Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
It is a well-known fact that the majority of rational difference equations cannot be solved theoretically. As a result, some scientific experts use manual iterations to obtain the exact solutions of some of these equations. In this paper, we obtain the fractional solutions of the following systems of difference equations:
$$
x_{n+1}=\frac{x_{n-1}y_{n-3}}{y_{n-1}\left( -1-x_{n-1}y_{n-3}\right) },\ \ \
y_{n+1}=\frac{y_{n-1}x_{n-3}}{x_{n-1}\left( \pm 1\pm y_{n-1}x_{n-3}\right) }
,\ \ \ n=0,1,…,
$$
where the initial data \(x_{-3},\ x_{-2},\ x_{-1},\ \)\ \(
x_{0},\ y_{-3},\ y_{-2},\ y_{-1}\) and \(\ \ y_{0}\;\) are arbitrary non-zero real numbers. All solutions will be depicted under specific initial conditions.
In this paper, finite difference method is used to study the combined effects of thermal radiation, inclined magnetic field and temperature-dependent internal heat generation on unsteady two-dimensional flow and heat transfer analysis of dissipative Casson-Carreau nanofluid over a stretching sheet embedded in a porous medium. In the study, kerosene is used as the base fluid which is embedded with the silver (Ag) and copper (Cu) nanoparticles. Also, effects of other pertinent parameters on the flow and heat transfer characteristics of the Casson-Carreau nanofluids are investigated and discussed. From the results, it is established that the temperature field and the thermal boundary layers of Ag-Kerosene nanofluid are highly effective when compared with the Cu-Kerosene nanofluid. Heat transfer rate is enhanced by increasing power-law index and unsteadiness parameter. Skin friction coefficient and local Nusselt number can be reduced by magnetic field parameter and they can be enhanced by increasing the aligned angle. Friction factor is depreciated and the rate of heat transfer increases by increasing the Weissenberg number. A very good agreement is established between the results of the present study and the previous results. The present analysis can help in expanding the understanding of the thermo-fluidic behaviour of the Casson-Carreau nanofluid over a stretching sheet.
The concept of vague graph was introduced early by Ramakrishna and substantial graph parameters on vague graphs were proposed such graph coloring, connectivity, dominating set, independent set, total dominating number and independent dominating number. In this paper, we introduce the concept of the dominator coloring and total dominator coloring of a vague graph and establish mathematical modelling for these problems.
In this paper, we introduce the two variable generalized Laguerre polynomials (2VGLP) \({}_GL^{(\alpha,\beta)}_n(x,y)\). Some properties of these polynomials such as generating functions, summation formulae and expansions are also discussed.
The interaction between aphids, ants and ladybirds has been investigated from an ecological point of view since many decades, while there are no attempts to describe it from a mathematical point of view. This paper introduces a new mathematical model to describe the within-season population dynamics in an ecological patch of a system composed by aphids, ants and ladybirds, through a set of four differential equations. The proposed model is based on the Kindlmann and Dixon set of differential equations [1], focused on the prediction of the aphids-ladybirds population densities, that share a prey-predator relationship. The population of ants, in mutualistic relationship with aphids and in interspecific competition with ladybirds, is described according to the Holland and De Angelis mathematical model [2], in which the authors faced the problem of mutualistic interactions in general terms. The set of differential equations proposed here is discretized by means the Nonstandard Finite Difference scheme, successfully applied by Gabbriellini to the mutualistic model [3]. The constructed finite-difference scheme is positivity-preserving and characterized by four nonhyperbolic steady-states, as highlighted by the phase-space and time-series analyses. Particular attention is dedicated to the steady-state most interesting from an ecological point of view, whose asymptotic stability is demonstrated via the Centre Manifold Theory. The model allows to numerically confirm that mutualistic relationship effectively influences the population dynamic, by increasing the peaks of the aphids and ants population densities. Nonetheless, it is showed that the asymptotical populations of aphids and ladybirds collapse for any initial condition, unlike that of ants that, after the peak, settle on a constant asymptotic value.
In this paper, we introduce new labeling and named it as k-total edge mean cordial (k-TEMC) labeling. We study certain classes of graphs namely path, double comb, ladder and fan in the context of 3-TEMC labeling.
We study the global existence and uniqueness of a solution to an initial boundary value problem for the Euler-Bernoulli viscoelastic equation \(u_{tt}+\Delta^{2}u-g_{1}\ast\Delta^{2} u+g_{2}\ast\Delta u+u_{t}=0.\) Further, the asymptotic behavior of solution is established.
An outer-connected vertex edge dominating set (OCVEDS) for an arbitrary graph \(G\) is a set \(D \subset V(G)\) such that \(D\) is a vertex edge dominating set and the graph \(G \setminus D\) is connected. The outer-connected vertex edge domination number of \(G\) is the cardinality of a minimum OCVEDS of \(G\), denoted by \(\gamma_{ve}^{oc}(G)\). In this paper, we give the outer-connected vertex edge dominating set in lexicographic product of graphs.
The minimum degree matrix \(MD(G)\) of a graph \(G\) of order \(n\) is an \(n\times n\) symmetric matrix whose \((i,j)^{th}\) entry is \(min\{d_i,d_j\}\) whenever \(i\neq j,\) and zero otherwise, where \(d_i\) and \(d_j\) are the degrees of the \(i^{th}\) and \(j^{th}\) vertices of \(G\), respectively. In the present work, we obtain the minimum degree polynomial of the graphs obtained by some graph operators (generalized \(xyz\)-point-line transformation graphs).
The exact solutions of most nonlinear difference equations cannot be obtained theoretically sometimes. Therefore, a massive number of researchers predict the long behaviour of most difference equations by investigating some qualitative behaviours of these equations from the governing equations. In this article, we aim to analyze the asymptotic stability, global stability, periodicity of the solution of an eighth-order difference equation. Moreover, a theoretical solution of a special case equation will be presented in this paper.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: