Open Journal of Mathematical Sciences (OMS) 2523-0212 (online) 2616-4906 (Print) partially supported by National Mathematical Society of Pakistan is a single blind peer reviewed Open Access journal that publishes original research articles, review articles and survey articles related to Mathematics. Open access means that articles published in Open Journal of Mathematical Sciences are available online to the reader “without financial, legal, or technical barriers”. We publish both in print and online versions. Accepted paper will be published online immediately after it gets ready to publish. We publish one volume in the month of December in print form.
The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor’s classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor’s theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.
In this paper, we establish sharp inequalities for trigonometric functions. We prove in particular for \(0 < x < \frac{\pi}{2}\) and any \(n \geq 5\) \[0 < P_n(x)\ <\ (\sin x)^2- x^3\cot x < P_{n-1}(x) + \left[\left(\frac{2}{\pi}\right)^{2n} – \sum_{k=3}^{n-1} a_k \left(\frac{2}{\pi}\right)^{2n-2k}\right] x^{2n} \] where \(P_n(x) = \sum_{3=k}^n a_k x^{2k+1}\) is a \(n\)-polynomial, with positive coefficients (\(k \geq 5\)), \(a_{{k}}=\frac{{2}^{2\,k-2}}{\ \left( 2\,k-2 \right) ! } \left( \left| {B}_{ 2\,k-2} \right| +{\frac { \left( -1\right) ^{k+1}}{ \left( 2\,k-1 \right) k}} \right),\) \( B_{2k} \) are Bernoulli numbers. This improves a lot of lower bounds of \( \frac{\sin(x)}{x}\) and generalizes inequalities chains.
Moreover, bounds are obtained for other trigonometric inequalities as Huygens and Cusa inequalities as well as for the function
\[g_n(x) = \left(\frac{\sin(x)}{x}\right)^2 \left( 1 – \frac{2\left(\frac{2 x}{\pi}\right)^{2n+2}}{1-(\frac{2x}{\pi})^2}\right) +\frac{\tan(x)}{x}, \ n\geq 1 \].
In this manuscript, our primary focus revolves around extending the inequalities associated with the Quadratic \(\varphi(\delta_{1},\delta_{2})-\)function. Our approach involves leveraging the general quadratic functional equation encompassing \(2k\)-variables within the context of the fuzzy Banach space. Our main contribution lies in the expansion of these inequalities, representing a significant result within this study.
We classify particle paths for systems in thermal equilibrium satisfying the usual relations and prove that the only solutions are given by straight line parallel paths with speed \(c\).
It is on record that rolling out COVID-19 vaccines has been one of the fastest for any vaccine production worldwide. Despite this prompt action taken to mitigate the transmission of COVID-19, the disease persists. One of the reasons for the persistence of the disease is that the vaccines do not confer immunity against the infections. Moreover, the virus-causing COVID-19 mutates, rendering the vaccines less effective on the new strains of the disease. This research addresses the multi-strains transmission dynamics and herd immunity threshold of the disease. Local stability analysis of the disease-free steady state reveals that the pandemic can be contained when the basic reproduction number, \(R_{0}\) is brought below unity. The results of numerical simulations also agree with the theoretical results. The herd immunity thresholds for some of the vaccines against COVID-19 were computed to guide the management of the disease. This model can be applied to any strain of the disease.
The purpose of this paper is the study of the growth of solutions of higher order linear differential equations \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)
}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=0\) and \(f^{\left( k\right) }+\left( A_{k-1,1}\left( z\right) e^{P_{k-1}\left(z\right) }+A_{k-1,2}\left( z\right) e^{Q_{k-1}\left( z\right) }\right)f^{\left( k-1\right) }+\cdots +\left( A_{0,1}\left( z\right) e^{P_{0}\left( z\right)}+A_{0,2}\left( z\right) e^{Q_{0}\left( z\right) }\right) f=F\left( z\right),\) where \(A_{j,i}\left( z\right) \left( \not\equiv 0\right) \left(j=0,…,k-1;i=1,2\right) ,\) \(F\left( z\right) \) are meromorphic functions of finite order and \(P_{j}\left( z\right) ,Q_{j}\left( z\right) \) \((j=0,1,…,k-1;i=1,2)\) are polynomials with degree \(n\geq 1\). Under some others conditions, we extend the previous results due to Hamani and Belaïdi [1].
In this paper we prove large-time existence and uniqueness of high regularity weak solutions to some initial/boundary value problems involving a nonlinear fourth order wave equation. These sorts of problems arise naturally in the study of vibrations in beams that are hinged at both ends. The method used to prove large-time existence is the Galerkin approximation method.
In this paper, we proved that solutions \((\rho,J)\) exist for the 1-dimensional wave equation on \([-\pi,\pi]\). When \((\rho,J)\) is extended to a smooth solution \((\rho,\overline{J})\) of the continuity equation on a vanishing annulus \(Ann(1,\epsilon)\) containing the unit circle \(S^1\), a corresponding causal solution \((\rho,\overline{J}’ \overline{E}, \overline{B})\) to Maxwell’s equations can be obtained from Jefimenko’s equations. The power radiated in a time cycle from any sphere \(S(r)\) with \(r>0\) is \(O\left(\frac{1}{r}\right)\), which ensure that no power is radiated at infinity over a cycle.
This study aims to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperatures in Rwanda. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests that Gumbel and Beta distributions are the most appropriate for the annual maximum daily temperature. Furthermore, the results show that the temperature will continue to increase as estimated return levels show it.
Using the Kudryashov and Tanh methods, we have obtained novel exact solutions for the Paraxial Wave Dynamical Equation with Kerr law, including various types of wave solutions. These distinct types of wave solutions have important applications in physics and engineering, and their physical characteristics are well defined. These outcomes are a substantial innovation in the study of water waves in mathematical physics and engineering phenomena. The results we have acquired demonstrate the power and effectiveness of the present techniques.