Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
The application of graph theory in chemical and molecular structure research far exceeds people’s expectations, and it has recently grown exponentially. In the molecular graph, atoms are represented by vertices and bonded by edges. In this report, we study the several Zagreb polynomials and Redefined Zagreb indices of Oxide Network.
Topological indices are numerical numbers associated with a graph that helps to predict many properties of underlined graph. In this paper we aim to compute multiplicative degree based topological indices of Jahangir graph.
We define fractional transforms \(\mathscr{R}_\mu\) and \(\mathscr{H}_\mu\), \(\mu>0\) on the space \(\mathbb{R}\times\mathbb{R}^n\). First, we study these transforms on regular function spaces and we establish that these operators are topological isomorphisms and we give the inverse operators as integro differential operators. Next, we study the \(L^p\)-boundedness of these operators. Namely, we give necessary and sufficient condition on the parameter \(\mu\) for which the transforms \(\mathscr{R}_\mu\) and \(\mathscr{H}_\mu\) are bounded on the weighted spaces \(L^p([0,+\infty[\times\mathbb{R}^n,r^{2a}dr\otimes dx)\) and we give their norms.
In this paper, we study completete monotonicity properties of certain functions associated with the polygamma functions. Subsequently, we deduce some inequalities involving difference of polygamma functions.
The main goal of this article is to study the oscillation criteria of the second-order neutral differential equations on time scales. We give several theorems and related examples to illustrate the applicability of these theorems. Our results extend some recent work in the literature.
Locally harmonious coloring is a relax version of standard harmonious coloring which only needs that the color pairs for adjacent edges are different. In this remark, we introduce the concept of fractional locally harmonious coloring, and present some basic facts for this coloring.
Let \(S\) be a \(C^{1}\)-smooth closed connected surface in \(\mathbb{R}^3\), the boundary of the domain \(D\), \(N=N_s\) be the unit outer normal to \(S\) at the point \(s\), \(P\) be the normal section of \(D\). A normal section is the intersection of \(D\) and the plane containing \(N\). It is proved that if all the normal sections for a fixed \(N\) are discs, then \(S\) is a sphere. The converse statement is trivial.
Let \(D\) be an open subset of \(\mathbf R^N\) and \(f: \overline D\to \mathbf R^N\) a continuous function. The classical topological degree for \(f\) demands that \(D\) be bounded. The boundedness of domains is also assumed for the topological degrees for compact displacements of the identity and for operators of monotone type in Banach spaces. In this work, we follow the methodology introduced by Nagumo for constructing topological degrees for functions on unbounded domains in finite dimensions and define the degrees for Leray-Schauder operators and \((S_+)\)-operators on unbounded domains in infinite dimensions.
In the present article, a time fractional diffusion problem is formulated with special boundary conditions, specifically the nonlocal boundary conditions. This new problem is then solved by utilizing the Laplace transform method coupled to the well-known Adomian decomposition method after employing the modified version of Beilin’s lemma featuring fractional derivative in time. The Caputo fractional derivative is used. Some test problems are included.
In this paper, we introduce and study the classes \(S_{n,\mu}(\gamma,\alpha,\beta,\) \(\lambda,\nu,\varrho,\mho)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho)\) of functions \(f\in A(n)\) with \((\mu)z(D^{\mho+2}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘} \) \(+(1-\mu)z(D^{\mho+1}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z))^{‘}\neq0\), where \(\nu>0,\varrho,\omega,\lambda,\alpha,\mu \geq0, \mho\in N_{0}, z\in U\) and \(D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z):A(n)\longrightarrow A(n),\) is the linear differential operator, newly defined as
\( D^{\mho}_{\lambda,\nu,\varrho}(\alpha,\omega)f(z)=z-\sum_{k=n}^{\infty}\left( \dfrac{\nu+k(\varrho+\lambda)\omega^{\alpha}}{\nu} \right)^{\mho} a_{k+1}z^{k+1}. \)
Several properties such as coefficient estimates, growth and distortion theorems, extreme points, integral means inequalities and inclusion relation for the functions included in the classes \(S_{n,\mu} (\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) and \(R_{n,\mu}(\gamma,\alpha,\beta,\lambda,\nu,\varrho,\mho,\omega)\) are given.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: