Search for Articles:

Open Journal of Mathematical Sciences (OMS)

The Open Journal of Mathematical Sciences (OMS) ISSN: 2523-0212 (Online) | 2616-4906 (Print) is partially supported by the National Mathematical Society of Pakistan, is a single-blind peer-reviewed and open-access journal dedicated to publishing original research articles, review papers, and survey articles in all areas of mathematics.

  • Diamond Open Access: OMS follows the Diamond Open Access model—completely free for both authors and readers, with no article processing charges (APCs).
  • Rapid Publication: Accepted papers are published online as soon as they are ready, ensuring timely dissemination of research findings.
  • Scope: The journal welcomes high-quality contributions across all branches of mathematics, offering a broad platform for scholarly exchange.
  • Publication Frequency: While articles are available online throughout the year, OMS publishes one annual print volume in December for readers who prefer physical copies
  • Indexing: Scopus, ROAD, J-Gate Portal, AcademicKeys, Crossref (DOI prefix: 10.30538), Scilit, Directory of Research Journals Indexing.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Muhammad Saqib1, Muhammad Iqbal1
1Department of Mathematics, Lahore Leads University, Lahore-54590, Pakistan.
Abstract:

In this paper, we suggest and analyze two new algorithm of fourth and fifth order convergence. We rewrite nonlinear equation as an equivalent coupled system and then use modified decomposition technique to develop our algorithms. Convergence analysis of newly introduced algorithms has been discussed. To see efficiency and performance of these algorithms, we have made comparison of these algorithms with some well known algorithms existing in literature.

A. Aslam1, Piyali Bhar2
1Division of Science and Technology, University of Education, Lahore-54590, Pakistan.
2Department of Mathematics, Government General Degree College, Singur, Hooghly 712 409, West Bengal, India.
Abstract:

In this work, we investigate the process of accretion for static spherical symmetric geometries for isotropic fluid. For analyze this process we use the nonminimal magnetically charged regular black holes. For this purpose, we obtain generalized expressions for the accretion rate \(\dot{M}\), critical radius \(r_s\), critical speed \(v^2_s\) and squared sound speed \(c^2_s\) during the accretion process near the regular black holes. Finally, we study the behavior of radial velocity, energy density and rate of change of mass for each
regular black hole by plotting graph.

Madeeha Tahir1, Muhammad Nawaz Naeem1, Rabia Safdar1, Dumitru Vieru2, Muhammad Imran1
1Department of Mathematics, Government College University, Faisalabad, Pakistan.
2Department of Theoretical Mechanics Technical University Gh. Asachi Iasi Romania.
Abstract:

The fractional calculus approach is used in the constitutive relationship model of fractional Maxwell fluid. Exact solutions for the velocity field and the adequate shear stress corresponding to the rotational flow of a fractional Maxwell fluid, between two infinite coaxial circular cylinders, are obtained by using the Laplace transform and finite Hankel transform for fractional calculus. The solutions that have been obtained are presented in terms of generalized \(G_{b, c, d}(\cdot, t)\) and \(R_{b, c}(\cdot, t)\) functions. In the limiting cases, the corresponding solutions for ordinary Maxwell and Newtonian fluids are obtained from our general solutions. Furthermore, the solutions for the motion between the cylinders, when one of them is at rest, are also obtained as special cases from our results. Finally, the influence of the material parameters on the fluid motion is underlined by graphical illustrations.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more