Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In this paper, we establish viscosity rule for common fixed points of two nonexpansive mappings in the framework of CAT(0) spaces. The strong convergence theorems of the proposed technique is proved under certain assumptions imposed on the sequence of parameters. The results presented in this work extend and improve some recent announced in the literature.
In this work, we developed homotopy perturbation double Sumudu transform method (HPDSTM) which is obtained by combining homotopy perturbation method, double Sumudu transform and He’s polynomials. The method is applied to find the solution of linear fractional one and two dimensional dispersive KdV and nonlinear fractional KdV equations to illustrate the reliability of the method. It is observed that the solutions obtained by the method converge rapidly to the exact solutions. This method is very powerful, and professional techniques for solving different kinds of linear and nonlinear fractional order differential equations.
In this article, we compute closed forms of M-polynomial for three general classes of convex polytopes. From the M-polynomial, we derive degree-based topological indices such as first and second Zagreb indices, modified second Zagreb index, Symmetric division index, etc.
Let \(G\) be a simple connected molecular graph with vertex set \(V(G)\) and edge set \(E(G)\). One important modification of classical Zagreb index, called hyper Zagreb index \(HM(G)\) is defined as the sum of squares of the degree sum of the adjacent vertices, that is, sum of the terms \({[{{d}_{G}}(u)+{{d}_{G}}(v)]^2}\) over all the edges of \(G\), where \(d_G(v)\) denote the degree of the vertex \(u\) of \(G\). In this paper, the hyper Zagreb index of certain bridge and chain graphs are computed and hence using the derived results we compute the hyper Zagreb index of several classes of chemical graphs and nanostructures.
The main theme of this work is to apply the Adomian decomposition method (ADM) to solve the non-linear differential equations which arise in fluid mechanics. we study some steady unidirectional magnetohydrodynamics (MHD) flow problems namely, Couette flow, Poiseuille flow and Generalized-Couette flow of a third grade non Newtonian fluid between two horizontal infinite parallel plates in the presence of a transversal magnetic field. Moreover, the MHD solutions for a Newtonian fluid, as well as those corresponding to a third grade fluid are obtained by the limiting cases of our solutions. Finally, the influence of the pertinent parameters on the velocity of fluids is also analyzed by graphical illustrations.
Chemical reaction network theory is an area of applied mathematics that attempts to model the behavior of real world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry. It has also attracted interest from pure mathematicians due to the interesting problems that arise from the mathematical structures involved. It is experimentally proved that many properties of the chemical compounds and their topological indices are correlated. In this report, we compute closed form of forgotten polynomial and forgotten index for interconnection networks. Moreover we give graphs to see dependence of our results on the parameters of structures.
In this article, we are mainly interested to find some sufficient conditions for integral operator involving normalized Struve and Dini function to be in the class \(N\left( \mu \right)\). Some corollaries involving special functions are also the part of our investigations.
In this paper, we define a new generalized class of preinvex functions which includes harmonically \((s,m)\)-convex functions as a special case and establish a new identity. Using this identity, we introduce some new integral inequalities for harmonically \((s,m)\)-preinvex functions.
Let \(G\) be connected graph with vertex \(V(G)\) and edge set \(E(G)\). The first and second \(K\)-Banhatti indices of \(G\) are defined as \(B_{1}(G)=\sum\limits_{ue}[d_{G}(u)+d_{G}(e)]\) and \(B_{2}(G)=\sum\limits_{ue}[d_{G}(u)d_{G}(e)]\) ,where \(ue\) means that the vertex \(u\) and edge \(e\) are incident in \(G\). The first and second \(K\)-hyper Banhatti indices of \(G\) are defined as \(HB_{1}(G)=\sum\limits_{ue}[d_{G}(u)+d_{G}(e)]^{2}\) and \(HB_{2}(G)=\sum\limits_{ue}[d_{G}(u)d_{G}(e)]^{2}\). In this paper, we compute the first and second \(K\)-Banhatti and \(K\)-hyper Banhatti indices of Dominating David Derived networks.
In this paper, we present a new viscosity technique of nonexpansive mappings in the framework of CAT(0) spaces. The strong convergence theorems of the proposed technique is proved under certain assumptions imposed on the sequence of parameters. The results presented in this paper extend and improve some recent announced in the current literature.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: