Search for Articles:

Engineering and Applied Science Letters (EASL)

The Engineering and Applied Science Letters (EASL) (2617-9709 Online, 2617-9695 Print) is an international peer-reviewed journal dedicated to publishing scientifically valid primary research across all areas of engineering and applied sciences. It provides a platform for both theoretical and applied contributions, supporting the advancement of interdisciplinary knowledge.

  • Open Access: EASL follows the Diamond Open Access model—completely free for both authors and readers, with no APCs. Articles are freely accessible online without financial, legal, or technical barriers.
  • Visibility: Specific details on visibility are not provided, but articles are published online immediately upon acceptance.
  • Rapid Publication: Accepted papers are published online immediately in the currently running issue, ensuring timely dissemination.
  • Scope: Publishes scientifically valid primary research from all areas of engineering and applied sciences.
  • Publication Frequency: One volume with four issues per year (March, June, September, December).
  • Indexing: Indexed in WorldCat, Scilit, Dimensions, ROAD, Publons, Crossref, ZDB, Wikidata, SUDOC, OpenAlex, EZB, and FATCAT, ensuring wide accessibility and scholarly recognition.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Ahmed Ali Al-Gonah1, Waleed Khadher Mohammed1
1Department of Mathematics, Aden University, Aden, Yemen.
Abstract:

In this paper, a new forms of extended hypergeometric functions are introduced. Some functional relations, integral representations and transformation formulas for these functions are derived.

Peter Opio1, Akisophel Kisolo1, Willy Okullo1, Tumps. W. Ireeta1
1Department of Physics, College of Natural Science, Makerere University, P.O Box 7062, Kampala, Uganda.
Abstract:

This paper presents the variation of radiofrequencies intensities from the DTTV-transmitter in Kampala Metropolitan for the sub 700 MHz (470-694 MHz) and the 700 MHz (694-790 MHz) frequency bands. The results of this study showed that though all the measurement locations from the transmitter have a good reception of DTTV signals, their radiofrequency intensities varied at the different points on the same measurement location at a constant distance from the DTTV transmitter. The study further showed that there is a general decrease in the radiofrequency intensities for the sub 700 MHz frequency band and a slight general increase in the radiofrequency intensities for the 700 MHz frequency band. This research revealed that the measured Reference Signal Received Power (RSRP) values for all the measurement locations where within the IEEE and FCC recommended values for any DTTV signal reception.

B. Meftah1, A. Souahi2
1Laboratoire des Télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria
2Laboratory of Advanced Materials, University of Badji Mokhtar-Annaba, P.O. Box 12, 23000 Annaba, Algeria.
Abstract:

In this paper, we establish some new Čebyšev type inequalities for functions whose modulus of the mixed derivatives are co-ordinated quasi-convex and \(\alpha\)-quasi-convex and \(s\)-quasi-convex functions.

O. Adedire1,2, J. N. Ndam2
1Department of Mathematics, University of Jos, Nigeria.
2Federal College of Forestry, Jos, Plateau State, Nigeria.
Abstract:

In this study, a mathematical model of dual latency compartments is developed to investigate the transmission dynamics of COVID-19 epidemic in Oyo state, Nigeria. The model consists of non-pharmaceutical control strategies which include the use of face masks, social-distancing and impact of mass-media on the spread of novel coronavirus in the state. Results indicate control reproduction number \(R_C = 1.4\) with possibilities of high constructive influence of mass-media. Thus, at the fitted values of \(\sigma _f = 0.1,\; \sigma _d = 0.1,\;\sigma _m = 0.6\), the peak of the COVID-19 epidemic is attained after 59,217 infectious quarantined individuals and 328,440 infectious but not quarantined individuals have contracted COVID-19 in about 439 and 443 days respectively from the date of the first incidence. Therefore, efforts on mass-media with programs that can inform the people on effective use of face masks, social-distancing and other safety measures can aid reduction of reproduction number to a value below 1 necessary for eradication of the disease.

Leta Bekere Kumssa1
1Department of Mathematics, Madda Walabu University, Bale Robe-247, Ethiopia.
Abstract:

In this paper, we introduce the notion of modified Suzuki-Edelstein-Geraghty proximal contraction and prove the existence and uniqueness of best proximity point for such mappings. Our results extend and unify many existing results in the literature. We draw corollaries and give illustrative example to demonstrate the validity of our result.

Taki Hasan Rafi1
1Department of Electrical and Electronic Engineering, Ahsanullah University of Science and Technology, Dhaka-1208, Bangladesh.
Abstract:

Novel coronavirus likewise called COVID-19 began in Wuhan, China in December 2019 and has now outspread over the world. Around 63 millions of people currently got influenced by novel coronavirus and it causes around 1,500,000 deaths. There are just about 600,000 individuals contaminated by COVID-19 in Bangladesh too. As it is an exceptionally new pandemic infection, its diagnosis is challenging for the medical community. In regular cases, it is hard for lower incoming countries to test cases easily. RT-PCR test is the most generally utilized analysis framework for COVID-19 patient detection. However, by utilizing X-ray image based programmed recognition can diminish the expense and testing time. So according to handling this test, it is important to program and effective recognition to forestall transmission to others. In this paper, author attempts to distinguish COVID-19 patients by chest X-ray images. Author executes various pre-trained deep learning models on the dataset such as Base-CNN, ResNet-50, DenseNet-121 and EfficientNet-B4. All the outcomes are compared to determine a suitable model for COVID-19 detection using chest X-ray images. Author also evaluates the results by AUC, where EfficientNet-B4 has 0.997 AUC, ResNet-50 has 0.967 AUC, DenseNet-121 has 0.874 AUC and the Base-CNN model has 0.762 AUC individually. The EfficientNet-B4 has achieved 98.86% accuracy.

Tariq A. Aljaaidi1, Deepak B. Pachpatte B. Pachpatte1
1Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, (M.S), 431001, India.
Abstract:

Our purpose in this paper is to use \(\psi-\)Riemann-Liouville fractional integral operator which is the fractional integral of any function with respect to another increasing function to establish some new fractional integral inequalities of Hermite-Hadamard, involving concave functions. Using the concave functions, we establish some new fractional integral
inequalities related to the Hermite-Hadamard type inequalities via \(\psi-\)Riemann-Liouville fractional integral operator.

Naila Mehreen1, Matloob Anwar1
1School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.
Abstract:

In this paper, we find some Hermite-Hadamard type inequalities for co-ordinated harmonically convex functions via fractional integrals.

Jonah Lissner1
1ATINER Industrial and Electrical Engineering Departments, Israel.
Abstract:

Quantum mechanical mathematical methods are utilized for theoretical engineering and testing of hydrocellular engineering for quantum computation criteria and quantum power engineering.

M. G. Sobamowo1
1Department of Mechanical Engineering, University of Lagos, Akoka, Lagos State, Nigeria.
Abstract:

In this present study, the transient magnetohydrodynamics free convection heat and mass transfer of Casson nanofluid past an isothermal vertical flat plate embedded in a porous media under the influence of thermal radiation is studied. The governing systems of nonlinear partial differential equations of the flow, heat and mass transfer processes are solved using implicit finite difference scheme of Crank-Nicolson type. The numerical solutions are used to carry out parametric studies. The temperature as well as the concentration of the fluid increase as the Casson fluid and radiation parameters as well as Prandtl and Schmidt numbers increase. The increase in the Grashof number, radiation, buoyancy ratio and flow medium porosity parameters causes the velocity of the fluid to increase. However, the Casson fluid parameter, buoyancy ratio parameter, the Hartmann (magnetic field parameter), Schmidt and Prandtl numbers decrease as the velocity of the flow increases. The time to reach the steady state concentration, the transient velocity, Nusselt number and the local skin-friction decrease as the buoyancy ratio parameter and Schmidt number increase. Also, the steady-state temperature and velocity decrease as the buoyancy ratio parameter and Schmidt number increase. Also, the local skin friction, Nusselt and Sherwood numbers decrease as the Schmidt number increases. However, the local Nusselt number increases as the buoyancy ratio parameter increases. It was established that near the leading edge of the plate), the local Nusselt number is not affected by both buoyancy ratio parameter and Schmidt number. It could be stated that the present study will enhance the understanding of transient free convection flow problems under the influence of thermal radiation and mass transfer as applied in various engineering processes.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more