Search for Articles:

Contents

The smallest radius of a ball containing the support of a compactly supported potential

Alexander G. Ramm1
1Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
Copyright © Alexander G. Ramm. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let \(D\subset \mathbb{R}^3\) be a bounded domain. \(q\in C(D)\) be a real-valued compactly supported potential, \(A(\beta, \alpha,k)\) be its scattering amplitude, \(k>0\) be fixed, without loss of generality we assume \(k=1\), \(\beta\) be the unit vector in the direction of scattered field, \(\alpha\) be the unit vector in the direction of the incident field. Assume that the boundary of \(D\) is a smooth surface \(S\). Assume that \(D\subset Q_a:=\{x: |x|\le a\}\), and \(a>0\) is the minimal number such that \(q(x)=0\) for \(|x|>a\). Formula is derived for \(a\) in terms of the scattering amplitude.

Keywords: scattering theory, potential scattering, compactly supported potentials, the smallest radius of the ball containing the support of the potential