The aim of Open Journal of Discrete Applied Mathematics (ODAM) (2617-9687 Online, 2617-9679 Print) is to bring together research papers in different areas of algorithmic and applied mathematics as well as applications of mathematics in various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. To ensure fast publication, editorial decisions on acceptance or otherwise are taken within 4 to 12 weeks (three months) of receipt of the paper.
Accepted articles are immediately published online as soon as they are ready for publication. There is one volume containing three issues per year. The issues will be finalized in April, August, and December of every year. The printed version will be published in December of every year.
A new recursion in only one variable allows very simple verifications of Bressoud’s polynomial identities, which lead to the Rogers-Ramanujan identities. This approach might be compared with an earlier approach due to Chapman. Applying the \(q\)-Chu-Vandermonde convolution, as suggested by Cigler, makes the computations particularly simple and elementary. The same treatment is also applied to the Santos polynomials and perhaps more polynomials from a list of Rogers-Ramanujan like polynomials [1].
Let \(0<k\in\mathbb{Z}\). A reinterpretation of the proof of existence of Hamilton cycles in the middle-levels graph \(M_k\) induced by the vertices of the \((2k+1)\)-cube representing the \(k\)- and \((k+1)\)-subsets of \(\{0,\ldots,2k\}\) is given via an associated dihedral quotient graph of \(M_k\) whose vertices represent the ordered (rooted) trees of order \(k+1\) and size \(k\).
Let \(G\) be a simple graph. A total dominator coloring of \(G\) is a proper coloring of the vertices of \(G\) in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number \(\chi_d^t(G)\) of \(G\) is the minimum number of colors among all total dominator coloring of \(G\). In this paper, we study the total dominator chromatic number of some graphs with specific construction. Also we compare \(\chi_d^t(G)\) with \(\chi_d^t(G-e)\), where \(e\in E(G)\).
This paper proposes the concept of direct product of fuzzy multigroups under \(t\)-norms and some of their basic properties are obtained. Next, we investigate and obtain some new results of strong upper alpha-cut, weak upper alpha-cut, strong lower alpha-cut and weak lower alpha-cut of them. Later, we prove conjugation and commutation between them. Finally, the notion of homomorphism in the context of fuzzy multigroups was defined and some homomorphic properties of fuzzy multigroups under \(t\)-norms in terms of homomorphic images and homomorphic preimages, respectively, were presented.
The concept of fuzzy set theory is of paramount relevance to tackling the issues of uncertainties in real-life problems. In a quest to having a reasonable means of curbing imprecision, the idea of fuzzy sets had been generalized to intuitionistic fuzzy sets, fuzzy multisets, Pythagorean fuzzy sets among others. The notion of intuitionistic fuzzy multisets (IFMS) came into the limelight naturally because there are instances when repetitions of both membership and non-membership degrees cannot be ignored like in the treatment of patients, where each consultations are key in diagnosis and therapy. In IFMS theory, the sum of the degrees of membership and non-membership is less than or equals one at each levels. Supposing the sum of the degrees of membership and non-membership is greater than or equal to one at any level, then the concept of Pythagorean fuzzy multisets (PFMS) is appropriate to handling such scenario. In this paper, the idea of PFMS is proposed as an extensional Pythagorean fuzzy sets proposed by R. R. Yager. In fact, PFMS is a Pythagorean fuzzy set in the framework of multiset. The main objectives of this paper are to expatiate the operations under PFMSs and discuss some of their algebraic properties with some related results. The concepts of level sets, cuts, accuracy and score functions, and modal operators are established in the setting of PFMSs with a number of results. Finally, to demonstrate the applicability of the proposed soft computing technique, a course placements scenario is discussed via PFMS framework using composite relation defined on PFMSs. This soft computing technique could find expression in other multi-criteria decision-making (MCDM) problems.
Capacitated vehicle routing problem is one of the variants of the vehicle routing problem which was studied in this research. In this research we applied a reinforcement learning algorithm to find set of routes from a depot to the set of customers while also considering the capacity of the vehicles, in order to reduce the cost of transportation of goods and services. Each vehicle originates from a depot, service the customers and return to the depot. We compare the reinforcement learning model with an exact method; column generation and Google’s OR-tool. Our objective is to solve a large-size of problem to near-optimality. We were able to use reinforcement learning to solve upto 101 nodes to near-optimality.
In this paper, we establish a connection between differential operators and Narayana numbers of both kinds, as well as a kind of numbers related to central binomial coefficients studied by Sulanke (Electron. J. Combin. 7 (2000), R40).
The Wiener index is a topological index of a molecule, defined as the sum of distances between all pairs of vertices in the chemical graph. Hexagonal chains consist of hexagonal rings connected with each other by edges. This class of chains contains molecular graphs of unbranched catacondensed benzenoid hydrocarbons. A segment of length \(\ell\) of a chain is its maximal subchain with \(\ell\) linear annelated hexagons. We consider chains in which all segments have equal lengths. Such chains can be uniquely represented by binary vectors. The Wiener index of hexagonal chains under some operations on the corresponding binary vectors are investigated. The obtained results may be useful in studying of topological indices for sets of hexagonal chains induced by algebraic constructions.
For every \(n\ge 3\), we determine the minimum number of edges of graph with \(n\) vertices such that for any non edge \(xy\) there exits a hamiltonian cycle containing \(xy\).
In this paper, the approach to obtaining nontrivial formulas for some recursively defined sequences is illustrated. The most interesting result in the paper is the formula for the solution of quadratic map-like recurrence. Also, some formulas for the solutions of linear difference equations with variable coefficients are obtained. At the end of the paper, some integer sequences associated with a quadratic map are considered.