Volume 2 (2019) Issue 2

Author(s): Bommanahal Basavanagoud1, Anand P. Barangi1
1Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India.
Abstract:

In this note, we first show that the general Zagreb index can be obtained from the \(M-\)polynomial of a graph by giving a suitable operator. Next, we obtain \(M-\)polynomial of some cactus chains. Furthermore, we derive some degree based topological indices of cactus chains from their \(M-\)polynomial.

Author(s): Gee-Choon Lau1, Sin-Min Lee2, Wai Chee Shiu3,4
1Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), 85000 Johor, Malaysia.
21304, North First Avenue, Upland, CA 91786 USA
3Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong.
4College of Global Talents, Beijing Institute of Technology, Zhuhai, China.
Abstract:

Let \(G= G(V,E)\) be a \((p,q)\)-graph. A bijection \(f: E\to\{1,2,3,\ldots,q \}\) is called an edge-prime labeling if for each edge \(uv\) in \(E\), we have \(GCD(f^+(u),f^+(v))=1\) where \(f^+(u) = \sum_{uw\in E} f(uw)\). A graph that admits an edge-prime labeling is called an edge-prime graph. In this paper we obtained some sufficient conditions for graphs with regular component(s) to admit or not admit an edge-prime labeling. Consequently, we proved that if \(G\) is a cubic graph with every component is of order \(4, 6\) or \(8\), then \(G\) is edge-prime if and only if \(G\not\cong K_4\) or \(nK(3,3)\), \(n\equiv2,3\pmod{4}\). We conjectured that a connected cubic graph \(G\) is not edge-prime if and only if \(G\cong K_4\).

Author(s): Abdualrazaq Sanbo1,2, Elsayed M. Elsayed1,3
1Mathematics Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
2General studies department, Jeddah College of Telecom and Electronics, TVTC, B.P. 2816, Jeddah 21461, Saudi Arabia.
3Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
Abstract:

In this article, we study some properties of the solutions of the following difference equation: \(x_{n+1}=a x_{n}+\dfrac{b x_{n} x_{n-4}}{cx_{n-3}+dx_{n-4}},\quad n=0,1,…\) where the initial conditions \(x_{-4},x_{-3}, x_{-2}, x_{-1}, x_0\) are arbitrary positive real numbers and \(a, b, c, d\) are positive constants. Also, we give specific form of the solutions of four special cases of this equation.

Author(s): Yuedan Yao1
1Department of Mathematics, South China Agricultural University, Guangzhou, 510642, P.R. China.
Abstract:

For a given connected graph \(G\) and a real number \(\alpha\), denote by \(d(u)\) the degree of vertex \(u\) of \(G\), and denote by \(\chi_{\alpha}(G)=\sum_{uv\in E(G)} \big(d(u)+d(v)\big)^{\alpha}\) the general sum-connectivity index of \(G\). In the present note, we determine the smallest general sum-connectivity index of trees (resp., chemical trees) together with corresponding extremal trees among all trees (resp., chemical trees) with \(n\) vertices and \(k\) pendant vertices for \(0<\alpha<1.\)

Author(s): Opeyemi Oyewumi1, Abolape Deborah Akwu2, Obakpo Johnson Ben3
1General Studies Department, Air Force Institute of Technology, Kaduna, Nigeria.
2Department of Mathematics, Federal University of Agriculture, Makurdi, Nigeria.
3Department of Mathematics, Federal University Wukari, Nigeria
Abstract:

An outer-connected vertex edge dominating set (OCVEDS) for an arbitrary graph \(G\) is a set \(D \subset V(G)\) such that \(D\) is a vertex edge dominating set and the graph \(G \setminus D\) is connected. The outer-connected vertex edge domination number of \(G\) is the cardinality of a minimum OCVEDS of \(G\), denoted by \(\gamma_{ve}^{oc}(G)\). In this paper, we give the outer-connected vertex edge dominating set in lexicographic product of graphs.

Author(s): Bommanahal Basavanagoud1, Praveen Jakkannavar1
1Department of Mathematics, Karnatak University, Dharwad – 580 003, Karnataka, India.
Abstract:

The minimum degree matrix \(MD(G)\) of a graph \(G\) of order \(n\) is an \(n\times n\) symmetric matrix whose \((i,j)^{th}\) entry is \(min\{d_i,d_j\}\) whenever \(i\neq j,\) and zero otherwise, where \(d_i\) and \(d_j\) are the degrees of the \(i^{th}\) and \(j^{th}\) vertices of \(G\), respectively. In the present work, we obtain the minimum degree polynomial of the graphs obtained by some graph operators (generalized \(xyz\)-point-line transformation graphs).