Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
A variation of Dyck paths allows for down-steps of arbitrary length, not just one. Credits for this invention are given to Emeric Deutsch. Surprisingly, the enumeration of them is somewhat akin to the analysis of Motzkin-paths; the last section contains a bijection.
In this current study, we introduced and investigated two new subclasses of the bi-univalent functions associated with \(q\)-derivative operator; both \(f\) and \(f^{-1}\) are \(m\)-fold symmetric holomorphic functions in the open unit disk. Among other results, upper bounds for the coefficients \(|\rho_{m+1}|\) and \(|\rho_{2m+1}|\) are found in this study. Also certain special cases are indicated.
The purpose of this paper is to prove a fixed point theorem for \(C\)-class functions in complete \(b\)-metric spaces. Moreover, the solution of the integral equation is obtained using our main result.
In this paper, a new forms of extended hypergeometric functions are introduced. Some functional relations, integral representations and transformation formulas for these functions are derived.
The aim of this paper is to study unified integral operators for generalized convex functions namely \((\alpha,h-m)\)-convex functions. We obtained upper as well as lower bounds of these integral operators in diverse forms. The results simultaneously hold for many kinds of well known fractional integral operators and for various kinds of convex functions.
The concept of residuated relational systems ordered under a quasi-order relation was introduced in 2018 by S. Bonzio and I. Chajda. In such algebraic systems, we have introduced and developed the concepts of implicative and comparative filters. In addition, we have shown that every comparative filter is an implicative filter at the same time and that converse it does not have to be. In this article, as a continuation of previous research, we introduce the concept of strong quasi-ordered residuated systems and we show that in such systems implicative and comparative filters coincide. In addition, we show that in such systems the concept of least upper bound for any two pair of elements can be determined.
The paper proves convergence for three uniquely defined recursive sequences, namely, arithmetico-geometric sequence, the Newton-Raphson recursive sequence, and the nested/composite recursive sequence. The three main hurdles for this prove processes are boundedness, monotonicity, and convergence. Oftentimes, these processes lie in the predominant use of prove by mathematical induction and also require some bit of creativity and inspiration drawn from the convergence monotone theorem. However, these techniques are not adopted here, rather, as a novelty, extensive use of basic manipulation of inequalities and useful equations are applied in illustrating convergence for these sequences. Moreover, we established a mathematical expression for the limit of the nested recurrence sequence in terms of its leading term which yields favorable results.
The concept of q-rung orthopair fuzzy sets generalizes the notions of intuitionistic fuzzy sets and Pythagorean fuzzy sets to describe complicated uncertain information more effectively. Their most dominant attribute is that the sum of the \(q^{th}\) power of the truth-membership and the \(q^{th}\) power of the falsity-membership must be equal to or less than one, so they can broaden the space of uncertain data. This set can adjust the range of indication of decision data by changing the parameter \(q, ~q\geq 1\). In this paper, we define the Hamacher operations of q-rung orthopair fuzzy sets and proved some desirable properties of these operations, such as commutativity, idempotency, and monotonicity. Further, we proved De Morgan’s laws for these operations over complement. Furthermore, we defined the Hamacher scalar multiplication \(({n._{h}}A)\) and Hamacher exponentiation \((A^{\wedge_{h}n})\) operations on q-rung orthopair fuzzy sets and investigated their algebraic properties. Finally, we defined the necessity and possibility operators based on q-rung orthopair fuzzy sets and some properties of Hamacher operations that are considered.
In this paper we prove that the dominator chromatic number of every oriented tree is invariant under reversal of orientation. In addition to this marquee result, we also prove the exact dominator chromatic number for arborescences and anti-arborescences as well as bounds on other orientations of oft studied tree topologies including generalized stars and caterpillars.
In this work, we numerically study a dynamic frictional contact problem between a thermo-piezoelectric body and a conductive foundation. The linear thermo-electro-elastic constitutive law is employed to model the thermo-piezoelectric material. The contact is modelled by the Signorini condition and the friction by the Coulomb law. A frictional heat generation and heat transfer across the contact surface are assumed. The heat exchange coefficient is assumed to depend on contact pressure. Hybrid formulation is introduced, it is a coupled system for the displacement field, the electric potential, the temperature and two Lagrange multipliers. The discrete scheme of the coupled system is introduced based on a finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivate. The thermo-mechanical contact is treated by using an augmented Lagrangian approach. A solution algorithm is discussed and implemented. Numerical simulation results are reported, illustrating the mechanical behavior related to the contact condition.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: