Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay differential equations of the form \(\frac{d}{dt} \Biggl[r(t) \frac{d}{dt} \biggl [x(t)+p(t)x(t-\tau)\biggr]\Biggr]+q(t)G\bigl(x(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr)=0, \;\; t \geq t_0,\) under the assumptions \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}=\infty\) and \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}<\infty\) for \(|p(t)|<+\infty\). Two illustrative examples are included.
This study investigate movements of molecule on the biological cell via the cell walls at any given time. Specifically, we examined the movement of a particle in tiling, i.e. in hexagonal and square tiling. The specific questions we posed includes (i) whether particles moves faster in hexagonal tiling or in square tiling (ii) whether the starting point of particles affect the movement toward attainment of stationary distribution. We employed the transitional probabilities and stationary distribution to derive expected passage time to state \(j\) from state \(i\), and the expected recurrence time to state \(i\) in both hexagonal and square tiling. We also employed aggregation of state symmetries to reduce the number of state spaces to overcome the problems (i.e. the difficulty to perform algebraic computation) associated with large transition matrix. This approach leads to formation of a new Markov chain \(X_t\) that retains the original Markov chains properties, i.e. by aggregation of states with the same stochastic behavior to the process. Graphical visualization for how fast the equilibrium is attained with different values of the probability parameter \(p\) in both tilings is also provided. Due to difficulties in obtaining some analytical results, numerical simulation were performed to obtains useful results like expected passage time and recurrence time.
A graceful difference labeling (gdl for short) of a directed graph \(G\) with vertex set \(V\) is a bijection \(f:V\rightarrow\{1,\ldots,\vert V\vert\}\) such that, when each arc $uv$ is assigned the difference label \(f(v)-f(u)\), the resulting arc labels are distinct. We conjecture that all disjoint unions of circuits have a gdl, except in two particular cases. We prove partial results which support this conjecture.
The author considers a mathematical model of immunotherapy and anti-angiogenesis inhibitor therapy for cancer patients over a fixed time horizon. Disease dynamics are captured by a system of ODEs developed in [1], describing dynamics among host cells, cancer cells, endothelial cells, effector cells, and anti-angiogenesis. Existence, uniqueness, and characterization of optimal treatment profiles that minimize the tumor and drug usage, while maintaining healthy levels of effector and host cells are determined. A theoretical analysis is performed to characterize the optimal control. Numerical simulations are performed to illustrate optimal control profiles for a variety of different patients, each leading to different treatment protocols.
The objective of this paper is to investigate the existence and uniqueness theorem for stochastic partial differential equations with poisson jumps and delays. The existence of mild solutions of the problem is studied by using a different resolvent operator defined in [1] and fixed point theorem.
In this work, we study the small oscillations of a system formed by an elastic container with negligible density and a heavy barotropic gas (or a compressible fluid) filling the container. By means of an auxiliary problem, that requires a careful mathematical study, we deduce the problem to a problem for a gas only. From its variational formulation, we prove that is a classical vibration problem.
In this paper we define a new class of hyperholomorphic functions, which is known as \(F^{\alpha}_{G}(p,q,s)\) spaces. We characterize hyperholomorphic functions in \(F^{\alpha}_{G}(p,q,s)\) space in terms of the Hadamard gap in Quaternion analysis.
The effects of shear deformation and rotary inertia on the dynamics of anisotropic plates traversed by varying moving load resting on Vlasov foundation is investigated in this work. The problem is solved for concentrated loads with simply supported boundary conditions. An analytic solution based on the Galerkin’s method is used to reduce the fourth order partial differential equation into a system of coupled fourth order differential equation and a modification of the Struble’s technique and Laplace transforms are used to solve the resulting fourth order differential equation. Results obtained indicate that shear deformation and rotary inertia have significant effect on the dynamics of the anisotropic plate on the Vlasov foundation. Solutions are obtained for both the moving force and the moving mass problems. From the graphical results obtained, the amplitude of vibrations of the plate under moving mass is greater than that of the moving force and increasing the value of rotary inertia \({R_0}\) reduces the amplitude of vibration of the plate. increasing the mass ratio increases the amplitude of vibration of the plate.
We explore the possibility of using an iron-based anodic material (\(\alpha\)-hematite) synthesized with a hierarchical 3D urchin-like morphology, as an OER catalyst. The electrodes are prepared by pulsed laser deposition followed by thermal annealing leading to the hierarchical 3D urchin-like morphology. The effect of the deposition parameter on the catalyst phase and morphology are investigated by microRaman spectroscopy and scanning electron microscopy, while the electrode metrics are determined by voltammetric methods and Tafel analysis. We observe that the material is highly electroactive towards the OER, with performance in-line with that of noble-metal based state-of-the-art catalysts.
In literature, there are many methods for solving nonlinear partial differential equations. In this paper, we develop a new method by combining Adomian decomposition method and Shehu transform method for solving nonlinear partial differential equations. This method can be named as Shehu transform decomposition method (STDM). Some examples are solved to show that the STDM is easy to apply.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: