Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Let \(G\) be a simple graph with vertex set \(V(G)\) and edge set \(E(G)\). A mapping \(g:V (G)\rightarrow\{1,2,…t\}\) is called \(t\)-coloring if for every edge \(e = (u, v)\), we have \(g(u) \neq g(v)\). The chromatic number of the graph \(G\) is the minimum number of colors that are required to properly color the graph. The chromatic polynomial of the graph \(G\), denoted by \(P(G, t)\) is the number of all possible proper coloring of \(G\). Dendrimers are hyper-branched macromolecules, with a rigorously tailored architecture. They can be synthesized in a controlled manner either by a divergent or a convergent procedure. Dendrimers have gained a wide range of applications in supra-molecular chemistry, particularly in host guest reactions and self-assembly processes. Their applications in chemistry, biology and nano-science are unlimited. In this paper, the chromatic polynomials for certain families of dendrimer nanostars have been computed.
In the present paper, we focus on the melting heat transfer characteristics of Casson fluid involving thermal radiation and viscous dissipation. To this end, the governing partial differential equations (PDEs) are transformed into the ordinary differential equations (ODEs) via the similarity variables. Besides establishing a homotopy-based methodology and its optimization performed in MATHEMATICA package BVPh2.0, the present findings are compared and validated by those available results in the literature. It can be shown that regardless of the variable fluid properties, this methodology predicts the heat transfer rate with and without melting effect at any Prandtl number. Furthermore, it is seen that the velocity distribution is significantly affected by the melting parameter.
In this paper, Petrović’s inequality is generalized for \(h-\)convex functions on coordinates with the condition that \(h\) is supermultiplicative. In the case, when \(h\) is submultiplicative, Petrović’s inequality is generalized for \(h-\)concave functions. Also particular cases for \(P-\)function, Godunova-Levin functions, \(s-\)Godunova-Levin functions and \(s-\)convex functions has been discussed.
Inspired by the observation that adjacent vertices need possess their own characteristics in terms of total coloring, we study the smarandachely adjacent vertex total coloring (abbreviated as SAVTC) of a graph \(G\), which is a proper total coloring of \(G\) such that for every vertex \(u\) and its every neighbor \(v\), the color-set of \(u\) contains a color not in the color-set of \(v\), where the color-set of a vertex is the set of colors appearing at the vertex or its incident edges. The minimum number of colors required for an SAVTC is denoted by \(\chi_{sat}(G)\). Compared with total coloring, SAVTC would be more likely to be developed for potential applications in practice. For any graph \(G\), it is clear that \(\chi_{sat}(G)\geq \Delta(G)+2\), where \(\Delta(G)\) is the maximum degree of \(G\). We, in this work, analyze this parameter for general subcubic graphs. We prove that \(\chi_{sat}(G)\leq 6\) for every subcubic graph \(G\). Especially, if \(G\) is an outerplanar or claw-free subcubic graph, then \(\chi_{sat}(G)=5\).
In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay differential equations of the form \(\frac{d}{dt} \Biggl[r(t) \frac{d}{dt} \biggl [x(t)+p(t)x(t-\tau)\biggr]\Biggr]+q(t)G\bigl(x(t-\sigma_1)\bigr)+v(t)H\bigl(x(t-\sigma_2)\bigr)=0, \;\; t \geq t_0,\) under the assumptions \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}=\infty\) and \(\int_{0}^{\infty}\frac{d\eta}{r(\eta)}<\infty\) for \(|p(t)|<+\infty\). Two illustrative examples are included.
This study investigate movements of molecule on the biological cell via the cell walls at any given time. Specifically, we examined the movement of a particle in tiling, i.e. in hexagonal and square tiling. The specific questions we posed includes (i) whether particles moves faster in hexagonal tiling or in square tiling (ii) whether the starting point of particles affect the movement toward attainment of stationary distribution. We employed the transitional probabilities and stationary distribution to derive expected passage time to state \(j\) from state \(i\), and the expected recurrence time to state \(i\) in both hexagonal and square tiling. We also employed aggregation of state symmetries to reduce the number of state spaces to overcome the problems (i.e. the difficulty to perform algebraic computation) associated with large transition matrix. This approach leads to formation of a new Markov chain \(X_t\) that retains the original Markov chains properties, i.e. by aggregation of states with the same stochastic behavior to the process. Graphical visualization for how fast the equilibrium is attained with different values of the probability parameter \(p\) in both tilings is also provided. Due to difficulties in obtaining some analytical results, numerical simulation were performed to obtains useful results like expected passage time and recurrence time.
A graceful difference labeling (gdl for short) of a directed graph \(G\) with vertex set \(V\) is a bijection \(f:V\rightarrow\{1,\ldots,\vert V\vert\}\) such that, when each arc $uv$ is assigned the difference label \(f(v)-f(u)\), the resulting arc labels are distinct. We conjecture that all disjoint unions of circuits have a gdl, except in two particular cases. We prove partial results which support this conjecture.
The author considers a mathematical model of immunotherapy and anti-angiogenesis inhibitor therapy for cancer patients over a fixed time horizon. Disease dynamics are captured by a system of ODEs developed in [1], describing dynamics among host cells, cancer cells, endothelial cells, effector cells, and anti-angiogenesis. Existence, uniqueness, and characterization of optimal treatment profiles that minimize the tumor and drug usage, while maintaining healthy levels of effector and host cells are determined. A theoretical analysis is performed to characterize the optimal control. Numerical simulations are performed to illustrate optimal control profiles for a variety of different patients, each leading to different treatment protocols.
The objective of this paper is to investigate the existence and uniqueness theorem for stochastic partial differential equations with poisson jumps and delays. The existence of mild solutions of the problem is studied by using a different resolvent operator defined in [1] and fixed point theorem.
In this work, we study the small oscillations of a system formed by an elastic container with negligible density and a heavy barotropic gas (or a compressible fluid) filling the container. By means of an auxiliary problem, that requires a careful mathematical study, we deduce the problem to a problem for a gas only. From its variational formulation, we prove that is a classical vibration problem.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: