Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Topological indices are real numbers associated with molecular graphs of compounds that help to guess properties of compounds. Hex-Derived networks has an assortment of valuable applications in drug store, hardware, and systems administration. Imran et al. [1] computed the general Randić, first Zagreb, ABC, GA, ABC\(_{4}\), and GA\(_{5}\) indices for these hex-derived networks. In this article, we extend the work of [1] and compute some new topological indices of these networks.
The mathematical chemistry deals with applications of graph theory to study the physicochemical properties of molecules theoretically. A chemical graph is a simple graph where hydrogen depleted atoms are vertices and covalent bonds between them represent the edges. A topological index of a graph is a numeric quantity obtained from the graph mathematically. A cactus graph is a connected graph in which no edges lie in more than one cycle. In this study, we derive exact expressions of general Zagreb index of some cactus chains.
Nanomaterials are compound substances or materials that are produced and utilized at an exceptionally little scale. Nanomaterials are created to display novel attributes contrasted with a similar material without nanoscale highlights, for example, expanded quality, synthetic reactivity or conductivity. Topological indices are numbers related to molecular graphs that catch symmetry of molecular structures and give it a scientific dialect to foresee properties, such as: boiling points, viscosity, the radius of gyrations and so on. In this paper, we aim to compute topological indices of \(TUC_4[m,n]\), \(TUZC_6[m,n]\), \(TUAC_6[m,n]\), \(SC_5C_7[p,q]\), \(NPHX[p,q]\), \(VC_5C_7[p,q]\) and \(HC_5C_7[p,q]\) nanotubes. We computed first and second K Banhatti indices, first and second K hyper-Banhatti indices and harmonic Banhatti indices of understudy nanotubes. We also computed multiplicative version of these indices. Our results can be applied in physics, chemical, material, and pharmaceutical engineering.
This paper investigates the squeezing flow of an electrically conducting magnetohydrodynamic Casson nanofluid between two parallel plates embedded in a porous medium using differential transformation and variation of parameter methods. The accuracies of the approximate analytical methods for the small and large values of squeezing and separation numbers are investigated and established. Good agreements are established between the results of the approximate analytical methods are compared with the results numerical method using fourth-fifth order Runge-KuttaFehlberg method. However, the results of variation of parameter methods show better agreement with the results of numerical method than the results of differential transformation method. Thereafter, the developed approximate analytical solutions are used to investigate the effects of pertinent flow parameters on the squeezing phenomena of the nanofluids between the two moving parallel plates. The results established that the squeezing number and magnetic field parameters decrease as the flow velocity increases when the plates were coming together. Also, the velocity of the nanofluids further decreases as the magnetic field parameter increases when the plates move apart. However, the velocity is found to be directly proportional to the nanoparticle concentration during the squeezing flow i.e. when the plates are coming together and an inverse variation between the velocity and nanoparticle concentration is recorded when the plates are moving apart. As increased physical insights into the flow phenomena are provided, it is hope that this study will enhance the understanding the phenomena of squeezing flow in various applications such as power transmission, polymer processing and hydraulic lifts.
Multiple-input-multiple-output (MIMO) antennas performance can be degraded due to the poor isolation between the MIMO antenna elements. In this paper, we present a review of the different isolation enhancement schemes available in the literature. Empirically the isolation between the antennas can be improved by placing the antenna as far as possible and it can be enhanced further by introducing different isolation enhancement schemes. Theory of characteristic modes (TCM) was recently proposed that has useful benefits. TCM is also used to enhance the isolation. Moreover, this papers focus on the different approaches of TCM, to enhance the isolation.
By using the boundedness results for the commutators of the fractional integral with variable kernel on variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^{n})\), the boundedness results are established on variable exponent Herz-Morrey spaces \(M\dot{K}_{q,p(\cdot)}^{\alpha, \lambda}(\mathbb{R}^{n})\).
In this paper, the covering radius of codes over \(\mathbb R ={\mathbb Z_2}{R^{*}},\) where \(R^{*}={\mathbb Z_2}+v{\mathbb Z_2},v^{2}=v\) with different weight are discussed. The block repetition codes over \(\mathbb R\) is defined and the covering radius for block repetition codes, simplex code of \(\alpha\)-type and \(\beta\)-type in \(\mathbb R\) are obtained.
In this article, we prove the existence and uniqueness of solutions for the Navier problem \( \Delta\big[\omega_1(x)\vert\Delta u\vert^{p-2}\Delta u+ \nu_1(x)\vert\Delta u\vert^{q-2}\Delta u\big] -{div}\big[\omega_2(x)\vert\nabla u\vert^{p-2}\nabla u +\nu_2(x)\vert\nabla u\vert^{s-2}\nabla u\big] = f(x) – { div}(G(x)),\) in \({\Omega},\) with
\(u(x) = {\Delta}u= 0,\) in \({\partial\Omega},\) where \(\Omega\) is a bounded open set of \(\mathbb{R}^N\) for \(N\geq 2\), \(\frac{f}{\omega_2}\in L^{p’}(\Omega , {\omega}_2)\) and \(\frac{G}{{\nu}_2}\in \left[L^{s’}(\Omega ,{\nu}_2)\right]^N\).
In the fields of chemical graph theory (CGT), mathematical chemistry and molecular topology, a~topological index (TI) also known as a connectivity~index~is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. \(BiI_{3}\) is an excellent inorganic compound and is very useful in qualitative inorganic analysis and topological indices of \(BiI_{3} \) help to predict many properties like boiling point, heat of formation, strain energy, rigidity and fracture toughness and correlate the structure with various physical properties, chemical reactivity and biological activities. This paper computes several degree-based topological indices like multiplicative first Zagreb index, multiplicative second Zagreb index, multiplicative atomic bond connectivity index, multiplicative first and second hyper Zagreb index and multiplicative geometric arithmetic index for Bismuth Tri-Iodide chains and sheets.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: