}+z^{t+u+7}+z^{7}+2z^{s+u+7}+2z^{s+t+7}+z^{t+u+1}+z^{2s+1}+2z^{s+t+1}+2z^{s+u+1}+2z^{2s+t+4}+2z^{2s+u+4} +2z^{t+4}+2z^{u+4}+4z^{s+t+u+4}+2z^{s+t+u+3}+2z^{s+u+6}+z^{t+9}+z^{2s+t+3}+z^{t+5}+4z^{s+t+6}+z^{u+9}+z^{2s+u+3}+z^{u+5}+4z^{s+u+6}+2z^{s+6}+2z^{s+5}+2z^{8}+2z^{2s+6}+4z^{s+4} -(3z^{t+7}+3z^{u+7}+5z^{s+7}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+t+u+1}+4z^{s+t+4}+4z^{s+u+4}+z^{u+1} +2z^{2s+4}+2z^{s+1}+z^{t+u+4}+2z^{2s+8}+z^{t+u+8} +z^{10}+2z^{2s+t+u+2}+2z^{s+t+8}+2z^{s+u+8}+z^{2s+4}+z^{t+u+4}+2z^{s+t+4}+2z^{s+u+4}+2z^{2s+t+5}+2z^{2s+u+5}+4z^{s+t+u+4}+z^{6})\).
\(Q_{22}(B)= z^{ x_{3}+ x_{4}+ x_{5}+6} + z^{ x_{3}+ x_{4}+ x_{6}+6}+ z^{ x_{3}+ x_{4}+7} + z^{ x_{5}+ x_{6}+7} + z^{ x_{5}+8} + z^{ x_{6}+8}+ z^{7}+ z^{ x_{3}+ x_{5}+ x_{6}+4}+ z^{ x_{3}+ x_{5}+ 5}+ z^{x_{3}+ x_{6}+ 5}+ z^{x_{3}+ 4}+ z^{ x_{4}+ x_{5}+ x_{6}+4}+ z^{ x_{4}+ x_{5}+ 5}+ z^{ x_{4}+ x_{6}+ 5}+ z^{ x_{4}+ 4}+ z^{ x_{5}+ x_{6}+ 6}+ z^{ x_{5}+4}+ z^{ x_{6}+4}+ z^{6}+ z^{ x_{3}+ x_{5}+ x_{6}+4}+ z^{x_{3}+ x_{5}+ 5}+ z^{x_{3}+x_{6}+5}+z^{ x_{3}+ 4}+ z^{ x_{4}+ x_{5}+ x_{6}+4}+ z^{x_{4}+ x_{5}+ 5}+ z^{x_{4}+ x_{6}+ 5}+ z^{x_{4}+4}+ z^{ x_{5}+ x_{6}+ 6}+ z^{x_{5}+4}+ z^{x_{6}+4}+ z^{6}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ x_{6}+ 2}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ x_{6}+ 2}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 3}+ z^{x_{4}+x_{5}+ x_{6}+ 3}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+ x_{6}+1}+ z^{x_{4}+3}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+4}+ z^{x_{6}+4}- ( z^{x_{3}+ x_{4}+ x_{5}+7} + z^{x_{3}+ x_{4}+ x_{6}+7}+ z^{ x_{3}+ x_{4}+6} + z^{x_{3}+ x_{5}+ x_{6}+8} + z^{x_{5}+7} + z^{x_{6}+7}+ z^{8}+ z^{ x_{3}+ x_{5}+ x_{6}+5}+ z^{x_{3}+ x_{5}+ 4}+ z^{ x_{3}+ x_{6}+ 4}++ z^{x_{3}+5} +z^{ x_{4}+ x_{5}+ x_{6}+5}+ z^{x_{4}+ x_{5}+4}+ z^{x_{4}+ x_{6}+ 4}+ z^{x_{5}+ x_{6}+ 4}+ z^{x_{4}+5}+ z^{x_{5}+6}+ z^{x_{6}+6}+ z^{ x_{3}+ x_{5}+ x_{6}+5}+ z^{x_{3}+ x_{5}+ 4}+ z^{x_{3}+ x_{6}+ 4}+ z^{x_{3}+5}+ z^{x_{4}+ x_{5}+ x_{6}+5}+ z^{x_{4}+ x_{5}+ 4}+ z^{x_{4}+ x_{6}+ 4}+ z^{x_{4}+5}+ z^{x_{5}+ x_{6}+ 4}+ z^{x_{5}+6}+ z^{x_{6}+6}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+ x_{6}+ 1}+ z^{x_{3}+x_{4}+2}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+ x_{6}+3}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+ x_{6}+ 1}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+ x_{6}+3}+ z^{x_{4}+1}+ z^{x_{5}+ x_{6}+4}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{4} )\).
since \(2\leq r\leq s\leq t\leq u\), Compare the l.r.p in \(Q_{11}(A)\) and the l.r.p in \(Q_{22}(B)\) we have \(s = 3\) or \(t = 3\) or \(u = 3\).
\(\underline{\mathbf{Case\ 2.3.1}:}\) \(s = 3\).
Then \(A\cong\theta(3,3,3,3,t,u)\), \(A\) is \(\chi\)-unique by Lemma 15.
\(\underline{\mathbf{Case\ 2.3.2}:}\) \(t = 3\).
Since \(3\leq s\leq 3\leq u\). We know that \(s = 3\).
Then \(A\cong\theta(3,3,3,3,3,u)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(\underline{\mathbf{Case\ 2.3.3}:}\) \(u = 3\).
Since \(3\leq s\leq t\leq 3\). We know that \(s = t = 3\).
Then \(A\cong\theta(3,3,3,3,3,3)\), \(A\) is \(\chi\)-unique by Theorem 1.
\(\underline{\mathbf{Case\ C}:}\) \(B \in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4},x_{5}), C_{x_{6}+1})\), where \(2 \leq x_{1}\leq x_{2} \leq x_{3} \leq x_{4 }\leq x_{5}\) and \(2 \leq x_{6}\).
As \(A\) \(\cong \theta(r,r,s,s,t,u)\) and \(B\) \(\in g_{e} (\theta (x_{1},x_{2},x_{3},x_{4},x_{5}), C_{x_{6}+1})\), then by Theorem 7, we have
\(Q_{12}(A)= z(z^{r}-1)^{2}(z^{s}-1)^{2}(z^{t}-1)(z^{u}-1)- (z^{r}-z)^{3}(z^{s}-z)(z^{t}-z)(z^{u}-z)\).
\(Q_{23}(B) = z(z^{x_{1}}-1)(z^{x_{2}}-1)(z^{x_{3}}-1)(z^{x_{4}}-1)(z^{x_{5}}-1)(z^{x_{6}}-1)- (z^{x_{1}}-z)(z^{x_{2}}-z)(z^{x_{3}}-z)(z^{x_{4}}-z)(z^{x_{5}}-z)(z^{x_{6}}-1)\).
\(Q_{12}(A)= Q_{23}(B)\), yields
\(Q_{13}(A)= z^{2r+2s+1}+z^{2r+t+u+1}+2z^{2r+s+u+1}+2z^{2r+s+t+1}+2z^{2r+u+t+1}+z^{2r+1}+z^{2s+1}+z^{t+u+1}+2z^{s+t+1}+2z^{s+u+1} +2z^{r+s+1}+2z^{r+u+1}+2z^{r+2s+t+1}+2z^{r+2s+u+1}+4z^{r+s+t+u+1}+2z^{s+t+u+3}+2z^{r+t+u+3}+2z^{r+2s+t+u+1}+z^{2r+t+3}+z^{2s+t+3} z^{t+5}+4z^{r+s+t+3}+z^{2r+u+3}+z^{2s+u+3}+z^{u+5}+4z^{r+s+u+3}+z^{r+s+3}+z^{r+2s+3}+2z^{s+5}+2z^{r+5}+4z^{r+s+1} -(z^{2r+t+1}+z^{2r+s+1}+z^{2r+u+1}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+1}+2z^{s+t+u+1}+2z^{r+1}+z^{u+1}+2z^{r+2s+t+u+1}+2z^{r+t+u+1}+4z^{r+s+t+1} +4z^{r+s+u+1}+2z^{r+2s+1}+z^{2r+2s+2}+z^{2r+t+u+2}+z^{2r+4}+2z^{2r+s+t+2}+2z^{2r+s+u+2}+2z^{2s+t+u+2}+z^{2s+4}+z^{t+u+4}+2z^{s+t+4} +2z^{s+u+4}+2z^{r+t+4}+2z^{r+u+4}+2z^{r+2s+t+2}+2z^{r+2s+u+2}+4z^{r+s+t+u+2}+4z^{r+s+4}+z^{6})\).
\(Q_{24}(B)= z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+1}+ z^{x_{1}+ x_{2}+ x_{3}+2} + z^{x_{1}+ x_{2}+ x_{4}+ x_{6}+1} + z^{x_{1}+ x_{2}+ x_{4}+2}+ z^{x_{1}+ x_{2}+ x_{5}+ x_{6}+1}+z^{x_{1}+ x_{2}+ x_{5}+2}+ z^{x_{1}+ x_{2}+ x_{6}+3}+ z^{x_{1}+ x_{2}+1} + z^{x_{1}+ x_{3}+ x_{4}+ x_{6}+1}+ z^{x_{1}+ x_{3}+ x_{4}+2}+ z^{x_{1}+ x_{3}+ x_{5}+ x_{6}+1}+ z^{x_{1}+ x_{3}+ x_{5}+ 2}+ z^{x_{1}+ x_{3}+ x_{6}+ 3}+ z^{x_{1}+ x_{3}+ 1}+ z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{1}+ x_{4}+ x_{5}+ 2}+ z^{x_{1}+ x_{4}+ x_{6}+ 3}+ z^{x_{1}+ x_{4}+ 1}+ z^{x_{1}+ x_{5}+ x_{6}+ 3}+ z^{x_{1}+ x_{5}+1}+ z^{x_{1}+ x_{6}+1}+ z^{x_{1}+ 4}+ z^{x_{2}+ x_{3}+ x_{4}+ x_{6}+1}+ z^{x_{2}+ x_{3}+ x_{4}+2}+ z^{x_{2}+ x_{3}+ x_{5}+ x_{6}+1}+ z^{x_{2}+x_{3}+ x_{5}+ 2}+ z^{x_{2}+x_{3}+x_{6}+3}+z^{x_{2}+ x_{3}+ 1}+ z^{x_{2}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{2}+x_{4}+ x_{5}+ 2}+ z^{x_{2}+x_{4}+ x_{6}+ 3}+ z^{x_{2}+x_{4}+1}+ z^{x_{2}+ x_{5}+ x_{6}+ 3}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+ x_{6}+1}+ z^{x_{2}+ 4}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+1}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ x_{6}+ 3}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ x_{6}+ 3}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ x_{6}+3}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+ x_{6}+1}+ z^{x_{4}+4}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+4}+ z^{x_{6}+5}-( z^{x_{1}+ x_{2}+ x_{3}+ x_{4}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{3}+ x_{6}+2}+ z^{x_{1}+ x_{2}+ x_{3}+1} + z^{x_{1}+ x_{2}+ x_{4}+ x_{6}+2}+ z^{x_{1}+ x_{2}+ x_{4}+1} + z^{x_{1}+ x_{2}+ x_{5}+ x_{6}+2}+z^{x_{1}+ x_{2}+ x_{5}+1} + z^{x_{1}+ x_{2}+ x_{6}+1}+ z^{x_{1}+x_{2}+3}+ z^{x_{1}+ x_{3}+ x_{4}+ x_{6}+1}+ z^{x_{1}+ x_{3}+ x_{4}+1} + z^{x_{1}+ x_{3}+ x_{5}+ x_{6}+2}+ z^{x_{1}+ x_{3}+ x_{5}+ 1}+ z^{x_{1}+ x_{3}+ x_{6}+ 1}++ z^{x_{1}+ x_{3}+3} +z^{x_{1}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{1}+ x_{4}+ x_{5}+ 1}+ z^{x_{1}+ x_{4}+ x_{6}+ 1}+ z^{x_{1}+ x_{5}+ x_{6}+ 1}+ z^{x_{1}+ x_{4}+3}+ z^{x_{1}+ x_{5}+3}+ z^{x_{1}+ x_{6}+4}+ z^{x_{1}+1}+z^{x_{2}+ x_{3}+ x_{4}+ x_{6}+2}+ z^{x_{2}+ x_{3}+ x_{4}+1}+ z^{x_{2}+ x_{3}+ x_{5}+ x_{6}+2}+ z^{x_{2}+x_{3}+ x_{5}+ 1}+ z^{x_{2}+x_{3}+ x_{6}+ 1}+ z^{x_{2}+x_{3}+3}+z^{x_{2}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{2}+ x_{4}+ x_{5}+1} +z^{x_{2}+x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{2}+x_{4}+ x_{5}+ 1}+ z^{x_{2}+x_{4}+ x_{6}+ 1}+ z^{x_{2}+x_{4}+3}+ z^{x_{2}+ x_{5}+ x_{6}+ 1}+ z^{x_{2}+ x_{5}+3}+ z^{x_{2}+ x_{6}+4}+ z^{x_{2}+ 1}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+2}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+ x_{6}+ 1}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+ x_{6}+4}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+ x_{6}+ 1}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+ x_{6}+4}+ z^{x_{4}+1}+ z^{x_{5}+ x_{6}+4}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{5} )\).
Consider the l.r.p in \(Q_{13}(A)\) that is r+1 and the l.r.p in \(Q_{24}(B)\) that is \(5\).
Since \(r = 4\) and r \(\geq\) \(2\). We have three cases to consider
1) \(r = 2\) or
2) \(r = 3\) or
3) \(r = 4\).
\(\underline{\mathbf{Case\ 1}:}\) \(r = 2\).
Then \(g(A)= g(B)= 2r = 4\). Since \(A\) has one cycle of length four, therefore \(B\) has one cycle of length \(4\). Without loss of generality, we have two cases to consider,
1. \(x_{6}= 3\) or
2. \(x_{6} \neq 3\).
\(\underline{\mathbf{Case\ 1.1}:}\) \(x_{6} = 3\).
Substituting \(r = 2\) in \(Q_{13}(A)\) and \(x_{6}= 3\) in \(Q_{24}(B)\). We obtain that there is \(-z^{3}\) in \(Q_{13}(A)\). Hence there are cases to be considered, \(x_{1}= x_{2}= 2\) or \(x_{1}= x_{3}= 2\) or \(x_{1}= x_{4}= 2\) or \(x_{1}= x_{5}= 2\) or \(x_{2}= x_{3}= 2\) or \(x_{2}= x_{4}= 2\) or \(x_{2}= x_{5}= 2\) or \(x_{3}= x_{4}= 2\) or \(x_{3}= x_{5}= 2\) \(x_{4}= x_{5}= 2\). We know that \(B\) has at least three cycles of length \(4\) for all cases. Thus, a contradiction.
\(\underline{\mathbf{Case\ 1.2}:}\) \(x_{6} \neq 3\)
\(x_{6}\geq 4\).
Given that \(B\) has one cycle of length \(4\), then \(x_{1}+ x_{2}= 4\), implying \(x_{1}= x_{2}= 2\). Consider the l.r.p in \(Q_{13}(A)\) and the l.r.p in \(Q_{24}(B)\). We have \(s = 4\) or \(t = 4\) or \(u = 4\).
\(\underline{\mathbf{Case\ 1.2.1}:}\) \(s = 4\). \[t + u + 8 = x_{3} + x_{4}+ x_{5}+ x_{6}.\tag{5}\]
\(Q_{14}(A)= 3z^{13}+3z^{t+u+5}+5z^{u+9}+5z^{t+9}+z^{t+u+1}+3z^{9}+2z^{t+5}+2z^{u+5}+3z^{u+11} +3z^{t+11}+2z^{t+3}+2z^{u+3}+6z^{t+u+7}+6z^{7}- (z^{t+1}+z^{u+1}+z^{5}+2z^{t+u+5}+2z^{t+u+3}+3z^{t+7}+3z^{u+7}+2z^{11}+z^{14}+z^{t+u+6}+2z^{t+10}+2z^{u+10} +z^{12}+z^{t+u+4}+2z^{t+8}+2z^{u+8}+2z^{t+12}+2z^{u+12}+2z^{t+6}+2z^{u+6}+4z^{10}+z^{8}+z^{6})\).
\(Q_{25}(B)= z^{x_{3}+x_{4}+x_{5}+4}+z^{x_{3}+x_{6}+5}+z^{x_{3}+6}+z^{x_{4}+x_{6}+5}+z^{x_{4}+6}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7} +3z^{x_{3}+x_{4}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{x_{3}+x_{6}+5}+2z^{x_{4}+3}+2z^{x_{5}+3} +2z^{x_{3}+3}+3z^{x_{3}+x_{5}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{6}+2z^{x_{3}+x_{6}+5} +2z^{x_{6}+3}+3z^{x_{4}+x_{5}+x_{6}+3}+2z^{x_{4}+x_{5}+4}+2z^{x_{4}+x_{6}+5}+z^{x_{3}+x_{4}+x_{5}+2}+z^{x_{3}+x_{4}+1}+z^{x_{3}+x_{5}+1} +z^{x_{3}+x_{6}+1}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}+z^{x_{4}+4}+z^{x_{5}+4}+z^{x_{6}+5}-( z^{x_{3}+x_{4}+x_{5}+5}+z^{x_{3}+x_{6}+6}+z^{x_{3}+5}+z^{x_{4}+x_{6}+6}+z^{x_{4}+5}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5} +z^{7}+z^{x_{3}+x_{4}+x_{6}+3}+3z^{x_{3}+x_{4}+3} +2z^{x_{3}+x_{5}+x_{6}+4}+3z^{x_{3}+x_{5}+3}+2z^{x_{3}+x_{6}+3}+2z^{x_{3}+5}+2z^{x_{4}+x_{5}+x_{6}+4} +3z^{x_{4}+x_{5}+3}+2z^{x_{4}+x_{6}+3}+2z^{x_{4}+5}+2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{3}+x_{4}+x_{6}+4} +z^{x_{3}+x_{4}+x_{5}+1}+z^{x_{3}+x_{4}+x_{6}+1}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{6}+4} +z^{x_{3}+1}+z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+x_{6}+4}+z^{x_{4}+1}+z^{x_{5}+x_{6}+4}+z^{x_{5}+1}+z^{x_{6}+1})\).
Compare the l.r.p in \(Q_{25}(A)\) and the l.r.p in \(Q_{25}(B)\) we have \(x_{3}= 4\) or \(x_{4}= 4\) or \(x_{5}= 4\) or \(x_{6}= 4\).
\(\underline{\mathbf{Case\ 1.2.1.1}:}\) \(x_{3} = 4\).
\(Q_{26}(B)= z^{x_{4}+x_{5}+8}+z^{x_{6}+9}+z^{10}+z^{x_{4}+x_{6}+5}+z^{x_{4}+6}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7} +3z^{x_{4}+x_{6}+7}+2z^{x_{5}+8}+2z^{x_{6}+9}+2z^{x_{4}+3}+2z^{x_{5}+3} +2z^{7}+3z^{x_{5}+x_{6}+7}+2z^{x_{5}+8}+2z^{6}+2z^{x_{6}+9} +2z^{x_{6}+3}+3z^{x_{4}+x_{5}+x_{6}+3}+2z^{x_{4}+x_{5}+4}+2z^{x_{4}+x_{6}+5}+z^{x_{4}+x_{5}+6}+z^{x_{4}+5}+z^{x_{5}+5} +z^{x_{6}+5}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}+z^{x_{4}+4}+z^{x_{5}+4}+z^{x_{6}+5}-( z^{x_{4}+x_{5}+9}+z^{x_{6}+10}+z^{9}+z^{x_{4}+x_{6}+6}+z^{x_{4}+5}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5} +z^{7}+z^{x_{4}+x_{6}+7}+3z^{x_{4}+7} +2z^{x_{5}+x_{6}+8}+3z^{x_{5}+7}+2z^{x_{6}+7}+2z^{9}+2z^{x_{4}+x_{5}+x_{6}+4} +3z^{x_{4}+x_{5}+3}+2z^{x_{4}+x_{6}+3}+2z^{x_{4}+5}+2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{4}+x_{6}+8} +z^{x_{4}+x_{5}+5}+z^{x_{4}+x_{6}+5}+z^{x_{5}+x_{6}+5}+z^{x_{6}+8} +z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+x_{6}+4}+z^{x_{4}+1}+z^{x_{5}+x_{6}+4}+z^{x_{5}+1}+z^{x_{6}+1})\).
Compare the l.r.p in \(Q_{13}(A)\) and the l.r.p in \(Q_{26}(B)\) we have \(x_{4}=x_{5}=x_{6}= 5\). \[t + u = 11.\tag{6}\]
Since \(2\leq 4 \leq t\leq u\)

If \(t = 4\) then \(u = 7\), \(A\cong\theta(2,2,4,4,4,7)\), \(A\) is \(\chi\) unique by Lemma 10.
If \(t = 5\) then \(u = 6\).
We obtain \(Q_{13}(A)\neq Q_{26}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 1.2.1.2}:}\) \(x_{4} = 4\). \[t + u + 4= x_{3}+ x_{5}+ x_{6}.\tag{7}\]
Similarly to Case 1.2.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.2.1.3}:}\) \(x_{5} = 4\). \[t + u + 4= x_{3}+ x_{4}+ x_{6}.\tag{8}\]
Similarly to Case 1.2.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.2.1.4}:}\) \(x_{6} = 4\). \[t + u + 4= x_{3}+ x_{5}+ x_{4}.\tag{9}\]
Similarly to Case 1.2.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 1.2.2}:}\) \(t = 4\).
We know that either \(s =2\) or \(s = 3\) or \(s = 4\).
If \(s = 2\), \(A\cong\theta(2,2,2,2,4,u)\), \(A\) is \(\chi\)-unique by by Lemma 15.
If \(s = 3\).
\(Q_{15}(A)= 3z^{13}+6z^{u+8}+6z^{u+9}+6z^{12}+z^{u+11}+5z^{7}+2z^{u+5}+6z^{8} +2z^{u+4}+4z^{11}+2z^{u+3}+6z^{u+10}+2z^{u+13}+z^{u+7}+3z^{6}- (z^{u+5}+z^{u+1}+z^{8}+z^{11}+3z^{u+7}+3z^{u+8}+2z^{u+13}+5z^{10}+z^{12}+6z^{u+6}+6z^{9}+z^{u+10} +z^{8}+2z^{u+9}+z^{u+12}+4z^{u+11}+2z^{13}+z^{8}+2z^{4}).\)
\(Q_{27}(B)= z^{x_{3}+x_{4}+x_{5}+4}+z^{x_{3}+x_{6}+5}+z^{x_{3}+6}+z^{x_{4}+x_{6}+5}+z^{x_{4}+6}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7} +3z^{x_{3}+x_{4}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{x_{3}+x_{6}+5}+2z^{x_{4}+3}+2z^{x_{5}+3} +2z^{x_{3}+3}+3z^{x_{3}+x_{5}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{6}+2z^{x_{3}+x_{6}+5} +2z^{x_{6}+3}+3z^{x_{4}+x_{5}+x_{6}+3}+2z^{x_{4}+x_{5}+4}+2z^{x_{4}+x_{6}+5}+z^{x_{3}+x_{4}+x_{5}+2}+z^{x_{3}+x_{4}+1}+z^{x_{3}+x_{5}+1} +z^{x_{3}+x_{6}+1}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}+z^{x_{4}+4}+z^{x_{5}+4}+z^{x_{6}+5}-( z^{x_{3}+x_{4}+x_{5}+5}+z^{x_{3}+x_{6}+6}+z^{x_{3}+5}+z^{x_{4}+x_{6}+6}+z^{x_{4}+5}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5} +z^{7}+z^{x_{3}+x_{4}+x_{6}+3}+3z^{x_{3}+x_{4}+3} +2z^{x_{3}+x_{5}+x_{6}+4}+3z^{x_{3}+x_{5}+3}+2z^{x_{3}+x_{6}+3}+2z^{x_{3}+5}+2z^{x_{4}+x_{5}+x_{6}+4} +3z^{x_{4}+x_{5}+3}+2z^{x_{4}+x_{6}+3}+2z^{x_{4}+5}+2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{3}+x_{4}+x_{6}+4} +z^{x_{3}+x_{4}+x_{5}+1}+z^{x_{3}+x_{4}+x_{6}+1}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{6}+4} +z^{x_{3}+1}+z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+x_{6}+4}+z^{x_{4}+1}+z^{x_{5}+x_{6}+4}+z^{x_{5}+1}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{15}(A)\) and the l.r.p in \(Q_{27}(B)\) we have \(x_{3}=x_{4}=3\) or \(x_{3}=x_{5}=3\) or \(x_{4}=x_{5}=3\).
Without loss of generality, suppose that \(x_{3}=x_{4}=3\).
\(Q_{28}(B)=z^{x_{5}+10}+6z^{x_{6}+8}+2z^{9}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7}+3z^{x_{6}+9}+2z^{10}+6z^{x_{5}+x_{6}+6} +4z^{x_{5}+7}+z^{x_{5}+8}+6z^{6}+2z^{x_{5}+3}+2z^{x_{6}+3}+z^{7}+2z^{x_{5}+4}+2z^{x_{6}+4}+z^{x_{5}+x_{6}+1}+z^{x_{5}+4} +z^{x_{6}+4}+z^{7} -(z^{x_{5}+11}+z^{x_{6}+9}+6z^{8}+z^{x_{6}+10}+z^{8}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5}+ z^{7}+z^{x_{6}+9}+3z^{9}+2z^{x_{5}+x_{6}+7}+3z^{x_{6}+6} +2z^{x_{5}+6}+2z^{x_{5}+x_{6}+7}+3z^{x_{5}+6}+2z^{x_{6}+6} +2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{6}+10}+z^{x_{5}+7}+z^{x_{6}+7} +z^{x_{5}+1}+3z^{x_{5}+x_{6}+4}+2z^{x_{6}+7}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{15}(A)\) and \(Q_{28}(B)\), we have \(Q_{15}(A)\neq Q_{27}(B)\), a contradiction.
If \(s=4\)
\(Q_{16}(A)= z^{13}+z^{u+9}+2z^{u+9}+2z^{13}+2z^{u+9}+z^{5}+z^{9}+z^{u+5}+2z^{9}+2z^{u+5} +2z^{7}+2z^{u+3}+2z^{15}+2z^{u+11}+4z^{u+11}+2z^{u+11}+2z^{u+9}+2z^{u+15}+z^{11}+z^{15} z^{9}+4z^{13}+z^{u+7}+z^{u+11}+z^{u+5}+4z^{u+9}+z^{9}+z^{13}+2z^{9}+2z^{7}+4z^{7} -(z^{9}+z^{9}+z^{u+5}+z^{13}+z^{u+9}+z^{5}+2z^{5}+2z^{u+9}+2z^{3}+z^{u+1}+2z^{u+15}+2z^{u+7}+4z^{11} +4z^{u+7}+2z^{11}+z^{14}+z^{u+10}+z^{8}+2z^{14}+2z^{u+10}+2z^{u+14}+z^{12}+z^{u+8}+2z^{12} +2z^{u+8}+2z^{10}+2z^{u+6}+2z^{16}+2z^{u+12}+4z^{u+12}+4z^{10}+z^{6})\).
\(Q_{29}(B)= z^{x_{3}+x_{4}+x_{5}+4}+z^{x_{3}+x_{6}+5}+z^{x_{3}+6}+z^{x_{4}+x_{6}+5}+z^{x_{4}+6}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7} +3z^{x_{3}+x_{4}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{x_{3}+x_{6}+5}+2z^{x_{4}+3}+2z^{x_{5}+3} +2z^{x_{3}+3}+3z^{x_{3}+x_{5}+x_{6}+3}+2z^{x_{3}+x_{5}+4}+2z^{6}+2z^{x_{3}+x_{6}+5} +2z^{x_{6}+3}+3z^{x_{4}+x_{5}+x_{6}+3}+2z^{x_{4}+x_{5}+4}+2z^{x_{4}+x_{6}+5}+z^{x_{3}+x_{4}+x_{5}+2}+z^{x_{3}+x_{4}+1}+z^{x_{3}+x_{5}+1} +z^{x_{3}+x_{6}+1}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}+z^{x_{4}+4}+z^{x_{5}+4}+z^{x_{6}+5}-( z^{x_{3}+x_{4}+x_{5}+5}+z^{x_{3}+x_{6}+6}+z^{x_{3}+5}+z^{x_{4}+x_{6}+6}+z^{x_{4}+5}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5} +z^{7}+z^{x_{3}+x_{4}+x_{6}+3}+3z^{x_{3}+x_{4}+3} +2z^{x_{3}+x_{5}+x_{6}+4}+3z^{x_{3}+x_{5}+3}+2z^{x_{3}+x_{6}+3}+2z^{x_{3}+5}+2z^{x_{4}+x_{5}+x_{6}+4} +3z^{x_{4}+x_{5}+3}+2z^{x_{4}+x_{6}+3}+2z^{x_{4}+5}+2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{3}+x_{4}+x_{6}+4} +z^{x_{3}+x_{4}+x_{5}+1}+z^{x_{3}+x_{4}+x_{6}+1}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{6}+4} +z^{x_{3}+1}+z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+x_{6}+4}+z^{x_{4}+1}+z^{x_{5}+x_{6}+4}+z^{x_{5}+1}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{16}(A)\) and the l.r.p in \(Q_{29}(B)\) we have \(x_{3}=x_{4}=2\) or \(x_{3}=x_{5}=2\) or \(x_{4}=x_{5}=2\).
Without loss of generality, suppose that \(x_{3}=x_{4}=3\).
\(Q_{30}(B)= z^{x_{5}+8}+z^{x_{6}+7}+z^{8}+z^{x_{6}+7}+z^{8}+3z^{x_{5}+x_{6}+5}+z^{x_{5}+6}+z^{x_{6}+7} +3z^{x_{6}+7}+2z^{x_{5}+6}+2z^{x_{6}+7}+2z^{5}+2z^{x_{5}+3} +2z^{5}+3z^{x_{5}+x_{6}+5}+2z^{x_{5}+6}+2z^{6}+2z^{x_{6}+7} +2z^{x_{6}+3}+3z^{x_{5}+x_{6}+5}+2z^{x_{5}+6}+2z^{x_{6}+7}+z^{x_{5}+6}+z^{5}+z^{x_{5}+3} +z^{x_{6}+3}+z^{x_{5}+3}+z^{x_{6}+3}+z^{x_{5}+x_{6}+1}+z^{6}+z^{x_{5}+4}+z^{x_{6}+5}-( z^{x_{5}+9}+z^{x_{6}+8}+z^{7}+z^{x_{6}+8}+z^{7}+z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+z^{x_{6}+5} +z^{7}+z^{x_{6}+7}+3z^{7} +2z^{x_{5}+x_{6}+6}+3z^{x_{5}+5}+2z^{x_{6}+5}+2z^{7}+2z^{x_{5}+x_{6}+6} +3z^{x_{5}+5}+2z^{x_{6}+5}+2z^{7}+2z^{x_{5}+x_{6}+3}+2z^{x_{6}+6}+z^{x_{6}+8} +z^{x_{5}+5}+z^{x_{6}+5}+z^{x_{5}+x_{6}+3}+z^{x_{6}+6} +z^{3}+z^{x_{5}+x_{6}+3}+z^{x_{6}+6}+z^{3}+z^{x_{5}+x_{6}+4}+z^{x_{5}+1}+z^{x_{6}+1}).\)
Compare the l.r.p in \(Q_{16}(A)\) and \(Q_{23}(B)\), we have \(Q_{16}(A)\neq Q_{29}(B)\), a contradiction.

\(\underline{\mathbf{Case\ 1.2.3}:}\) \(u = 4\).
Since \(2\leq s\leq t\leq 4\).
If \(s = 2\), then
\(t = 2\), \(A \cong\theta(2,2,2,2,2,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(t = 3\), \(A \cong\theta(2,2,2,2,3,4)\), \(A\) is \(\chi\)-unique by Lemma 15.
\(t = 4\), \(A \cong\theta(2,2,2,2,4,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
If \(s = 3\), then
\(t = 3\), \(A \cong\theta(2,2,3,3,3,4)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(t = 4\), \(A \cong\theta(2,2,3,3,4,4)\), \(A\) is \(\chi\)-unique by Lemma 13.
If \(s = 4\), then
\(t = 4\), \(A \cong\theta(2,2,4,4,4,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(\underline{\mathbf{Case\ 2}:}\) \(r = 3\).
Then \(g(A)= g(B)= 2r = 6\). Since \(A\) has a cycle of length \(6\), therefore \(B\) has one cycle of length \(6\). Without loss of generality, we have two cases to consider ,
1. \(x_{6}= 5\) or
2. \(x_{6} \neq 5\).
\(\underline{\mathbf{Case\ 2.1}:}\) \(x_{6}= 5\).
Substituting r = \(3\) in \(Q_{23}(A)\), we obtain that there is \(-2z^{4}\) in \(Q_{23}(A)\). There are cases to be considered \(x_{1}= x_{2}= 3\) or \(x_{1}= x_{3}= 3\) or \(x_{1}=x_{4}=3\) or \(x_{1}=x_{5}=3\) or \(x_{2}= x_{3}=3\) or \(x_{2}= x_{4}=3\) or \(x_{2}= x_{5}=3\) or \(x_{3}= x_{4}=3\) or \(x_{3}= x_{5}=3\) or \(x_{4}= x_{5}=3\).
We know that \(B\) has at least three cycles of length \(6\) for all cases. Thus a contradiction.
\(\underline{\mathbf{Case\ 2.2}:}\) \(x_{6} \neq 5\).
Since the girth of \(B\) is \(6\), then \(x_{6}\geq 6\). Given that \(B\) has one cycle of length \(6\), then \(x_{1}+ x_{2}= 6\) implying \(x_{1}= x_{2}= 3\) .
\(Q_{17}(A)=z^{2s+7}+z^{t+u+7}+2z^{s+u+7}+2z^{t+u+1}+z^{2s+1}+2z^{s+t+1}+z^{7}+z^{t+u+1}+2z^{s+u+1}+2z^{2s+u+4}+2z^{2s+t+4}+2z^{t+4} +2z^{u+4}+4z^{s+t+u+4}+2z^{s+t+u+3}+2z^{t+u+6}+z^{t+9}+z^{2s+t+3}+z^{t+5}+4z^{s+t+6}+z^{u+9}+z^{2s+u+3}+z^{u+5}+4z^{s+u+6} +2z^{s+6}+2z^{s+5}+2z^{8}+2z^{2s+6}+4z^{s+4}-(3z^{t+7}+3z^{u+7}+5z^{s+7}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+t+u+1} +2z^{s+1}+4z^{t+u+4}+4z^{s+t+4} +z^{2s+t+u+2}+2z^{2s+4}+z^{t+u+4}+z^{s+u+4}+z^{s+t+4}+z^{6}+2z^{2s+t+5}+2z^{2s+u+5}+4z^{s+t+u+5}+4z^{s+u+4} +z^{u+1}+2z^{2s+4}+2z^{2s+8}+2z^{t+u+8}+z^{10}+2z^{s+u+8}+2z^{s+t+8})\).
\(Q_{31}(B)=z^{x_{3}+x_{4}+x_{5}+6}+z^{x_{3}+x_{6}+7}+z^{x_{3}+8}+z^{x_{4}+x_{6}+7}+z^{x_{4}+8}+z^{x_{5}+x_{6}+7}+z^{x_{5}+8} +z^{x_{6}+8}+3z^{7}+2z^{x_{3}+x_{4}+x_{6}+4}+2z^{x_{3}+x_{4}+5}+2z^{x_{3}+x_{5}+x_{6}+4} +2z^{x_{3}+x_{5}+5}+2z^{x_{3}+x_{6}+6}+3z^{x_{3}+4}+2z^{x_{4}+x_{5}+x_{6}+4}+2z^{x_{4}+x_{5}+5} +2z^{x_{4}+x_{6}+6}+3z^{x_{4}+4}+2z^{x_{5}+x_{6}+6}+3z^{x_{5}+4}+2z^{x_{6}+4}+z^{x_{3}+x_{4}+x_{5}+x_{6}+1} +z^{x_{3}+x_{4}+x_{5}+2}+z^{x_{3}+x_{4}+x_{6}+3} +z^{x_{3}+x_{4}+1}+z^{x_{3}+x_{5}+1}+z^{x_{3}+x_{5}+x_{6}+3}+z^{x_{3}+x_{6}+1}+z^{x_{4}+x_{5}+x_{6}+3} +z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{6}+5}+z^{x_{5}+x_{6}+1} -(z^{x_{3}+x_{4}+x_{5}+7}+z^{x_{3}+x_{6}+8}+z^{x_{3}+7}+z^{x_{4}+x_{6}+8}+z^{x_{4}+7} +z^{x_{5}+x_{6}+8}+z^{x_{5}+7}+z^{x_{6}+7}+z^{9}+z^{x_{3}+x_{4}+x_{6}+4} +2z^{x_{3}+x_{4}+4}+2z^{x_{3}+x_{5}+x_{6}+5}+2z^{x_{3}+x_{5}+4}+3z^{x_{3}+x_{6}+4} +2z^{x_{3}+6}+2z^{x_{4}+x_{5}+x_{6}+5}+2z^{x_{4}+x_{5}+4}+3z^{x_{4}+x_{6}+4} +2z^{x_{4}+6}+3z^{x_{5}+x_{6}+4}+2z^{x_{5}+6}+2z^{x_{6}+7}+2z^{x_{3}+x_{4}+x_{6}+5}+z^{x_{3}+x_{4}+x_{5}+1}+z^{x_{3}+x_{4}+x_{6}+1} +z^{x_{3}+x_{4}+3}+z^{x_{3}+x_{5}+x_{6}+1}+z^{x_{3}+x_{5}+3}+z^{x_{3}+1} +z^{x_{4}+x_{5}+x_{6}+1}+z^{x_{4}+x_{5}+3}+z^{x_{4}+1}+z^{x_{5}+1}+z^{x_{6}+1}+z^{5})\).
Compare the l.r.p in \(Q_{17}(A)\) and the l.r.p in \(Q_{31}(B)\), we have \(s = 4\) or \(t = 4\) or \(u = 4\).
\(\underline{\mathbf{Case\ 2.2.1}:}\) \(s = 4\).
\(Q_{18}(A)=z^{13}+3z^{t+11}+3z^{u+11}+3z^{t+u+1}+3z^{9}+3z^{t+5}+3z^{u+5}+z^{7}+2z^{t+4}+2z^{u+4} +3z^{t+u+8}+2z^{t+u+7}+2z^{t+u+6}+z^{t+u+7}+4z^{t+10}+4z^{u+10}+z^{10}+6z^{8}+2z^{14}-( 3z^{t+7}+3z^{u+7}+5z^{11}+z^{t+1}+z^{u+1}+2z^{t+u+5}+3z^{t+u+4}+6z^{t+8}+6z^{u+8}+2z^{16}+z^{t+u+10} +z^{12}+2z^{t+13}+2z^{u+13}+4z^{t+u+9}+z^{6}+2z^{5})\).
Compare the l.r.p in \(Q_{18}(A)\) and the l.r.p in \(Q_{31}(B)\), we have \(-2z^{5}\) in \(Q_{18}(A)\) and \(-z^{5}\) in \(Q_{31}(B)\), so \(x_{3}= 4\) or \(x_{4}= 4\) or \(x_{5}= 4\).
\(\underline{\mathbf{Case\ 2.2.1.1}:}\) \(x_{3}= 4\).
\(Q_{32}(B)=z^{x_{4}+x_{5}+10}+z^{x_{6}+11}+z^{12}+z^{x_{4}+x_{6}+7}+z^{x_{4}+8}+z^{x_{5}+x_{6}+7}+z^{x_{5}+8} +z^{x_{6}+8}+3z^{7}+2z^{x_{4}+x_{6}+8}+2z^{x_{4}+9}+2z^{x_{5}+x_{6}+8}+2z^{x_{5}+9}+2z^{x_{6}+10}+3z^{8} +2z^{x_{4}+x_{5}+x_{6}+4}+2z^{x_{4}+x_{6}+5}+2z^{x_{4}+x_{5}+6} +3z^{x_{4}+4}+2z^{x_{5}+x_{6}+6}+3z^{x_{5}+4}+2z^{x_{6}+4} +z^{x_{4}+x_{5}+x_{6}+5}+z^{x_{4}+x_{5}+1}+z^{x_{4}+x_{6}+1}+z^{x_{5}+x_{6}+1}+z^{x_{6}+5}-( z^{x_{4}+x_{5}+11}+z^{x_{6}+12}+z^{11}+z^{x_{4}+x_{6}+8}+z^{x_{4}+7}+z^{x_{5}+x_{6}+8}+z^{x_{5}+7}+z^{x_{6}+7}+z^{9} +z^{x_{4}+x_{6}+8}+2z^{x_{4}+8}+2z^{x_{5}+x_{6}+9}+2z^{x_{5}+8} +3z^{x_{6}+8}+2z^{10}+2z^{x_{4}+x_{5}+4}+3z^{x_{4}+x_{6}+4}+2z^{x_{4}+6}+3z^{x_{5}+x_{6}+4}+2z^{x_{5}+6}+2z^{x_{6}+7} +2z^{x_{4}+x_{6}+9}+2z^{x_{4}+x_{5}+5} +z^{x_{4}+x_{6}+5}+z^{x_{4}+7}+z^{x_{5}+x_{6}+5}+z^{x_{5}+7}+z^{x_{4}+x_{5}+3}+z^{x_{4}+1}+z^{x_{5}+1}+z^{x_{6}+1})\).
Compare the l.r.p in \(Q_{18}(A)\) and the l.r.p in \(Q_{32}(B)\), we have \(x_{4} = 5\) or \(x_{5} = 5\).
\(\underline{\mathbf{Case\ 2.2.1.1.1}:}\) \(x_{4} = 5\).
\(Q_{33}(B)=z^{x_{5}+15}+3z^{x_{6}+11}+z^{x_{6}+12}+z^{x_{5}+x_{6}+7}+z^{x_{5}+8}+z^{x_{6}+8}+2z^{7}+2z^{x_{5}+x_{6}+8}+z^{x_{5}+10} +z^{x_{6}+10}+2z^{x_{5}+x_{6}+6}+3z^{x_{5}+4}+2z^{x_{6}+4}+z^{x_{5}+x_{6}+10}+z^{x_{6}+6}+z^{x_{5}+x_{6}+1}+z^{x_{6}+5}-( z^{x_{5}+16}+z^{x_{6}+12}+3z^{11}+2z^{x_{5}+7}+3z^{x_{6}+7}+z^{9}+2z^{13}+3z^{x_{5}+8}+3z^{x_{6}+8}+2z^{10}+3z^{x_{6}+9}+z^{x_{6}+1} +3z^{x_{5}+x_{6}+4}+z^{x_{5}+6}+2z^{x_{6}+14}+z^{x_{5}+x_{6}+5}+z^{x_{5}+1})\).
Compare the l.r.p in \(Q_{18}(A)\) and the l.r.p in \(Q_{33}(B)\), we have \(x_{5} = x_{6} = 6\).
\(Q_{19}(A)=3z^{t+11}+3z^{u+11}+3z^{t+u+1}+3z^{t+5}+3z^{u+5}+z^{7}+2z^{t+4}+2z^{u+4} +3z^{t+u+8}+2z^{t+u+7}+2z^{t+u+6}+4z^{t+10}+4z^{u+10}+z^{10}+6z^{8}-( 3z^{t+7}+3z^{u+7}+5z^{11}+z^{t+1}+z^{u+1}+z^{t+u+5}+3z^{t+u+4}+6z^{t+8}+6z^{u+8}+2z^{16}+z^{t+u+10} +2z^{t+13}+2z^{u+13}+2z^{t+u+9})\).
\(Q_{34}(B)=z^{21}+z^{19}+2z^{18}+2z^{17}+z^{16}+z^{12}+3z^{10}-(3z^{15}+4z^{14}+6z^{13}+2z^{11}+z^{9})\).
Compare the l.r.p in \(Q_{19}(A)\) and the l.r.p in \(Q_{34}(B)\), we obtain \(Q_{18}(A) \neq Q_{32}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 2.2.1.1.2}:}\) \(x_{5} = 5\).
Similar to Case 2.2.1.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 2.2.1.2.1}:}\) \(x_{4}= 4\).
Similar to Case 2.2.1.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 2.2.1.2.2}:}\) \(x_{5}= 4\).
Similar to Case 2.2.1.1, we obtain a contradiction.
\(\underline{\mathbf{Case\ 2.2.2}:}\) \(t = 4\).
Since \(3\leq s\leq 4\leq u\). We know that \(s = 3\) or \(s = 4\).
If \(s = 3\), \(A\cong\theta(3,3,3,3,4,u)\), \(A\) is \(\chi\)-unique by Lemma 12.
If \(s = 4\), \(A\cong\theta(3,3,4,4,4,u)\), \(A\) is \(\chi\)-unique by Lemma 12.
\(\underline{\mathbf{Case\ 2.2.3}:}\) \(u = 4\).
Since \(3\leq s\leq t\leq 4\). We know that \(s = t = 3\) or \(s = 3\), \(t =4\) or \(s = t = 4\).
If \(s = t = 3\), \(A\cong\theta(3,3,3,3,3,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
If \(s = 3\), \(t =4\), \(A\cong\theta(3,3,3,3,4,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
If \(s = t = 4\), \(A\cong\theta(3,3,4,4,4,4)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(\underline{\mathbf{Case\ 3}:}\) \(r = 4\).
Then \(g(A)= g(B)= 2r = 8\). Since \(A\) has a cycle of length \(8\), therefore \(B\) has one cycle of length \(8\). Without loss of generality, we have two cases to consider ,
1. \(x_{6}= 7\) or
2. \(x_{6} \neq 7\).
\(\underline{\mathbf{Case\ 3.1}:}\) \(x_{6}= 7\).
Since \(B\) has one cycle of length \(8\).
\(Q_{20}(A)=z^{2s+9}+z^{t+u+9}+3z^{9}+2z^{s+u+9}+2z^{s+t+9}+z^{t+u+1}+z^{2s+1}+2z^{s+t+1}+2z^{s+u+1} +2z^{2s+t+5}+2z^{2s+u+5}+3z^{t+5}+3z^{u+5}+4z^{s+t+u+5}+z^{2s+t+u+1} +2z^{s+t+u+3}+2z^{t+u+7}+z^{t+11}+z^{2s+t+3}+4z^{s+t+7}+z^{u+11}+z^{2s+u+3}+4z^{s+u+7}+2z^{s+7}+6z^{s+5}+2z^{2s+7} -(z^{t+9}+z^{u+9}+2z^{s+9}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+t+u+1}+2z^{s+1}+z^{6}+2z^{t+u+5}+z^{5} +4z^{s+t+5}+4z^{s+u+5}+z^{u+1}+2z^{2s+5}+z^{2s+10}+z^{t+u+10} +z^{12}+2z^{s+t+10}+2z^{s+u+10}+z^{2s+4}+z^{t+u+4}+2z^{s+u+4}+2z^{s+t+4}+2z^{2s+t+6}+2z^{2s+u+6}+2z^{t+8}+z^{2s+t+u+2} +2z^{u+8}+4z^{s+t+u+6}+4z^{s+8})\).
\(Q_{34}(B)= z^{x_{1}+ x_{2}+ x_{3}+8}+ z^{x_{1}+ x_{2}+ x_{3}+2} + z^{x_{1}+ x_{2}+ x_{4}+ 8} + z^{x_{1}+ x_{2}+ x_{4}+2}+ z^{x_{1}+ x_{2}+ x_{5}+8}+z^{x_{1}+ x_{2}+ x_{5}+2}+ z^{x_{1}+ x_{2}+10}+ z^{x_{1}+ x_{2}+1} + z^{x_{1}+ x_{3}+ x_{4}+8}+ z^{x_{1}+ x_{3}+ x_{4}+2}+ z^{x_{1}+ x_{3}+ x_{5}+8}+ z^{x_{1}+ x_{3}+ x_{5}+ 2}+ z^{x_{1}+ x_{3}+10}+ z^{x_{1}+ x_{3}+ 1}+ z^{x_{1}+ x_{4}+ x_{5}+8}+ z^{x_{1}+ x_{4}+ x_{5}+ 2}+ z^{x_{1}+ x_{4}+10}+ z^{x_{1}+ x_{4}+ 1}+ z^{x_{1}+ x_{5}+10}+ z^{x_{1}+ x_{5}+1}+ z^{x_{1}+8}+ z^{x_{1}+ 4}+ + z^{x_{2}+ x_{3}+ x_{4}+8}+ z^{x_{2}+ x_{3}+ x_{4}+2}+ z^{x_{2}+ x_{3}+ x_{5}+8}+ z^{x_{2}+x_{3}+ x_{5}+ 2}+ z^{x_{2}+x_{3}+10}+z^{x_{2}+ x_{3}+1}+ z^{x_{2}+ x_{4}+ x_{5}+8}+ z^{x_{2}+x_{4}+ x_{5}+ 2}+ z^{x_{2}+x_{4}+10}+ z^{x_{2}+x_{4}+1}+ z^{x_{2}+ x_{5}+10}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+8}+ z^{x_{2}+ 4}+ z^{x_{3}+ x_{4}+ x_{5}+ 8}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ 10}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ 10}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+8}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ 10}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+8}+ z^{x_{4}+4}+ z^{x_{5}+8}+z^{x_{5}+4}+z^{12}- ( z^{x_{1}+ x_{2}+ x_{3}+9}+ z^{x_{1}+ x_{2}+ x_{3}+1} + z^{x_{1}+ x_{2}+ x_{4}+9}+ z^{x_{1}+ x_{2}+ x_{4}+1} + z^{x_{1}+ x_{2}+ x_{5}+9}+z^{x_{1}+ x_{2}+ x_{5}+1} + z^{x_{1}+ x_{2}+8}+ z^{x_{1}+x_{2}+3}+ + z^{x_{1}+ x_{3}+ x_{4}+8}+ z^{x_{1}+ x_{3}+ x_{4}+1} + z^{x_{1}+ x_{3}+ x_{5}+9}+ z^{x_{1}+ x_{3}+ x_{5}+ 1}+ z^{x_{1}+ x_{3}+ 8}++ z^{x_{1}+ x_{3}+3} +z^{x_{1}+ x_{4}+ x_{5}+9}+ z^{x_{1}+x_{4}+ x_{5}+ 1}+ z^{x_{1}+ x_{4}+8}+ z^{x_{1}+ x_{5}+ 8}+ z^{x_{1}+ x_{4}+3}+ z^{x_{1}+ x_{5}+3}+ z^{x_{1}+11}+ z^{x_{1}+1}+ z^{x_{2}+ x_{3}+ x_{4}+9}+ z^{x_{2}+ x_{3}+ x_{4}+1}+ z^{x_{2}+ x_{3}+ x_{5}+ 9}+ z^{x_{2}+x_{3}+ x_{5}+ 1}+ z^{x_{2}+x_{3}+8}+ z^{x_{2}+x_{3}+3}+ + z^{x_{2}+ x_{4}+ x_{5}+9}+ z^{x_{2}+ x_{4}+ x_{5}+1} +z^{x_{2}+x_{4}+ x_{5}+9}+ z^{x_{2}+x_{4}+ x_{5}+ 1}+ z^{x_{2}+x_{4}+8}+ z^{x_{2}+x_{4}+3}+ z^{x_{2}+ x_{5}+8}+ z^{x_{2}+ x_{5}+3}+ z^{x_{2}+ x_{6}+4}+ z^{x_{2}+ 1}+ z^{x_{3}+ x_{4}+ x_{5}+9}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+8}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+8}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+11}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+8}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+11}+ z^{x_{4}+1}+ z^{x_{5}+11}+ z^{x_{5}+1}+z^{8} )\).
Compare the l.r.p in \(Q_{20}(A)\) and the l.r.p in \(Q_{34}(B)\), we have \(x_{1}= 4\).
\(Q_{35}(B)= z^{ x_{2}+ x_{3}+12}+ z^{x_{2}+ x_{3}+6} + z^{x_{2}+ x_{4}+ 12} + z^{x_{2}+ x_{4}+6}+ z^{x_{2}+ x_{5}+12}+z^{x_{2}+ x_{5}+6}+ z^{x_{2}+14}+ z^{x_{2}+5} + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+12}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+14}+ z^{ x_{3}+ 5}+ z^{x_{4}+ x_{5}+12}+ z^{x_{4}+ x_{5}+ 6}+ z^{ x_{4}+14}+ z^{x_{4}+ 5}+ z^{x_{5}+14}+ z^{x_{5}+4}+ z^{12} + z^{x_{2}+ x_{3}+ x_{4}+8}+ z^{x_{2}+ x_{3}+ x_{4}+2}+ z^{x_{2}+ x_{3}+ x_{5}+8}+ z^{x_{2}+x_{3}+ x_{5}+ 2}+ z^{x_{2}+x_{3}+10}+z^{x_{2}+ x_{3}+1}+ z^{x_{2}+ x_{4}+ x_{5}+8}+ z^{x_{2}+x_{4}+ x_{5}+ 2}+ z^{x_{2}+x_{4}+10}+ z^{x_{2}+x_{4}+1}+ z^{x_{2}+ x_{5}+10}+ z^{x_{2}+ x_{5}+1}+ z^{x_{2}+8}+ z^{x_{2}+ 4}+ z^{x_{3}+ x_{4}+ x_{5}+ 8}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ 10}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ 10}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+8}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ 10}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+8}+ z^{x_{4}+4}+ z^{x_{5}+8}+z^{x_{5}+4}+2z^{12}- ( z^{x_{2}+ x_{3}+13}+ z^{x_{2}+ x_{3}+5} + z^{x_{2}+ x_{4}+13}+ z^{x_{2}+ x_{4}+5} + z^{x_{2}+ x_{5}+13}+z^{x_{2}+ x_{5}+5} + z^{x_{2}+12} + z^{x_{2}+7}+ + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+5} + z^{x_{3}+ x_{5}+13}+ z^{x_{3}+ x_{5}+5}+ z^{x_{3}+ 12}+ z^{x_{3}+7} +z^{x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+5}+ z^{ x_{4}+12}+ z^{x_{5}+ 12}+ z^{x_{4}+7}+ z^{x_{5}+7}+ z^{15} + z^{x_{2}+ x_{3}+ x_{4}+9}+ z^{x_{2}+ x_{3}+ x_{4}+1}+ z^{x_{2}+ x_{3}+ x_{5}+ 9}+ z^{x_{2}+x_{3}+ x_{5}+ 1}+ z^{x_{2}+x_{3}+8}+ z^{x_{2}+x_{3}+3}+ + z^{x_{2}+ x_{4}+ x_{5}+9}+ z^{x_{2}+ x_{4}+ x_{5}+1} +z^{x_{2}+x_{4}+ x_{5}+9}+ z^{x_{2}+x_{4}+ x_{5}+ 1}+ z^{x_{2}+x_{4}+8}+ z^{x_{2}+x_{4}+3}+ z^{x_{2}+ x_{5}+8}+ z^{x_{2}+ x_{5}+3}+ z^{x_{2}+ x_{6}+4}+ z^{x_{2}+ 1}+ z^{x_{3}+ x_{4}+ x_{5}+9}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+8}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+8}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+11}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+8}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+11}+ z^{x_{4}+1}+ z^{x_{5}+11}+ z^{x_{5}+1} )\).
Compare the l.r.p in \(Q_{20}(A)\) and the l.r.p in \(Q_{35}(B)\), we have \(x_{2}= 5\).
\(Q_{36}(B)= z^{ x_{3}+17}+ z^{x_{3}+11} + z^{x_{4}+ 17} + z^{x_{4}+11}+ z^{x_{5}+17}+z^{x_{5}+11}+ z^{19}+ z^{10} + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+12}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+14}+ z^{ x_{3}+ 5}+ z^{x_{4}+ x_{5}+12}+ z^{x_{4}+ x_{5}+ 6}+ z^{ x_{4}+14}+ z^{x_{4}+ 5}+ z^{x_{5}+14}+ z^{x_{5}+4}+ z^{12} + z^{x_{3}+ x_{4}+13}+ z^{x_{3}+ x_{4}+7}+ z^{x_{3}+ x_{5}+13}+z^{x_{3}+ x_{5}+ 7}+ z^{x_{3}+15}+z^{x_{3}+6}+ z^{ x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+ 7}+ z^{x_{4}+15}+ z^{x_{4}+6}+ z^{x_{5}+15}+ z^{x_{5}+6}+ z^{13}+ z^{x_{3}+ x_{4}+ x_{5}+ 8}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ 10}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ 10}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+8}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ 10}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+8}+ z^{x_{4}+4}+ z^{x_{5}+8}+z^{x_{5}+4}+2z^{12}- ( z^{x_{3}+18}+ z^{x_{3}+10} + z^{x_{4}+18}+ z^{x_{4}+10}+ z^{x_{5}+18}+z^{x_{5}+10} + z^{17} + z^{12}+ + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+5} + z^{x_{3}+ x_{5}+13}+ z^{x_{3}+ x_{5}+5}+ z^{x_{3}+ 12}+ z^{x_{3}+7} +z^{x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+5}+ z^{ x_{4}+12}+ z^{x_{5}+ 12}+ z^{x_{4}+7}+ z^{x_{5}+7}+ z^{15} + z^{x_{2}+ x_{3}+ x_{4}+9}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+ 14}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+13}+ z^{x_{3}+8}+ + z^{x_{4}+ x_{5}+14}+ z^{ x_{4}+ x_{5}+6} +z^{x_{4}+ x_{5}+14}+ z^{x_{4}+ x_{5}+6}+ z^{x_{4}+13}+ z^{x_{4}+8}+ z^{x_{5}+13}+ z^{x_{5}+8}+ z^{ x_{6}+9}+ z^{x_{3}+ x_{4}+ x_{5}+9}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+8}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+8}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+11}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+8}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+11}+ z^{x_{4}+1}+ z^{x_{5}+11}+ z^{x_{5}+1} )\).
Compare the l.r.p in \(Q_{20}(A)\) and the l.r.p in \(Q_{36}(B)\), we have \(s = 5\) or \(s = 6\) or \(s = 7\) or \(s = 8\) or \(s \geq 9\).
\(\underline{\mathbf{Case\ 3.1.1}:}\) \(s = 4\).
Since \(5 \leq x_{3}\leq x_{4}\leq x_{5}.\) We have \(Q_{19}(A)\neq Q_{34}(B)\).
\(\underline{\mathbf{Case\ 3.1.2}:}\) \(s = 5\).
\(Q_{21}(A)=z^{19}+z^{t+u+9}+2z^{t+14}+2z^{u+14}+z^{t+u+1}+z^{11}+2z^{t+6}+2z^{u+6}+z^{u+13} +3z^{t+5}+3z^{u+5}+3z^{t+u+10}+2z^{t+u+8}+4z^{u+12}+2z^{t+u+7} +z^{t+13}+4z^{t+12}+2z^{12}+6z^{10}+2z^{17}+2z^{9} -(3z^{t+9}+3z^{u+9}+3z^{14}+z^{t+1}+2z^{t+u+6}+2z^{6}+2z^{t+u+5} +4z^{t+10}+4z^{u+10}+z^{u+1}+2z^{15}+z^{20}+z^{t+u+4}+2z^{t+16}+2z^{u+16}+2z^{t+8}+2z^{u+8}+4z^{t+u+11}+4z^{13})\).
\(Q_{37}(B)= z^{ x_{3}+17}+ z^{x_{3}+11} + z^{x_{4}+ 17} + z^{x_{4}+11}+ z^{x_{5}+17}+z^{x_{5}+11}+ z^{19}+ z^{10} + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+12}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+14}+ z^{ x_{3}+ 5}+ z^{x_{4}+ x_{5}+12}+ z^{x_{4}+ x_{5}+ 6}+ z^{ x_{4}+14}+ z^{x_{4}+ 5}+ z^{x_{5}+14}+ z^{x_{5}+4}+ z^{12} + z^{x_{3}+ x_{4}+13}+ z^{x_{3}+ x_{4}+7}+ z^{x_{3}+ x_{5}+13}+z^{x_{3}+ x_{5}+ 7}+ z^{x_{3}+15}+z^{x_{3}+6}+ z^{ x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+ 7}+ z^{x_{4}+15}+ z^{x_{4}+6}+ z^{x_{5}+15}+ z^{x_{5}+6}+ z^{13}+ z^{x_{3}+ x_{4}+ x_{5}+ 8}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ 10}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ 10}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+8}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ 10}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+8}+ z^{x_{4}+4}+ z^{x_{5}+8}+z^{x_{5}+4}+2z^{12}- ( z^{x_{3}+18}+ z^{x_{3}+10} + z^{x_{4}+18}+ z^{x_{4}+10}+ z^{x_{5}+18}+z^{x_{5}+10} + z^{17} + z^{12}+ + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+5} + z^{x_{3}+ x_{5}+13}+ z^{x_{3}+ x_{5}+5}+ z^{x_{3}+ 12}+ z^{x_{3}+7} +z^{x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+5}+ z^{ x_{4}+12}+ z^{x_{5}+ 12}+ z^{x_{4}+7}+ z^{x_{5}+7}+ z^{15} + z^{x_{2}+ x_{3}+ x_{4}+9}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+ 14}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+13}+ z^{x_{3}+8}+ + z^{x_{4}+ x_{5}+14}+ z^{ x_{4}+ x_{5}+6} +z^{x_{4}+ x_{5}+14}+ z^{x_{4}+ x_{5}+6}+ z^{x_{4}+13}+ z^{x_{4}+8}+ z^{x_{5}+13}+ z^{x_{5}+8}+ z^{ x_{6}+9}+ z^{x_{3}+ x_{4}+ x_{5}+9}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+8}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+8}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+11}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+8}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+11}+ z^{x_{4}+1}+ z^{x_{5}+11}+ z^{x_{5}+1} )\).
Compare the l.r.p in \(Q_{21}(A)\) and the l.r.p in \(Q_{37}(B)\), we have \(x_{3}= x_{4}= 5\).
\(Q_{38}(B)=2z^{x_{5}+17}+z^{x_{5}+14}+2z^{x_{5}+12}+3z^{x_{5}+6}+z^{x_{5}+22}+z^{x_{5}+15}+z^{x_{5}+4}+2z^{22}+2z^{19}+3z^{20}+2z^{11} -(3z^{x_{5}+10}+z^{x_{5}+13}+z^{x_{5}+11}+2z^{x_{5}+8}+z^{x_{5}+7}+z^{x_{5}+1}+z^{24}+z^{23}+3z^{18}+2z^{17}+z^{16}+2z^{15}+z^{12})\).
Compare the l.r.p in \(Q_{21}(A)\) and the l.r.p in \(Q_{38}(B)\), we have \(t = 5\) or \(t = 6\) or \(t = 7\) or \(t = 8\) or \(t \geq 9\).
\(\underline{\mathbf{Case\ 3.1.2.1}:}\) \(t = 5\).
\(A \cong\theta( 4,4,5,5,5,u)\), \(A\) is \(\chi\)-unique by Lemma 1.
\(\underline{\mathbf{Case\ 3.1.2.2}:}\) \(t = 6\), \(x_{5} = 6\).
\(Q_{22}(A)= 4z^{u+14}+2z^{u+6}+z^{u+13}+3z^{u+5}+2z^{u+12}+z^{u+7}+z^{u+16}+2z^{18}+z^{12}+z^{11}+2z^{17}+2z^{10}- (3z^{u+9}+4z^{u+10}+z^{u+1}+2z^{u+8}+3z^{13}+z^{15}+2z^{22}+5z^{14}+z^{u+17})\).
\(Q_{39}(B)=z^{28}+z^{21}+2z^{22}+3z^{20}-(3z^{17}+z^{24}+3z^{18}+z^{12})\).
We have \(Q_{22}(A)\neq Q_{39}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.2.3}:}\) \(t = 7\), \(x_{5} = 7\).
\(Q_{23}(A)= 4z^{u+14}+2z^{u+6}+z^{u+13}+3z^{u+5}+2z^{u+12}+2z^{u+15}+3z^{u+17}+z^{21}+4z^{12}+3z^{10}- (3z^{u+9}+4z^{u+10}+z^{u+1}+z^{u+8}+4z^{13}+z^{16}+z^{23}+2z^{u+16}+2z^{u+16}+z^{u+18}+2z^{u+13}+2z^{14})\).
\(Q_{40}(B)=z^{24}+z^{13}+2z^{29}+3z^{22}+3z^{11}+z^{20}-(3z^{17}+2z^{15}+4z^{18}+z^{12})\).
We have \(Q_{23}(A)\neq Q_{40}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.2.4}:}\) \(t = 8\), \(x_{5} = 8\).
\(Q_{24}(A)= 3z^{u+18}+2z^{u+6}+z^{u+13}+3z^{u+5}+4z^{u+12}+z^{21}+2z^{12}+3z^{10}- (2z^{u+8}+z^{u+19}+z^{24}+z^{14}+z^{13}+2z^{u+9}+z^{u+1}+4z^{u+10})\).
\(Q_{41}(B)=2z^{25}+3z^{14}+z^{30}+z^{22}+z^{19}+2z^{20}+2z^{11}- (z^{21}+z^{16}+3z^{15}+2z^{18}+z^{17}+z^{12})\).
We have \(Q_{24}(A)\neq Q_{41}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.2.5}:}\) \(t \geq 9\), \(x_{5} \geq 9\)
\(Q_{25}(A)=2z^{u+14}+2z^{u+6}+z^{u+13}+3z^{u+5}+4z^{u+12}+z^{u+10}+3z^{u+19}+2z^{u+17}+2z^{23}+2z^{15}+3z^{10}+2z^{12}+4z^{21}- (z^{u+20}+4z^{13}+3z^{u+9}+4z^{u+10}+z^{u+1}+2z^{u+16}+2z^{u+8}+2z^{25}+z^{19}+z^{20}+2z^{u+15})\).
\(Q_{42}(B)= 2z^{26}+2z^{21}+z^{15}+z^{31}+z^{13}+2z^{11}+2z^{19}+2z^{20}- (4z^{17}+2z^{16}+z^{12})\).
We have \(Q_{25}(A)\neq Q_{42}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.3}:}\) \(s = 6\).
\(Q_{26}(A)=z^{21}+3z^{t+u+9}+3z^{u+15}+3z^{t+15}+z^{t+u+1}+3z^{13}+3z^{u+13}+2z^{u+7}+2z^{t+7} +2z^{t+17}+2z^{u+17}+3z^{t+5}+3z^{u+5}+4z^{t+u+11}+3z^{t+13}+6z^{11}+2z^{19}+2z^{9} -(z^{t+9}+z^{u+9}+2z^{15}+z^{t+1}+2z^{7}+2z^{t+u+5}+3z^{t+11}+3z^{u+11}+z^{u+1}+2z^{17}+z^{22} +z^{t+u+10}+2z^{t+16}+2z^{u+16}+z^{16}+z^{t+u+4}+2z^{t+10}+2z^{u+10}+2z^{t+18}+2z^{u+18}+2z^{t+8}+2z^{u+8}+4z^{t+u+12}+4z^{14})\).
\(Q_{43}(B)= z^{ x_{3}+17}+ z^{x_{3}+11} + z^{x_{4}+ 17} + z^{x_{4}+11}+ z^{x_{5}+17}+z^{x_{5}+11}+ z^{19}+ z^{10} + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+12}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+14}+ z^{ x_{3}+ 5}+ z^{x_{4}+ x_{5}+12}+ z^{x_{4}+ x_{5}+ 6}+ z^{ x_{4}+14}+ z^{x_{4}+ 5}+ z^{x_{5}+14}+ z^{x_{5}+4}+ z^{12} + z^{x_{3}+ x_{4}+13}+ z^{x_{3}+ x_{4}+7}+ z^{x_{3}+ x_{5}+13}+z^{x_{3}+ x_{5}+ 7}+ z^{x_{3}+15}+z^{x_{3}+6}+ z^{ x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+ 7}+ z^{x_{4}+15}+ z^{x_{4}+6}+ z^{x_{5}+15}+ z^{x_{5}+6}+ z^{13}+ z^{x_{3}+ x_{4}+ x_{5}+ 8}+ z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ 10}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ 10}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+8}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ 10}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+8}+ z^{x_{4}+4}+ z^{x_{5}+8}+z^{x_{5}+4}+2z^{12}- ( z^{x_{3}+18}+ z^{x_{3}+10} + z^{x_{4}+18}+ z^{x_{4}+10}+ z^{x_{5}+18}+z^{x_{5}+10} + z^{17} + z^{12}+ + z^{x_{3}+ x_{4}+12}+ z^{x_{3}+ x_{4}+5} + z^{x_{3}+ x_{5}+13}+ z^{x_{3}+ x_{5}+5}+ z^{x_{3}+ 12}+ z^{x_{3}+7} +z^{x_{4}+ x_{5}+13}+ z^{x_{4}+ x_{5}+5}+ z^{ x_{4}+12}+ z^{x_{5}+ 12}+ z^{x_{4}+7}+ z^{x_{5}+7}+ z^{15} + z^{x_{2}+ x_{3}+ x_{4}+9}+ z^{x_{3}+ x_{4}+6}+ z^{x_{3}+ x_{5}+ 14}+ z^{x_{3}+ x_{5}+ 6}+ z^{x_{3}+13}+ z^{x_{3}+8}+ + z^{x_{4}+ x_{5}+14}+ z^{ x_{4}+ x_{5}+6} +z^{x_{4}+ x_{5}+14}+ z^{x_{4}+ x_{5}+6}+ z^{x_{4}+13}+ z^{x_{4}+8}+ z^{x_{5}+13}+ z^{x_{5}+8}+ z^{ x_{6}+9}+ z^{x_{3}+ x_{4}+ x_{5}+9}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+8}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+8}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+11}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+8}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+11}+ z^{x_{4}+1}+ z^{x_{5}+11}+ z^{x_{5}+1} ).\)
Compare the l.r.p in \(Q_{26}(A)\) and the l.r.p in \(Q_{43}(B)\), we have \(x_{3}= x_{4}= 6\).
\(Q_{44}(B)=2z^{x_{5}+16}+z^{x_{5}+7}+z^{x_{5}+24}+z^{x_{5}+20}+z^{x_{5}+6}+z^{x_{5}+4}+z^{x_{5}+15}+2z^{23}+z^{20}+z^{25}+z^{21}+3z^{10}+3z^{12}+z^{22} -(2z^{x_{5}+11}+2z^{x_{5}+9}+z^{x_{5}+14}+z^{x_{5}+21}+z^{x_{5}+10}+2z^{24}+z^{26}+2z^{19}+2z^{18}+2z^{16}+z^{x_{5}+1}).\)
Compare the l.r.p in \(Q_{26}(A)\) and the l.r.p in \(Q_{44}(B)\), we have \(t = 6\) or \(t = 7\) or \(t = 8\) or \(t \geq 9\).
\(\underline{\mathbf{Case\ 3.1.3.1}:}\) \(t = 6\).
\(A \cong\theta( 4,4,6,6,6,u)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(\underline{\mathbf{Case\ 3.1. 3.2}:}\) \(t = 7\), \(x_{5} = 7\).
\(Q_{27}(A)=z^{22}+3z^{u+15}+3z^{u+13}+2z^{14}+2z^{u+7}+2z^{24}+z^{u+8}+z^{u+17}+3z^{11}+3z^{u+5}+2z^{u+18}+2z^{20}+2z^{9}+2z^{13} -(4z^{14}+2z^{15}+2z^{u+19}+z^{u+9}+2z^{u+12}+3z^{u+11}+z^{u+1}+2z^{u+10}+2z^{23}+2z^{25}+z^{17})\).
\(Q_{45}(B)=4z^{23}+z^{14}+z^{31}+z^{27}+3z^{10}+z^{25}-(3z^{16}+z^{28}+2z^{24}+z^{26}+2z^{19}+z^{18})\).
We have \(Q_{27}(A)\neq Q_{45}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.3.3}:}\) \(t = 8\), \(x_{5} = 8\).
\(Q_{28}(A)=z^{25}+3z^{u+15}+z^{u+13}+z^{15}+2z^{u+7}+2z^{21}+4z^{11}+4z^{u+17}+6z^{13}+3z^{u+5}+4z^{u+19}+2z^{9} – (3z^{u+18}+2z^{u+20}+2z^{u+10}+2z^{u+8}+3z^{u+11}+z^{u+1}+4z^{14}+2z^{24}+2z^{u+16}+z^{17}+z^{26}+z^{22})\).
\(Q_{46}(B)=z^{23}+z^{28}+z^{14}+4z^{12}+3z^{10}+z^{20}-(z^{29}+z^{19}+z^{18}+2z^{18})\).
We have \(Q_{28}(A)\neq Q_{46}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.3.4}:}\) \(t \geq 9\), \(x_{5} \geq 9\).
\(Q_{29}(A)=3z^{24}+3z^{u+15}+3z^{u+13}+2z^{u+7}+2z^{u+17}+3z^{u+5}+2z^{16}+z^{u+10}+2z^{26}+4z^{u+20}+z^{22}+2z^{9}+3z^{13}+4z^{11}-( z^{u+9}+3z^{u+11}+z^{u+1}+z^{u+19}+2z^{u+16}+2z^{u+10}+2z^{u+8}+2z^{u+21}+2z^{u+14}+z^{14}+z^{20}+2z^{25}+2z^{27}+2z^{17}).\)
\(Q_{47}(B)=3z^{25}+z^{33}+z^{29}+z^{15}+z^{13}+3z^{12}+z^{23}+z^{20}+z^{21}+3z^{10}- (5z^{18}+z^{30}+z^{26}+z^{24}+z^{19}+2z^{16})\).
We have \(Q_{29}(A)\neq Q_{47}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.4}:}\) \(s = 7\).
\(Q_{30}(A)=z^{23}+3z^{t+u+9}+3z^{u+16}+3z^{t+16}+z^{t+u+1}+z^{15}+4z^{u+14} +2z^{t+19}+2z^{u+19}+3z^{t+5}+3z^{u+5}+4z^{t+u+12}+z^{t+u+10}+2z^{t+u+7}+4z^{t+14}+6z^{12}+2z^{14}+2z^{9}+2z^{21} -(z^{t+9}+z^{u+9}+2z^{16}+z^{t+1}+2z^{8}+2z^{t+u+8}+z^{u+15}+z^{t+15}+2z^{t+u+5}+4z^{t+12}+4z^{u+12} +z^{u+1}+2z^{19}+z^{24}+z^{t+17}+z^{u+17}+z^{18}+z^{t+u+4}+2z^{t+20}+z^{t+11}+z^{u+11}+2z^{u+20}+4z^{t+u+13}+4z^{15}).\)
Compare the l.r.p in \(Q_{30}(A)\) and the l.r.p in \(Q_{43}(B)\), we have \(t = 7\) or \(t = 8\) or \(t \geq 9\).
\(\underline{\mathbf{Case\ 3.1.4.1}:}\) \(t = 7\).
\(A \cong\theta( 4,4,7,7,7,u)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(\underline{\mathbf{Case\ 3.1.4.2}:}\)
\(Q_{31}(A)=z^{23}+3z^{u+16}+3z^{t+16}+z^{t+u+1}+z^{15}+4z^{u+14} +2z^{t+19}+2z^{u+19}+3z^{t+5}+3z^{u+5}+4z^{t+u+12}+z^{t+u+10}+z^{t+u+7}+4z^{t+14}+6z^{12}+2z^{14}+2z^{9} -(z^{t+9}+z^{u+9}+z^{16}+z^{t+1}+2z^{8}+2z^{t+u+8}+z^{u+15}+z^{t+15}+z^{t+u+5}+4z^{t+12}+4z^{u+12} +z^{u+1}+z^{24}+z^{t+17}+z^{u+17}+z^{18}+2z^{t+20}+z^{t+11}+z^{u+11}+2z^{u+20}+2z^{t+u+13}+3z^{15}).\)
\(Q_{48}(B)=2z^{x_{5}+17}+2z^{x_{5}+19}+3z^{x_{5}+14}+z^{x_{5}+5}+z^{x_{5}+6}+z^{x_{5}+22} +z^{x_{5}+26}+2z^{x_{5}+8}+z^{x_{5}+4}+3z^{24} +z^{27}+z^{20}+z^{22}+3z^{13}+2z^{11}+z^{10} -(z^{x_{}+18}+3z^{x_{5}+15}+z^{x_{5}+23}+z^{x_{5}+10}+z^{x_{5}+7}+z^{x_{5}+12}+2z^{25}+z^{28}+3z^{20} +4z^{17}+2z^{14}+z^{x_{5}+1})\).
Compare the l.r.p in \(Q_{31}(A)\) is \(2z^{9}\). We have \(t = u = 8\).
\(Q_{32}(A)=7z^{22}+6z^{13}+4z^{27}+z^{16}+z^{23}+z^{14}+6z^{12}- (4z^{20}+2z^{25}+2z^{19}+2z^{29}+z^{21}+z^{17}+4z^{20}+3z^{15}+3z^{18}).\)
Compare the l.r.p in \(Q_{31}(B)\) is \(z^{10}\). We have \(x_{5} =9\).
\(Q_{33}(A)=7z^{22}+6z^{13}+4z^{27}+z^{16}+z^{23}+z^{14}+6z^{12}- (4z^{20}+2z^{25}+2z^{19}+2z^{29}+z^{21}+z^{17}+4z^{20}+3z^{15}+3z^{18})\).
\(Q_{49}(B)=2z^{26}+z^{28}+3z^{23}+z^{31}+z^{35}+4z^{13}+z^{22}+2z^{11} -(3z^{24}+z^{32}+z^{19}+z^{16}+z^{21}+2z^{25}+2z^{20}+2z^{14})\).
We have \(Q_{33}(A)\neq Q_{49}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.4.3}:}\) \(t \geq 9\), \(x_{5} \geq 9\).
\(Q_{34}(A)=3z^{u+16}+3z^{u+14}+3z^{u+5}+3z^{u+19}+z^{u+10}+4z^{u+21}+2z^{25}+2z^{23}+4z^{14}+2z^{28}+6z^{12}+2z^{9} -(z^{u+9}+z^{u+15}+4z^{u+12}+z^{u+1}+z^{u+17}+z^{u+11}+2z^{u+20}+2z^{u+22}+2z^{u+17}+4z^{18}+2z^{24}+z^{10}+4z^{21} +z^{26}+z^{20}+2z^{29}+3z^{15})\).
\(Q_{50}(B)=2z^{26}+z^{15}+z^{31}+z^{35}+z^{27}+4z^{13}+z^{22}+z^{27}+z^{22} -(z^{32}+z^{19}+z^{16}+z^{21}+2z^{25}+2z^{20}+2z^{17}+2z^{14})\).
We have \(Q_{34}(A)\neq Q_{50}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.5}:}\) \(s = 8\).
\(Q_{35}(A)=z^{25}+z^{t+u+9}+z^{t+17}+z^{u+17}+z^{t+u+1}+4z^{u+15}+z^{t+9}+z^{u+9}+2z^{t+21}+2z^{u+21}+3z^{t+5} +3z^{u+5}+z^{u+11}+4z^{t+u+13}+2z^{t+u+11}+2z^{t+u+7}+z^{t+11}+z^{t+19}+4z^{t+15}+z^{u+19}+2z^{15}+6z^{13}+2z^{23} -(z^{17}+z^{t+17}+z^{u+17}+z^{t+1}+2z^{t+u+9}+2z^{t+u+5}+4z^{t+13}+4z^{u+13}+z^{u+1}+2z^{21}+z^{26}+z^{t+u+10} +2z^{t+8}+2z^{u+8}+z^{20}+z^{t+u+4}+2z^{t+12}+2z^{u+12}+2z^{t+22}+2z^{u+22}+2z^{t+8}+2z^{u+8}+4z^{t+u+14}+4z^{16})\).
We have \(t = 8\) or \(t \geq 9\).
\(\underline{\mathbf{Case\ 3.1.5.1}:}\) \(t = 8\).
\(A \cong\theta( 4,4,8,8,8,u)\), \(A\) is \(\chi\)-unique by Lemma 14.
\(\underline{\mathbf{Case\ 3.1.5.2}:}\) \(t \geq 9\).
\(Q_{36}(A)=z^{u+18}+z^{u+17}+z^{u+10}+4z^{u+15}+z^{u+9}+2z^{u+21}+3z^{u+5}+z^{u+11}+4z^{u+22}+2z^{u+20}+2z^{u+16} +z^{25}+z^{18}+2z^{30}+3z^{14}+z^{20}+z^{28}+4z^{24}+2z^{15}+6z^{13}+2z^{23} -(4z^{u+18}+2z^{u+14}+4z^{u+13}+z^{u+1}+2z^{u+12}+2z^{u+22}+2z^{u+8}+z^{u+19}+4z^{u+23}+3z^{17}+z^{u+13}+4z^{22} +4z^{21}+2z^{27}+2z^{31}+4z^{16}+z^{10})\).
Consider the l.r.p in \(Q_{35}(A)\) is \(-z^{10}\). We have \(x_{3}=9\).
\(Q_{51}(B)=z^{26}+z^{x_{4}+15}+z^{x_{4}+16}+z^{x_{5}+21}+z^{x_{5}+15}+z^{23}+z^{14}+z^{x_{4}+x_{5}+6}+z^{x_{4}+5}+z^{x_{5}+5} +z^{x_{4}+22}+z^{24}+z^{x_{5}+16}+z^{x_{4}+6}+z^{x_{5}+6}+z^{x_{4}+x_{5}+17}+z^{x_{4}+x_{5}+21}+z^{x_{4}+19} +z^{x_{5}+19}+2z^{13}+z^{x_{4}+4}+z^{x_{5}+4}+z^{19}+z^{12}+z^{10} -(z^{x_{5}+18}+z^{x_{4}+18}+z^{19}+z^{x_{4}+12}+z^{x_{4}+7}+z^{x_{5}+12}+z^{x_{5}+7}+z^{x_{4}+23}+z^{x_{5}+23}+z^{x_{4}+13}+z^{x_{5}+13} +z^{x_{4}+x_{5}+18}+z^{x_{4}+11}+z^{x_{5}+17}+z^{x_{5}+11}+z^{x_{4}+x_{5}+3}+z^{x_{4}+1}+z^{x_{5}+1}+z^{15}+z^{17})\).
Consider the l.r.p in \(Q_{36}(B)\) is \(z^{10}\). We have \(x_{4}=9\).
\(Q_{37}(A)=z^{u+18}+z^{u+17}+z^{u+10}+3z^{u+15}+z^{u+9}+2z^{u+21}+3z^{u+5}+z^{u+11}+4z^{u+22}+z^{u+20}+2z^{u+16} +z^{25}+z^{18}+2z^{30}+z^{14}+z^{20}+2z^{24}+3z^{13}+z^{23} -(4z^{u+18}+z^{u+14}+4z^{u+13}+z^{u+1}+2z^{u+12}+z^{u+22}+2z^{u+8}+z^{u+19}+4z^{u+23}+2z^{17}+2z^{22} +2z^{21}+2z^{31}+2z^{16})\).
\(Q_{52}(B)=z^{x_{5}+16}+z^{x_{5}+15}+z^{x_{5}+26}+z^{x_{5}+30}+z^{x_{5}+19}+z^{x_{5}+21}+z^{x_{5}+6}+z^{x_{5}+5}+z^{x_{5}+4}+z^{26}+z^{12} -(z^{x_{5}+27}+z^{x_{5}+23}+z^{x_{5}+18}+z^{x_{5}+17}+z^{x_{5}+13}+2z^{x_{5}+12}+z^{x_{5}+11}+z^{x_{5}+7}+z^{x_{5}+1}+z^{32}+z^{20})\).
Consider the l.r.p in \(Q_{37}(B)\) is \(z^{12}\). We have \(x_{5}=11\) \(u \geq 9\).
\(Q_{53}(B)=2z^{26}+z^{16}+z^{17}+z^{37}+z^{41}+z^{30}+z^{15}+z^{31} -(2z^{23}+z^{29}+z^{34}+z^{18}+z^{38}+z^{28}+z^{22}+z^{20}+z^{24})\).
We have \(Q_{37}(A)\neq Q_{53}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.1.6}:}\) \(s \geq 9\).
\(Q_{38}(A)=z^{27}+z^{t+u+9}+2z^{u+18}+2z^{t+18}+z^{t+u+1}+z^{19}+4z^{u+16}+2z^{t+10}+2z^{u+10}+2z^{t+23}+2z^{u+23} +3z^{t+5}+3z^{u+5}+z^{u+11}+4z^{t+u+14}+2z^{t+u+12}+2z^{t+u+7}+z^{t+11}+z^{t+21}+4z^{t+16}+z^{u+21}+2z^{16}+6z^{14}+2z^{25} -(z^{t+9}+z^{u+9}+2z^{18}+z^{t+19}+z^{u+19}+z^{t+1}+2z^{t+u+10}+2z^{10}+2z^{t+u+5}+4z^{t+14}+4z^{u+14}+z^{u+1} +2z^{23}+z^{28}+z^{t+u+10}+2z^{t+19}+2z^{u+19}+z^{22}+z^{t+u+4}+2z^{t+13}+2z^{u+13}+2z^{t+24}+2z^{u+24}+2z^{t+8}+2z^{u+8}+4z^{t+u+15}+4z^{17})\).
Consider the l.r.p in \(Q_{38}(A)\) is \(2z^{9}\). We have \(x_{3}=x_{4}=5\).
\(Q_{54}(B)=2z^{22}+3z^{x_{5}+17}+z^{x_{5}+11}+z^{x_{5}+18}+z^{17}+3z^{19}+3z^{10}+z^{x_{5}+14}+z^{x_{5}+5}+z^{23} +2z^{x_{5}+12}+3z^{20}+3z^{11}+3z^{x_{5}+15}+3z^{x_{5}+6}+z^{x_{5}+22}+z^{x_{5}+4}+z^{13}+z^{12} -(2z^{23}+3z^{15}+3z^{x_{5}+10}+2z^{17}+2z^{12}+z^{x_{5}+12}+z^{x_{5}+7}+z^{24}+2z^{x_{5}+19}+z^{x_{5}+11}+2z^{18}+z^{13} +2z^{x_{5}+13}+2z^{6}+z^{x_{5}+1}+z^{16}+z^{15}+z^{17})\).
Since \(9\leq t\leq u\), the the l.r.p in \(Q_{54}(B)\) is\(-2z^{6}\) but not in \(Q_{38}(A)\).
We have \(Q_{38}(A)\neq Q_{54}(B)\), a contradiction.
If \(x_{3}=x_{4}=9\).
We have \(Q_{38}(A)\neq Q_{54}(B)\), a contradiction.
\(\underline{\mathbf{Case\ 3.2}:}\) \(x_{6}\neq 7\).
We know that \(x_{6}>7\). Hence \(x_{1} + x_{2}=8\) implies that \(x_{1} = x_{2}=4\).
\(Q_{39}(A)=z^{2s+9}+z^{t+u+9}+3z^{9}+2z^{s+u+9}+2z^{s+t+9}+z^{t+u+1}+z^{2s+1}+2z^{s+t+1}+2z^{s+u+1} +2z^{2s+t+5}+2z^{2s+u+5}+3z^{t+5}+3z^{u+5}+4z^{s+t+u+5}+z^{2s+t+u+1} +2z^{s+t+u+3}+2z^{t+u+7}+z^{t+11}+z^{2s+t+3}+4z^{s+t+7}+z^{u+11}+z^{2s+u+3}+4z^{s+u+7}+2z^{s+7}+6z^{s+5}+2z^{2s+7} -(z^{t+9}+z^{u+9}+2z^{s+9}+z^{2s+t+1}+z^{2s+u+1}+z^{t+1}+2z^{s+t+u+1}+2z^{s+1}+z^{6}+2z^{t+u+5} +4z^{s+t+5}+4z^{s+u+5}+z^{u+1}+2z^{2s+5}+z^{2s+10}+z^{t+u+10} +z^{12}+2z^{s+t+10}+2z^{s+u+10}+z^{2s+4}+z^{t+u+4}+2z^{s+u+4}+2z^{s+t+4}+2z^{2s+t+6}+2z^{2s+u+6}+2z^{t+8} +2z^{u+8}+4z^{s+t+u+6}+4z^{s+8})\).
\(Q_{55}(B)= z^{x_{3}+ x_{4}+ x_{5}+8} + z^{x_{3}+x_{6}+9}+ z^{x_{3}+10} + z^{x_{4}+ x_{6}+9} + z^{x_{4}+10}+ z^{x_{5}+ x_{6}+9}+z^{x_{5}+10}+ z^{x_{6}+11}+ z^{9} + 2z^{x_{3}+ x_{4}+x_{6}+5}+ 2z^{x_{3}+ x_{4}+6}+ 2z^{x_{3}+ x_{5}+ x_{6}+5}+ 2z^{x_{3}+ x_{5}+6}+ 2z^{x_{3}+ x_{6}+7}+ 2z^{x_{3}+5}+ 2z^{x_{4}+ x_{5}+ x_{6}+5}+ 2z^{x_{4}+ x_{5}+ 6}+ 2z^{ x_{4}+ x_{6}+7}+ 2z^{ x_{4}+ 5}+ 2z^{x_{5}+ x_{6}+7}+ 2z^{x_{5}+5}+ 2z^{x_{6}+5}+ 2z^{8}+ z^{x_{3}+ x_{4}+ x_{5}+ x_{6}+1} + z^{x_{3}+x_{4}+ x_{5}+ 2}+ z^{x_{3}+x_{4}+ x_{6}+ 3}+ z^{x_{3}+x_{4}+1}+ z^{x_{3}+ x_{5}+ x_{6}+ 3}+ z^{x_{3}+ x_{5}+1}+z^{x_{3}+ x_{6}+1}+ z^{x_{3}+ 4}+ z^{x_{4}+x_{5}+ x_{6}+3}+ z^{x_{4}+ x_{5}+1}+ z^{x_{4}+ x_{6}+1}+ z^{x_{4}+4}+ z^{x_{5}+ x_{6}+1}+ z^{x_{5}+4}+ z^{x_{6}+5}-( z^{x_{3}+ x_{4}+ x_{5}+} + z^{ x_{3}+ x_{6}+10}+ z^{x_{3}+9} + z^{x_{4}+ x_{6}+10}+ z^{x_{4}+9} + z^{x_{5}+ x_{6}+10}+z^{x_{5}+9} + z^{x_{6}+9}+ z^{11}+z^{x_{3}+ x_{4}+ x_{6}+5}+z^{x_{3}+ x_{4}+ x_{6}+6}+ 2z^{x_{3}+ x_{4}+5} + 2z^{x_{3}+ x_{5}+ x_{6}+6}+ 2z^{x_{3}+ x_{5}+5}+ 2z^{x_{3}+ x_{6}+ 5}+ 2z^{x_{3}+7}+2z^{x_{4}+ x_{5}+ x_{6}+6}+ 2z^{x_{4}+ x_{5}+5}+ 2z^{x_{4}+ x_{6}+5}+ 2z^{x_{5}+ x_{6}+5}+ 2z^{x_{4}+7}+ 2z^{ x_{5}+7}+ z^{x_{6}+7}+z^{x_{6}+8}+ z^{x_{3}+x_{4}+ x_{5}+ 1}+ z^{x_{3}+x_{4}+ x_{6}+ 1}+ z^{x_{3}+x_{4}+3}+ z^{x_{3}+ x_{5}+ x_{6}+ 1}+ z^{x_{3}+ x_{5}+3}+z^{x_{3}+ x_{6}+4}+ z^{x_{3}+ 1}+ z^{x_{4}+x_{5}+ x_{6}+ 1}+ z^{x_{4}+ x_{5}+3}+ z^{x_{4}+ x_{6}+4}+ z^{x_{4}+1}+ z^{x_{5}+ x_{6}+4}+ z^{x_{5}+1}+ z^{x_{6}+1} + z^{5} )\).
Compare the l.r.p in \(Q_{39}(A)\) and the l.r.p in the \(Q_{55}(B)\). We have \(s = 4\) or \(t = 4\) or \(u = 4\).
\(\underline{\mathbf{Case\ 3.2.1}:}\) \(s = 4\)
\(A\cong\theta(4,4,4,4,t,u)\), \(A\) is \(\chi\)-unique by Lemma 15.
\(\underline{\mathbf{Case\ 3.2.2}:}\) \(t = 4\).
We know that \(s = 4\).
\(A\cong\theta(4,4,4,4,4,u)\), \(A\) is \(\chi\)-unique by Lemma 9.
\(\underline{\mathbf{Case\ 3.2.3}:}\) \(u = 4\).
We know that \(s = t = 4\).
\(A\cong\theta(4,4,4,4,4,4)\), \(A\) is \(\chi\)-unique by Theorem 1. ◻

4. Conclusion

Many researchers have studied the chromaticity of \(k\)-bridge graphs. A \(2\)-bridge graph is essentially a \(\chi\)-unique cycle graph. The theta graph, represented as \(\theta(1,y_1,y_2)\), serves as an example of a \(3\)-bridge graph. Chao and Whitehead [1] demonstrated that each such theta graph is \(\chi\)-unique. Extending this result, Loerinc [2] showed that all \(3\)-bridge graphs are \(\chi\)-unique. The chromaticity of \(4\)-bridge graphs was addressed by Chen et al. [3] and Xu et al. [4]. The chromaticity of \(5\)-bridge graphs has been the subject of investigation in several studies [5-8]. The chromaticity of the \(6\)-bridge graph has been explored by various researchers [11-19]. In this paper, we extend the existing research on the chromaticity of \(6\)-bridge graphs by investigating the chromaticity of a specific \(6\)-bridge graph, denoted as \(\theta(r,r,s,s,t,u)\), where \(2 \leq r \leq s \leq t \leq u\).

Acknowledgements

The authors are thankful to referee(s) for their useful comments and suggestions.

References

  1. Chao, C. Y., & Whitehead Jr, E. G. (1979). Chromatically unique graphs. Discrete Mathematics, 27(2) 171-177.
  2. BLoerinc, B. (1978). Chromatic uniqueness of the generalized teta-graph. Discrete Mathematics, 23(3), 313-316.
  3. Xu, S. J., Liu, J. J., & Peng, Y. H. (1994). The chromaticity of s-bridge graphs and related graphs. Discrete Mathematics, 135, 349-358.
  4. Chen, X. E., Bao, X. W., & Ouyang, K. Z. (1992). Chromaticity of the graph \(\theta(r,s,t,u)\). Journal of Shaanxi Normal University, 20, 75-79.
  5. Bao, X. W., & Chen, X. E. (1994). Chromaticity of the graph \(\theta(r,s,t,u,v)\). Journal of Xinxiang University, Natural Science, 11, 19-22.
  6. Khalaf, A. M., & Peng, Y. H. (2009). Another proof of a family of chromatically unique 5-bridge graphs. International Journal of Applied Mathematics, 22, 1009-1020.
  7. Khalaf, A. M., Peng, Y. H., & Atan, K. A. (2010). Chromaticity of 5-bridge graphs (II). International Journal of Applied Mathematics, 23, 791-808.
  8. Li, X. F., & Wei, X. S. (2001). The chromatic uniqueness of a family of 5-bridge graphs. Journal of Qinghai Normal University, 2, 12-17.
  9. Dong, F. M., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11, #R12.
  10. Koh, K. M., & Teo, K. L. (1990). The search for chromatically unique graphs. Graphs and Combinatorics, 6, 259-285.
  11. Khalaf, A. M., & Peng, Y. H. (2009). Chromaticity of the 6 bridge graph \(\theta(r,r,r,s,t,t)\). International Journal of Applied Mathematics, 22, 1087-1111.

  12. Karim, N. S. A., & Hasni, Roslan. (2014). Chromaticity of a family of 6-bridge graphs. AIP Conference Proceedings, 1635, 440.
  13. Karim, N. S. A., & Hasni, Roslan. (2015). Chromaticity of a family of 6-bridge graphs. AIP Conference Proceedings, 1682, 0400101-0400106.
  14. Karim, N. S. A., Hasni, R., & Lau, G.-C. (2016). Chromatically unique 6-bridge graph. Electronic Journal of Graph Theory and Applications, 4(1), 60-78.
  15. Karim, N. S. A., & Hasni, R. (2017). The chromaticity of a family of 6-bridge graphs. IOP Conference Series: Journal of Physics: Conference Series, 890, 012116.
  16. Karim, N. S. A., & Hasni, Roslan. (2018). A new family of chromatically unique 6-bridge graphs. Proyecciones Journal of Mathematics, 37, 239-263.
  17. Khalaf, A. M., & Peng, Y. H. (2009). The chromatic uniqueness of a family of a 6-bridge graphs. AKCE Journal of Graphs and Combinatorics, 3, 393-400.
  18. Bokhary, S. A. U. H., & Bano, S. (2022). Chromatically unique 6-bridge graph \((r,r,r,s,t,u)\). Palestine Journal of Mathematics, 11(1), 191-202.

  19. Khalaf, A. M., & Peng, Y. H. (2010). A family of chromatically unique 6-bridge graphs. Ars Combinatoria, 94, 211-220