Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
The interaction between aphids, ants and ladybirds has been investigated from an ecological point of view since many decades, while there are no attempts to describe it from a mathematical point of view. This paper introduces a new mathematical model to describe the within-season population dynamics in an ecological patch of a system composed by aphids, ants and ladybirds, through a set of four differential equations. The proposed model is based on the Kindlmann and Dixon set of differential equations [1], focused on the prediction of the aphids-ladybirds population densities, that share a prey-predator relationship. The population of ants, in mutualistic relationship with aphids and in interspecific competition with ladybirds, is described according to the Holland and De Angelis mathematical model [2], in which the authors faced the problem of mutualistic interactions in general terms. The set of differential equations proposed here is discretized by means the Nonstandard Finite Difference scheme, successfully applied by Gabbriellini to the mutualistic model [3]. The constructed finite-difference scheme is positivity-preserving and characterized by four nonhyperbolic steady-states, as highlighted by the phase-space and time-series analyses. Particular attention is dedicated to the steady-state most interesting from an ecological point of view, whose asymptotic stability is demonstrated via the Centre Manifold Theory. The model allows to numerically confirm that mutualistic relationship effectively influences the population dynamic, by increasing the peaks of the aphids and ants population densities. Nonetheless, it is showed that the asymptotical populations of aphids and ladybirds collapse for any initial condition, unlike that of ants that, after the peak, settle on a constant asymptotic value.
In this paper, we introduce new labeling and named it as k-total edge mean cordial (k-TEMC) labeling. We study certain classes of graphs namely path, double comb, ladder and fan in the context of 3-TEMC labeling.
We study the global existence and uniqueness of a solution to an initial boundary value problem for the Euler-Bernoulli viscoelastic equation \(u_{tt}+\Delta^{2}u-g_{1}\ast\Delta^{2} u+g_{2}\ast\Delta u+u_{t}=0.\) Further, the asymptotic behavior of solution is established.
An outer-connected vertex edge dominating set (OCVEDS) for an arbitrary graph \(G\) is a set \(D \subset V(G)\) such that \(D\) is a vertex edge dominating set and the graph \(G \setminus D\) is connected. The outer-connected vertex edge domination number of \(G\) is the cardinality of a minimum OCVEDS of \(G\), denoted by \(\gamma_{ve}^{oc}(G)\). In this paper, we give the outer-connected vertex edge dominating set in lexicographic product of graphs.
The minimum degree matrix \(MD(G)\) of a graph \(G\) of order \(n\) is an \(n\times n\) symmetric matrix whose \((i,j)^{th}\) entry is \(min\{d_i,d_j\}\) whenever \(i\neq j,\) and zero otherwise, where \(d_i\) and \(d_j\) are the degrees of the \(i^{th}\) and \(j^{th}\) vertices of \(G\), respectively. In the present work, we obtain the minimum degree polynomial of the graphs obtained by some graph operators (generalized \(xyz\)-point-line transformation graphs).
The exact solutions of most nonlinear difference equations cannot be obtained theoretically sometimes. Therefore, a massive number of researchers predict the long behaviour of most difference equations by investigating some qualitative behaviours of these equations from the governing equations. In this article, we aim to analyze the asymptotic stability, global stability, periodicity of the solution of an eighth-order difference equation. Moreover, a theoretical solution of a special case equation will be presented in this paper.
In this paper, we study the outcome of fractional Laplace transform using inverse difference operator with shift value. By the definition of convolution product, the properties of fractional transformation, the relation between convolution product and fractional frequency Laplace transform with shift value have been discussed. Further, the connection between usual Laplace transform and fractional frequency Laplace transform with shift value are also presented. Numerical examples with graphs are verified and generated by MATLAB.
This paper presents Caputo-Fabrizio fractional derivatives approach to analysis of a viscous fluid over an infinite flat plate together with general boundary motion. Closed form exact general solutions of the fluid velocity are obtained by means of the Laplace transform. The solutions of ordinary viscous fluids corresponding to time-derivatives of integer order is obtained as particular cases of the present solutions. Several special cases are also discussed. Numerical computations and graphical illustrations are used in order to study the effects of the Caputo-Fabrizio time-fractional parameter \(\alpha\) and Reynolds number on velocity field.
This paper investigates the rotor and stator faults of synchronous and asynchronous machine. We studied major and minor faults and failures in synchronous and asynchronous machines (SAASMs) to avoid excessive downtime, maintaining quality of service, and minimum revenue losses to smart grid (SG) operators and planners. Further, faults detection, faults diagnosis, major causes of faults, and fault remedial measures are discussed with state-of-the-art work for: (a) transformers, (b) stator, and (c) rotor. Our work presents detailed taxonomy of rotor and stator faults, electrical and mechanical stress, and faults diagnosis schemes for stable SG operation. We believe that our research contribution is more versatile covering every aspect of SAASMs faults and failures, compared to prior works.
The boundary value problems in Kinetic theory of gases, elasticity and other applied areas are mostly reduced in solving single variable nonlinear equations. Hence, the problem of approximating a solution of the nonlinear equations is important. The numerical methods for finding roots of such equations are called iterative methods. There are two type of iterative methods in literature: involving higher derivatives and free from higher derivatives. The methods which do not require higher derivatives have less order of convergence and the methods having high convergence order require higher derivatives. The aim of present report is to develop an iterative method having high order of convergence but not involving higher derivatives. We propose three new methods to solve nonlinear equations and solve text examples to check validity and efficiency of our iterative methods.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: