Contents

Super \((a,d)\)-\(C_3\)-antimagicness of a Corona Graph

Author(s): Noshad Ali1, Muhammad Awais Umar2, Afshan Tabassum1, Abdul Raheem3
1Department of Mathematics, NCBA & E, DHA Campus, Lahore, Pakistan.
2Govt. Degree College (B), Sharqpur Shareef, Pakistan.
3Department of Mathematics, National University of Singapore, Singapore.
Copyright © Noshad Ali, Muhammad Awais Umar, Afshan Tabassum, Abdul Raheem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A simple graph \(G=(V(G),E(G))\) admits an \(H\)-covering if \(\forall \ e \in E(G)\ \Rightarrow\ e \in E(H’)\) for some \((H’ \cong H )\subseteq G\). A graph \(G\) with \(H\) covering is an \((a,d)\)-\(H\)-antimagic if for bijection \(f:V\cup E \to \{1,2,\dots, |V(G)|+|E(G)| \}\), the sum of labels of all the edges and vertices belong to \(H’\) constitute an arithmetic progression \(\{a, a+d, \dots, a+(t-1)d\}\), where \(t\) is the number of subgraphs \(H’\). For \(f(V)= \{ 1,2,3,\dots,|V(G)|\}\), the graph \(G\) is said to be super \((a,d)\)-\(H\)-antimagic and for \(d=0\) it is called  \(H\)-supermagic. In this paper, we investigate the existence of super \((a,d)\)-\(C_3\)-antimagic labeling of a corona graph, for differences \(d=0,1,\dots, 5\).

Keywords: star graph \(S_n\), corona graph, \(C_3\)-supermagic, super \((a,d)\)-\(C_3\)-antimagic.

1. Introduction

Let \(G\) be a simple graph with vertex set \(V\) and edge set \(E\). An edge-covering of finite and simple graph \(G\) is a family of subgraphs \(H_1, H_2, \dots,H_t\) such that each edge of \(E(G)\) belongs to at least one of the subgraphs \(H_i\), \(i=1, 2, \dots, t\). In this case we say that \(G\) admits an \((H_1, H_2, \dots, H_t)\)-(edge) covering. If every subgraph \(H_i\) is isomorphic to a given graph \(H\), then the graph \(G\) admits an \(H\)-covering. A graph \(G\) admitting an \(H\)-covering is called \((a,d)\)-\(H\)-antimagic if there exists a total labeling \(f:V(G)\cup E(G) \to \{1,2,\dots, |V(G)|+|E(G)| \}\) such that for each subgraph \(H’\) of \(G\) isomorphic to \(H\), the \(H’\)-weights, $$wt_f(H’)= \sum\limits_{v\in V(H’)} f(v) + \sum\limits_{e\in E(H’)} f(e),$$ constitute an~arithmetic progression \(a, a+d, a+2d,\dots , a+(t -1)d\), where \(a>0\) and \(d\ge 0\) are two integers and \(t\) is the number of all subgraphs of \(G\) isomorphic to \(H\).

The (super) \(H\)-magic graph was first introduced by Gutiérrez and Lladó in [1]. The \((a,d)\)-\(H\)-antimagic labeling was introduced by Inayah et al. [2].

In [3] Bača et al. investigated the super tree-antimagic total labelings of disjoint union of graphs. Bača et al. [4] showed the constructions for \(H\)-antimagicness of Cartesian product of graphs. In [5], authors proved the \(C_n\)-antimagicness of Fan graph for several difference depending on the length of the cycle. In [6, 7, 8] Umar et al. proved the existence of super \((a,1)\)-Tree-antimagicness of Sun graphs, super \((a,d)\)-\(C_n\)-antimagicness of Windmill graphs for several differences and super \((a,d)\)-\(C_4\)-antimagicness of Book graph and their disjoint union.

In this paper, we study the existence of super \((a,d)\)-\(C_3\)-antimagic labeling of a special type of a corona graph.

2. Super Cycle-antimagic labeling of Corona graph

The join of two graphs \(H_1\) and \(H_2\), denoted by \(H_1+H_2\), is the graph where \(V(H_1) \cap V(H_2)= \emptyset\) and each vertex of \(H_1\) is adjacent to all vertices of \(H_2\) [9]. When \(H_1=K_1\), this is the corona graph \(K_1 \odot H_2\). In this paper, we consider a special type of a corona graph.

Let \(K_1\) be a complete graph and \(S_n\) be a star on \(n+1\) vertices. We consider the corona graph \(G= K_1 \odot S_n\), where $$V(G):=\{v_1,v_2,x_1,x_2,\dots,x_n\}$$ and $$E(G):=\{v_1v_2,v_1x_1,v_1x_2,\dots,v_1x_n,v_2x_1,v_2x_2,\dots,v_2x_n\}$$ The corona graph \(G\) is covered by the cycles \(C_3^{(i)}\), \( 1\leq i \leq n\) and the \(C_3^{(i)}\)-weights under a labeling \(h\) is:

\begin{align} wt_{h}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=h(v_1)+h(v_2)+h(x_i)+ h(v_1v_2)+ h(v_1x_i)+ h(v_2x_i) \label{corona0} \end{align}
(1)

2.1. \(C_3\)-Supermagic labeling

Theorem 2.1. Let \(G:=K_1\odot S_n\) be a corona graph of \(K_1\) and \(S_n\) and \(n \geq 2\) be an integer then the graph \(G\) admits a \(C_3\)-supermagic labeing.

Proof. \(n \equiv 0 (\text{mod}\ 2)\)
The labeling \(h_0\) is defined as: \begin{align*} h_0(v_1)&=1,\\ h_0(v_2)&=\frac{n}{2}+2,\\ h_0(v_1v_2)&= 3n+3,\\ h_0(v_1x_i)&=3n+3-i.\\ \end{align*} \[ h_0(x_{i})= \begin{cases} \frac{n}{2}+2-i \ \ & \ \ \ \ \ \textrm{ if $i = 1,2,\dots, \frac{n}{2}$} \\ \frac{3n+6}{2}-i \ \ & \ \ \ \ \ \textrm{ if $i = \frac{n}{2}+1,\frac{n}{2}+2, \dots, n$} \\ \end{cases} \] \[ h_0(v_2x_{i})= \begin{cases} n+2(1+i) \ \ & \textrm{ if $i = 1,2,\dots, \frac{n}{2}$} \\ 2i+1 \ \ & \textrm{ if $i = \frac{n}{2}+1,\frac{n}{2}+2, \dots, n$} \\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_0\) and edges receive the labels \(\{n+3, n+4,\dots, 3n+3\}\). Therefore \(h_0\) is a super total labeling.
Using equation (1)

\begin{align} wt_{h_0}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=\left(\frac{7n}{2}+6\right)+\left(\frac{9n}{2}+7\right) \nonumber\\ &=8n+13. \label{cmagic1a} \end{align}
(2)
When \(n \equiv 1 \ \ (\text{mod}\ 2)\)
The labeling \(h_0\) is defined as: \begin{align*} h_0(v_i)&=i,\\ h_0(v_1v_2)&= n+3,\\ h_0(x_i)&=n+3-i.\\ \end{align*} For \(i \equiv 0 \) (mod \(2\)) \[ h_0(v_jx_{i})= \begin{cases} n+3 +\frac{i}{2} \ \ & \textrm{ if $j = 1$} \\ \frac{5n+7+i}{2} \ \ & \textrm{ if $j = 2$} \\ \end{cases} \] For \(i \equiv 1\) (mod \(2\)) \[ h_0(v_jx_{i})= \begin{cases} \frac{3(n+2)+i}{2} \ \ & \textrm{ if $j = 1$} \\ \frac{4n+7+i}{2} \ \ & \textrm{ if $j = 2$} \\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_0\) and edges receive the labels \(\{n+3, n+4,\dots, 3n+3\}\). Therefore \(h_0\) is a super total labeling.
Using equation (1)
\begin{align} wt_{h_0}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(2n+9-i)+\left( \frac{7n+13}{2}+i\right) \nonumber\\ &=\frac{11n+31}{2}. \label{cmagic1} \end{align}
(3)
Equations (2, 3) shows \(wt_{h_0}(C_3^{(i)})\) is independent of \(i\). Hence the corona graph \(G\) admits a \(C_3\)-supermagic labeling. This completes the proof.

2.2. Super \((a, d)\)-\(C_3\)-antimagic labeling

Theorem 2.2. Let \(G:=K_1\odot S_n\) be a corona graph of \(K_1\) and \(S_n\) and \(n \geq 2\) be an integer then the graph \(G\) admits a super \((a,1)\)-\(C_3\)-antimagic labeing.

Proof. The labeling \(h_1\) is defined as: \begin{align*} h_1(v_i)&=i,\\ h_1(v_1v_2)&= n+3,\\ h_1(v_2x_{i})&= 2n+3+i. \end{align*} \[ h_1(x_{i})= \begin{cases} \frac{i+1}{2}+2 \ \ & \textrm{ if $i \equiv 1$ (mod \ $2$)} \\ \lceil\frac{n}{2}\rceil+ 2 +\frac{i}{2} \ \ & \textrm{ if $i \equiv 0$ (mod $2$)} \\ \end{cases} \] \[ h_1(v_1x_{i})= \begin{cases} \frac{4n+7-i}{2} \ \ & \textrm{ if $i \equiv 1$ (mod \ $2$)} \\ \lceil\frac{n-1}{2}\rceil+ n+4-\frac{i}{2} \ \ & \textrm{ if $i \equiv 0$ (mod $2$)} \\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_1\) and edges receive labels \(\{n+3, n+4, \dots, 3n+3\}\). Therefore \(h_1\) is a super total labeling.
Using equation (1)

\begin{align} wt_{h_1}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=3(n+3)+i+(2n+6) \nonumber\\ &=5(n+3)+i. \label{cmagic2} \end{align}
(4)
Equation (4) shows \(wt_{h_0}(C_3^{(i)})\) constitute an arithmetic progression with \(a=5(n+3)+1\) and \(d=1\). Hence the corona graph \(G\) admits a super \((a,1)\)-\(C_3\)-antimagic labeling. This completes the proof.

Theorem 2.3. Let \(G:=K_1\odot S_n\) be a corona graph of \(K_1\) and \(S_n\) and \(n \geq 2\) be an integer then the graph \(G\) admits a super \((a,d)\)-\(C_3\)-antimagic labeing for \(d=3,5\).

Proof. The labeling \(h_d\) is defined as: \begin{align*} h_d(v_i)&=i,\\ h_d(v_1v_2)&= n+3,\\ h_d(x_i)&= 2+i. \end{align*} \[ h_3(v_jx_{i})= \begin{cases} 2n+3+i \ \ & \textrm{ if $j=1$} \\ n+3+i \ \ & \textrm{ if $j=2$} \\ \end{cases} \] \[ h_5(v_jx_{i})= \begin{cases} n+2+2i \ \ & \textrm{ if $j=1$} \\ n+3+2i \ \ & \textrm{ if $j=2$} \\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_d\) and edges receive labels \(\{n+3, n+4, \dots, 3n+3\}\). Therefore \(h_d\) is a super total labeling.
Using equation (1)

\begin{align} wt_{h_3}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(n+8+i)+(3n+6+2i) \nonumber\\ &=2(2n+7)+3i. \label{amagic3} \end{align}
(5)
Equation (5) shows \(wt_{h_3}(C_3^{(i)})\) constitute an arithmetic progression with \(a=2(2n+7)+3\) and \(d=3\). Hence the corona graph \(G\) admits a super \((a,3)\)-\(C_3\)-antimagic labeling.
Now, for case \(d=5\), Using equation (1)
\begin{align} wt_{h_5}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(n+8+i)+(2n+5+4i) \nonumber\\ &=3n+13+5i. \label{amagic5} \end{align}
(6)
Equation (6) shows \(wt_{h_3}(C_3^{(i)})\) constitute an arithmetic progression with \(a=3(n+6)\) and \(d=5\). Hence the corona graph \(G\) admits a super \((a,5)\)-\(C_3\)-antimagic labeling. This completes the proof.

Theorem 2.4. Let \(G:=K_1\odot S_n\) be a corona graph of \(K_1\) and \(S_n\) and \(n \geq 2\) be an integer then the graph \(G\) admits a super \((a,d)\)-\(C_3\)-antimagic labeing for \(d=2,4\).

Proof. The labeling \(h_d\) is defined as: $$h_d(v_i)=i$$ \[ h_d(x_{i})= \begin{cases} n+3-i \ \ & \textrm{ if $d=2$} \\ 2+i \ \ & \textrm{ if $d=4$} \\ \end{cases} \] The edges are labeled as:
When \(n \equiv 0 \ \ \ (\text{mod} \;2)\)
$$h_d(v_1v_2)= 5\left(\frac{n}{2}\right)+3$$ \[ h_d(v_1x_{i})= \begin{cases} n + 2 + i \ \ & \textrm{ if $i = 1,2,\dots,\frac{n}{2}+1$ }\\ \frac{n}{2}+1+2i \ \ & \textrm{ if $i = \frac{n}{2} +2, \frac{n}{2} +3,…,n$}\\ \end{cases} \] \[ h_d(v_2x_{i})= \begin{cases} \frac{3n}{2}+ 2(1 + i) \ \ & \textrm{ if $i = 1,2,\dots,\frac{n}{2}+1$ }\\ 2n+3+i \ \ & \textrm{ if $i = \frac{n}{2}+2, \frac{n}{2}+3,…,n$}\\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_d\) and edges receive labels \(\{n+3, n+4, \dots, 3n+3\}\). Therefore \(h_d\) is a super total labeling.
Using equation (1)

\begin{align} wt_{h_2}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=\left(\frac{7n}{2}+9-i\right)+\left(\frac{5n}{2}+4+3i\right) \nonumber\\ &=6n+13+2i. \label{amagic2a} \end{align}
(7)
Equation (7) shows \(wt_{h_2}(C_3^{(i)})\) constitute an arithmetic progression with \(a=6n+15\) and \(d=2\). Hence the corona graph \(G\) admits a super \((a,2)\)-\(C_3\)-antimagic labeling. Using equation (1)
\begin{align} wt_{h_4}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(\frac{5n}{2}+8+i)+(\frac{5n}{2}+4+3i) \nonumber\\ &=5n+12+4i. \label{amagic4a} \end{align}
(8)
Equation (8) shows \(wt_{h_4}(C_3^{(i)})\) constitute an arithmetic progression with \(a=5n+16\) and \(d=4\). Hence the corona graph \(G\) admits a super \((a,4)\)-\(C_3\)-antimagic labeling.
When \(n \equiv 1 \ \ (\text{mod}\; 2)\)
$$h_d(v_1v_2)= 3n+3$$ \[ h_d(v_1x_{i})= \begin{cases} n + 2 + i \ \ & \textrm{ if $i = 1,2,\dots,\frac{n+1}{2}$}\\ \frac{n+1}{2} + 1 + 2i \ \ & \textrm{ if $i = \frac{n+1}{2}+1, \frac{n+1}{2} +2,…,n$}\\ \end{cases} \] \[ h_d(v_2x_{i})= \begin{cases} \frac{n+1}{2}+n+1+2i \ \ & \textrm{ if $i = 1,2,\dots,\frac{n+1}{2}$}\\ 2(n+1)+i \ \ & \textrm{ if $i = \frac{n+1}{2}+1, \frac{n+1}{2}+2,…,n$}\\ \end{cases} \] Clearly, the vertices assume least possible integers \(\{1,2,\dots, n+2\}\) under the labeling \(h_d\) and edges receive labels \(\{n+3, n+4, \dots, 3n+3\}\). Therefore \(h_d\) is a super total labeling.
Using equation (1)
\begin{align} wt_{h_2}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(4n+9-i)+\left(\frac{5n+7}{2}+3i\right) \nonumber\\ &=\frac{13n+25}{2}+2i. \label{amagic2b} \end{align}
(9)
Equation (9) shows \(wt_{h_2}(C_3^{(i)})\) constitute an arithmetic progression with \(a=\frac{13n+29}{2}\) and \(d=2\). Hence the corona graph \(G\) admits a super \((a,2)\)-\(C_3\)-antimagic labeling.
Using equation (1)
\begin{align} wt_{h_4}(C_3^{(i)}) &= \sum\limits_{v\in V(C_3^{(i)})} h(v)+ \sum\limits_{e\in E(C_3^{(i)})} h(e) \nonumber\\ &=(3n+8+i)+\left(\frac{5n+7}{2}+3i\right) \nonumber\\ &=\frac{11n+23}{2}+4i. \label{amagic4b} \end{align}
(10)
Equation (10) shows \(wt_{h_4}(C_3^{(i)})\) constitute an arithmetic progression with \(a=\frac{11n+31}{2}\) and \(d=4\). Hence the corona graph \(G\) admits a super \((a,4)\)-\(C_3\)-antimagic labeling. This completes the proof.

Competing Interests

The author(s) do not have any competing interests in the manuscript.

References

  1. Gutiérrez, A., & Lladó, A. (2005). Magic coverings. J. Combin. Math. Combin. Comput., 55, 43-56.[Google Scholor]
  2. Inayah, N., Salman, A. N. M., & Simanjuntak, R. (2009). On \((a, d)\)-H-antimagic coverings of graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 71, 273–281. [Google Scholor]
  3. Bača, M., Kimakova, Z., Semaničová-Feňovčíková, A., & Umar, M. A. (2015). Tree-antimagicness of disconnected graphs. Mathematical Problems in Engineering, 2015.[Google Scholor]
  4. Bača, M., Semanicova-Fenovcikova, A., Umar, M. A., & Welyyanti, D. (2018). On \(H\)-antimagicness of Cartesian product of graphs. Turkish Journal of Mathematics, 42(1), 339-348. [Google Scholor]
  5. Umar, A. O. M. A., Baca, M., & Semanicová-Fenovcıková, A. (2017). Fans are cycle-antimagic, The Australasian Journal of Combinatorics, 6(1), 94-105. [Google Scholor]
  6. Umar, M. A., Hussain, M., Ali, B. R., & Numan M. (2018). Super \((a,1)\)-Tree-antimagicness of Sun Graphs. International Journal of Soft Computing and Engineering, 7(6), 4 pages.
  7. Umar, M.A., & Hussain M. (2018). Super \((a,d)\)-\(C_n\)-antimagicness of Windmill Graphs. International Journal of Science & Engineering Development Research, 3(2), 5 pages.
  8. Umar, M. A., Javed, M. A., Hussain, M. & Ali, B. R. (2018). Super \((a,d)\)-\(C_4\)-antimagicness of Book Graphs. Open Journal of Mathematical Sciences, 2(1), 115-121.
  9. Bača, M., & Youssef, Maged Z. (2015). On Harmonious Labeling of Corona Graphs. Journal of Applied Mathematics, Volume 2014 Article ID 627248, 4 pages [Google Scholor]