Home » PSR Press » Journals » OMS » Volume 5 (2021) » Page 3
Each
In the present work, we study the effect of time varying delay damping on the stability of a one-dimensional porous-viscoelastic system. We also illustrate our findings with some examples. The present work improve and generalize existing results in the literature.
None can underestimate the importance of mathematical modelling for their role in clarifying dynamics of epidemic diseases. They can project the progress of the disease and demonstrate the result of the epidemic to public health in order to take precautions. HIV attracts global attention due to rising death rates and economic burdens and many other consequences that it leaves behind. Up to date, there is no medicine and vaccine of HIV/AIDS but still many researches are conducted in order to see how to mitigate this epidemic and reduce the death rate or increase the life expectancy of those who are infected. A delayed HIV/AIDS treatment and vertical transmission model has been investigated. The model took into account both infected people from the symptomatics group and asymptomatic group to join AIDS group. We considered that a child can be infected from the mother to an embryo, fetus or childbirth. Those who are infected, it will take them some time to get mature and spread the disease. By using mathematical model, reproduction number, positivity, boundedness, and stability analysis were determined. The results showed that the model is much productive if time delay is considered.
Let
One of the problems on which a great deal of focus is being placed today, is how to teach Calculus in the presence of the massive diffusion of Computer Algebra tools and online resources among students. The essence of the problem lies in the fact that, during the problem solving activities, almost all undergraduates can be exposed to certain “new” functions, not typically treated at their level. This, without being prepared to handle them or, in some cases, even knowing the meaning of the answer provided by the computer system used. One of these functions is Lambert’s
Finding root of a nonlinear equation is one of the most important problems in the real world, which arises in the applied sciences and engineering. The researchers developed many numerical methods for estimating roots of nonlinear equations. The this paper, we proposed a new Simpson type method with the help of Simpson 1/3rd rule. It has been proved that the convergence order of the proposed method is two. Some numerical examples are solved to validate the proposed method by using C++/MATLAB and EXCEL. The performance of proposed method is better than the existing ones.
The aim of this paper is to study unified integral operators for generalized convex functions namely
The concept of residuated relational systems ordered under a quasi-order relation was introduced in 2018 by S. Bonzio and I. Chajda. In such algebraic systems, we have introduced and developed the concepts of implicative and comparative filters. In addition, we have shown that every comparative filter is an implicative filter at the same time and that converse it does not have to be. In this article, as a continuation of previous research, we introduce the concept of strong quasi-ordered residuated systems and we show that in such systems implicative and comparative filters coincide. In addition, we show that in such systems the concept of least upper bound for any two pair of elements can be determined.
The paper proves convergence for three uniquely defined recursive sequences, namely, arithmetico-geometric sequence, the Newton-Raphson recursive sequence, and the nested/composite recursive sequence. The three main hurdles for this prove processes are boundedness, monotonicity, and convergence. Oftentimes, these processes lie in the predominant use of prove by mathematical induction and also require some bit of creativity and inspiration drawn from the convergence monotone theorem. However, these techniques are not adopted here, rather, as a novelty, extensive use of basic manipulation of inequalities and useful equations are applied in illustrating convergence for these sequences. Moreover, we established a mathematical expression for the limit of the nested recurrence sequence in terms of its leading term which yields favorable results.
The concept of q-rung orthopair fuzzy sets generalizes the notions of intuitionistic fuzzy sets and Pythagorean fuzzy sets to describe complicated uncertain information more effectively. Their most dominant attribute is that the sum of the