Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Sciences (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In this paper we present an algorithm for finding a minimum dominator coloring of orientations of paths. To date this is the first algorithm for dominator colorings of digraphs in any capacity. We prove that the algorithm always provides a minimum dominator coloring of an oriented path and show that it runs in \(\mathcal{O}(n)\) time. The algorithm is available at https://github.com/cat-astrophic/MDC-orientations_of_paths/.
The present study is based on the nonlinear analysis of unsteady magnetohydrodynamics squeezing flow and heat transfer of a third grade fluid between two parallel disks embedded in a porous medium under the influences of thermal radiation and temperature jump boundary conditions are studied using Chebyshev spectral collocation method. The results of the non-convectional numerical solutions verified with the results of numerical solutions using fifth-order Runge-Kutta Fehlberg-shooting method and also the results of homotopy analysis method as presented in literature. The parametric studies from the series solutions show that for a suction parameter greater than zero, the radial velocity of the lower disc increases while that of the upper disc decreases as a result of a corresponding increase in the viscosity of the fluid from the lower squeezing disc to the upper disc. An increasing magnetic field parameter, the radial velocity of the lower disc decreases while that of the upper disc increases. As the third-grade fluid parameter increases, there is a reduction in the fluid viscosity thereby increasing resistance between the fluid molecules. There is a recorded decrease in the fluid temperature profile as the Prandtl number increases due to decrease in the thermal diffusivity of the third-grade fluid. The results in this work can be used to advance the analysis and study of the behaviour of third grade fluid flow and heat transfer processes such as found in coal slurries, polymer solutions, textiles, ceramics, catalytic reactors, oil recovery applications etc.
The problem discussed is the Navier-Stokes problem (NSP) in \(\mathbb{R}^3\). Uniqueness of its solution is proved in a suitable space \(X\). No smallness assumptions are used in the proof. Existence of the solution in \(X\) is proved for \(t\in [0,T]\), where \(T>0\) is sufficiently small. Existence of the solution in \(X\) is proved for \(t\in [0,\infty)\) if some a priori estimate of the solution holds.
In this paper, we characterize the centre of dense irreducible subalgebras of compact elementary operators that are spectrally bounded. We show that the centre is a unital, irreducible and commutative \(C^{*}\)-subalgebra. Furthermore, the supports from the centre are orthogonal and the intersection of a nonzero ideal with the centre is non-zero.
By applying Opoola differential operator, in this article, two new subclasses \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\psi,k,\tau)\) and \(\mathcal{M}_{\mathcal{H},\sigma}^{\mu,\beta}(m,\xi,k,\tau)\) of bi-univalent functions class \(\mathcal{H}\) defined in \(\bigtriangledown\) are introduced and investigated. The estimates on the coefficients \(|l_2|\) and \(|l_3|\) for functions of the classes are also obtained.
Here we study the existence of solutions of a nonlocal two-point, with parameters, boundary value problem of a first order nonlinear differential equation. The maximal and minimal solutions will be proved. The continuous dependence of the unique solution on the parameters of the nonlocal condition will be proved. The anti-periodic boundary value problem will be considered as an application.
This paper presents an existence theorem of the solutions for a boundary value problem of fractional order differential equations with integral boundary conditions, by using measure of noncompactness combined with Mönch fixed point theorem. An example is furnished to illustrate the validity of our outcomes.
We present, in a way quite accessible to undergraduate and graduate students, some basic and important facts about conics: parabola, ellipse and hyperbola. For each conic, we start by its definition, then consider tangent line and obtain an elementary proof of the reflexion property. We study intersection of tangents. We obtain the orthopic set for orthogonal tangents: the directrix for parabola and the Monge’s circle for ellipse and hyperbola. For ellipse and hyperbola we also consider intersection of tangents for parallel rays at points of intersection with the conic. Those analysis lead to geometric methods to draw conics. Finally we get the directrices for ellipse and hyperbola by considering intersections of tangents at endpoints of a secant passing through a focus.
In this paper, we examine linear and nonlinear boundary sinks in compartments whose adjacent sides are separated with sieve partitions allowing transport of chemical species. The sieve partitions serve as boundary sinks of the system separating each compartment from the subsequent one. With assumption of unidirectional transport of chemical species, constant physical properties and same equilibrium constant, system of partial differential equations are derived. The spatial variables of the derived PDEs are discretized using Method of Lines (MOL) technique. The semi-discrete system formed from this technique produced a system of 105 ODEs which are solved using MATLAB solver ode15s. The results show that for strongly nonlinear boundary sinks, concentration profile maintains low profile in interconnected adjacent compartments. This suggests that as nonlinearity increases at the boundary, the concentration profile becomes increasingly low in subsequent compartments.
A state of health emergency has been decreed by the Togolese government since April 01 for a period of 3 months, with the introduction of a curfew which ended on June 9, following the first case of contamination of the corona Sars- Cov-2 in Togo, case registered on March 06, 2020. This first wave of contamination started from March 19. The data observed in Togo are cases tested positive and which are cured using a protocol based on the combination of hydroxychloroquine and azithromycin. This manuscript offers a forecast on the number of daily infections and its peak (or maximum), then the cumulative numbers of those infected with the covid’19 pandemic. The forecasts are based on evolution models which are well known in the literature, which consist in evaluating the evolution of the cumulative numbers of infected and a Gaussian model representing an estimate of the number of daily infections for this first wave of contamination. over a period of 8 months from the sample of observed data.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: