A finite, connected simple graph \(G\) is a geodetic graph if and only if for each pair of vertices \(v_i, v_j\) there exists a unique distance path (or unique shortest \(v_iv_j\)-path). The insertion of vertices in an edge or edges of a non-geodetic graph \(G\) to, if possible, obtain a resultant geodetic graph is called geodetication of the graph \(G\). The paper introduces two new graph parameters generally called the Ruv\(\acute{e}\) numbers of a graph. The Ruv\(\acute{e}\) numbers of \(G\) are denoted by \(\rho_1(G)\) and \(\rho_2(G)\) respectively, and \(\rho_1(G) = \rho_2(G) = 0\) if and only if \(G\) is geodetic. Furthermore, for some graphs the parameter, \(\rho_1(G) \to \infty\). The latter graphs \(G\) do not permit geodetication in respect of \(\rho_1(G)\). It is evident that geodetication presents various challenging minimization problems. The core field of application will be, restricting graphs to distance path uniqueness. Intuitive applications are foreseen in military science, IT anti-hacking coding and predictive flow through networks.
The anchored Dyck words of length \(n=2k+1\) (obtained by prefixing a 0-bit to each Dyck word of length \(2k\) and used to reinterpret the Hamilton cycles in the odd graph \(O_k\) and the middle-levels graph \(M_k\) found by M\”utze et al.) represent in \(O_k\) (resp., \(M_k\)) the cycles of an \(n\)- (resp., \(2n\)-) 2-factor and its cyclic (resp., dihedral) vertex classes, and are equivalent to Dyck-nest signatures. A sequence is obtained by updating these signatures according to the depth-first order of a tree of restricted growth strings (RGS’s), reducing the RGS-generation of Dyck words by collapsing to a single update the time-consuming \(i\)-nested castling used to reach each non-root Dyck word or Dyck nest. This update is universal, for it does not depend on \(k\).