Search for Articles:

Open Journal of Mathematical Sciences (OMS)

The Open Journal of Mathematical Sciences (OMS) ISSN: 2523-0212 (Online) | 2616-4906 (Print) is partially supported by the National Mathematical Society of Pakistan, is a single-blind peer-reviewed and open-access journal dedicated to publishing original research articles, review papers, and survey articles in all areas of mathematics.

  • Diamond Open Access: OMS follows the Diamond Open Access model—completely free for both authors and readers, with no article processing charges (APCs).
  • Rapid Publication: Accepted papers are published online as soon as they are ready, ensuring timely dissemination of research findings.
  • Scope: The journal welcomes high-quality contributions across all branches of mathematics, offering a broad platform for scholarly exchange.
  • Publication Frequency: While articles are available online throughout the year, OMS publishes one annual print volume in December for readers who prefer physical copies
  • Indexing: Scopus, ROAD, J-Gate Portal, AcademicKeys, Crossref (DOI prefix: 10.30538), Scilit, Directory of Research Journals Indexing.
  • Publisher: Ptolemy Scientific Research Press (PSR Press), part of the Ptolemy Institute of Scientific Research and Technology.

Latest Published Articles

Vladimir Pletser1
1 European Space Research and Technology Centre (ret.); Current address: Blue Abyss, Newquay, Cornwall, United Kingdom;
Abstract:

Squares of odd index Fibonacci polynomials are used to define a new function \(\Phi\left(10^{n}\right)\) to approximate the number \(\pi\left(10^{n}\right)\) of primes less than \(10^{n}\). Multiple of 4 index Fibonacci polynomials are further used to define another new function \(\Psi\left(10^{n}\right)\) to approximate the number \(\Delta\left(\pi\left(10^{n}\right)\right)\) of primes having \(n\) digits and compared to a third function \(\Psi’\left(10^{n}\right)\) defined as the difference of the first function \(\Phi\left(10^{n}\right)\) based on odd index Fibonacci polynomials. These three functions provide better approximations of \(\pi\left(10^{n}\right)\) than those based on the classical \(\left(\frac{x}{log\left(x\right)}\right)\), Gauss’ approximation \(Li\left(x\right)\), and the Riemann \(R\left(x\right)\) functions.

Vladimir PLETSER1
1 European Space Agency (ret.);
Abstract:

We show that Euler’s relation and the Taxi-Cab relation are both solutions of the same equation. General solutions of sums of two consecutive cubes equaling the sum of two other cubes are calculated. There is an infinite number of relations to be found among the sums of two consecutive cubes and the sum of two other cubes, in the form of two families. Their recursive and parametric equations are calculated.

Suresh Kumar Sahani1, A.K. Thakur2, Avinash Kumar3, K. Sharma4
1Department of Science and Technology, Rajarshi Janak University, Janakpurdham, Nepal
2Department of Mathematics, G. G. V., Bilaspur, India
3Department of Mathematics, Dr. C. V. Raman University, India
4Department of Mathematics, NIT, Uttarakhand, Srinagar (Garhwal), India
Abstract:

This study introduces theorems concerning matrix products, which delineate the transformations of sequences or series into other sequences or series, ensuring either the preservation of limits or the guarantee of convergence. Previous literature has explored the properties of matrices facilitating transformations between sequences, series, and their combinations, with detailed insights available in references [1,2,3].

Daniel A. Romano1
1International Mathematical Virtual Institute Kordunav ska Street 6, 78000 Banja Luka, Bosnia and Herzegovina;
Abstract:

The concept of weak UP-algebras (shortly wUP-algebra) is an extension of the notion of UP-algebras introduced in 2021 by Iampan and Romano. In this report, an effective extension of a (weak) UP-algebra to a wUP-algebra is created. In addition to the previous one, the concept of atoms in wUP-algebras is introduced and their important properties are registered. Finally, the concept of wUP-filters in wUP-algebras was introduced and its connections with other substructures in wUP-algebras were analyzed.

Yin Zhou1, Qichuan Ni1, Qi Liu1
1School of Mathematics and Physics, Anqing Normal University, Anqing 246133, P. R. China;
Abstract:

In normed spaces, Birkhoff orthogonality and isosceles orthogonality can be used to characterize space structures, and many scholars have introduced geometric constants to quantitatively describe the relationship between these two types of orthogonality. This paper introduces a new orthogonal relationship – Skew orthogonality – and proposes a new geometric constant to measure the “distance” of difference between skew orthogonality and Birkhoff orthogonality in normed spaces. In the end, we provide some examples of specific spaces.

David Raske 1
11210 Washtenaw, Ypsilanti, MI, 48197, USA.;
Abstract:

This corrigenda makes seven corrections to D. Raske, “The Galerkin method and hinged beam dynamics,” Open J. of Math. Sci. 2023, 7, 236-247.

Parth Chavan1, Sarth Chavan1
1Euler Circle, Palo Alto, CA 94306, USA.
Abstract:

The main goal of this brief article is to provide an elementary proof of Sun’s six conjectures on Apéry-like sums involving ordinary harmonic numbers.

Abubker Ahmed1,2,3
1Ibn Khaldoon College, Program of Information Technology, Khartoum, Sudan.
2AlMughtaribeen University, College of Engineering, Department of General Sciences, Sudan.
3University of Science & Technology, College of Engineering, Sudan.
Abstract:

In this paper, we develop a new application of the Laplace transform method (LTM) using the series expansion of the dependent variable for solving fractional logistic growth models in a population as well as fractional prey-predator models. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method some examples are provided. The results reveal that the technique introduced here is very effective and convenient for solving fractional-order nonlinear differential equations.

Kifilideen L. Osanyinpeju1
1 Agricultural and Bio-Resources Engineering Department, College of Engineering, Federal University of Agriculture Abeokuta, Ogun State.
Abstract:

The generation of coefficients of terms of positive and negative powers of \(n\) and \(-n\) of Kifilideen trinomial theorem as the terms are progress is stressful and time-consuming which the same problem is identified with coefficients of terms of binomial theorem of positive and negative powers of \(n\) and \(-n\). This slows the process of producing the series of any particular trinomial expansion. This study established Kifilideen coefficient tables for positive and negative powers of \(n\) and \(-n\) of the Kifilideen trinomial theorem and other developments based on matrix and standardized methods. A Kifilideen theorem of matrix transformation of the positive power of \(n\) of trinomial expression in which three variables \(x,y\), and \(z\) are found in parts of the trinomial expression was originated. The development would ease evaluating the trinomial expression’s positive power of \(n\). The Kifilideen coefficient tables are handy and effective in generating the coefficients of terms and series of the Kifilideen expansion of trinomial expression of positive and negative powers of \(n\) and \(-n.\)

Gianluca Viggiano1
1Bank of Italy, Regional Economic Research, Milan, Italy.
Abstract:

The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor’s classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor’s theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.

Special Issues

The PSR Press Office warmly invites scholars, researchers, and experts to propose and guest edit Special Issues on topics of significance to the scientific community.

Read more