Ptolemy Scientific Research Press (PSR Press) is a highly regarded publisher of scientific literature dedicated to bringing the latest research and findings to a broader audience. With a focus on cutting-edge research and technology, Ptolemy Scientific Research Press offers a range of publications catering to professionals, researchers, and student’s needs. Whether looking for information on the latest breakthroughs in physics, biology, engineering, or computer science, you can trust Ptolemy Scientific Research Press to deliver insightful, accurate, and engaging content. With its commitment to quality, accessibility, and innovation, Ptolemy Scientific Research Press is an essential resource for anyone interested in science and technology.
ISSN: 2523-0212 (online) 2616-4906 (Print)
ISSN: 2616-8111 (online) 2616-8103 (Print)
ISSN: 2617-9687 (online) 2617-9679 (Print)
ISSN: 2618-0758 (online) 2618-074X (Print)
ISSN: 2617-9709 (online) 2617-9695 (Print)
ISSN: 2791-0814 (online) 2791-0806 (Print)
Open Journal of Mathematical Science (OMS)
ISSN: 2523-0212 (online) 2616-4906 (Print)
Open Journal of Mathematical Analysis (OMA)
ISSN: 2616-8111 (online) 2616-8103 (Print)
Open Journal of Discrete Applied Mathematics (ODAM)
ISSN: 2617-9687 (online) 2617-9679 (Print)
Ptolemy Journal of Chemistry (PJC)
ISSN: 2618-0758 (online) 2618-074X (Print)
Engineering and Applied Science Letters (EASL)
ISSN: 2617-9709 (online) 2617-9695 (Print)
Trends in Clinical and Medical Sciences (TCMS)
ISSN: 2791-0814 (online) 2791-0806 (Print)
In this work, we establish the existence and uniqueness of solution of Floquet eigenvalue and its adjoint to homogeneous growth-fragmentation equation with positive and periodic coefficients. We study the Floquet exponent, which measures the growth rate of a population. Finally, we establish the long term behavior of solution to the homogeneous growth-fragmentation equation by entropy method [1,2,3].
In mathematical chemistry, a large number of topological indices are used to predict the physicochemical properties of compounds, especially in the study of quantitative structure-proerty relationship (QSPR).
However, many topological indices have almost the same predictive ability. In this paper, we focus on how to use fewer topological indices to predict the physicochemical properties of compounds through the QSPR analysis of connectivity indices of benzene hydrocarbons.
The main goal of this brief article is to provide an elementary proof of Sun’s six conjectures on Apéry-like sums involving ordinary harmonic numbers.
In this paper, we develop a new application of the Laplace transform method (LTM) using the series expansion of the dependent variable for solving fractional logistic growth models in a population as well as fractional prey-predator models. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method some examples are provided. The results reveal that the technique introduced here is very effective and convenient for solving fractional-order nonlinear differential equations.
The generation of coefficients of terms of positive and negative powers of \(n\) and \(-n\) of Kifilideen trinomial theorem as the terms are progress is stressful and time-consuming which the same problem is identified with coefficients of terms of binomial theorem of positive and negative powers of \(n\) and \(-n\). This slows the process of producing the series of any particular trinomial expansion. This study established Kifilideen coefficient tables for positive and negative powers of \(n\) and \(-n\) of the Kifilideen trinomial theorem and other developments based on matrix and standardized methods. A Kifilideen theorem of matrix transformation of the positive power of \(n\) of trinomial expression in which three variables \(x,y\), and \(z\) are found in parts of the trinomial expression was originated. The development would ease evaluating the trinomial expression’s positive power of \(n\). The Kifilideen coefficient tables are handy and effective in generating the coefficients of terms and series of the Kifilideen expansion of trinomial expression of positive and negative powers of \(n\) and \(-n.\)
The Taylor expansion is a widely used and powerful tool in all branches of Mathematics, both pure and applied. In Probability and Mathematical Statistics, however, a stronger version of Taylor’s classical theorem is often needed, but only tacitly assumed. In this note, we provide an elementary proof of this measurable Taylor’s theorem, which guarantees that the interpolating point in the Lagrange form of the remainder can be chosen to depend measurably on the independent variable.
In this paper, we establish sharp inequalities for trigonometric functions. We prove in particular for \(0 < x < \frac{\pi}{2}\) and any \(n \geq 5\) \[0 < P_n(x)\ <\ (\sin x)^2- x^3\cot x < P_{n-1}(x) + \left[\left(\frac{2}{\pi}\right)^{2n} – \sum_{k=3}^{n-1} a_k \left(\frac{2}{\pi}\right)^{2n-2k}\right] x^{2n} \] where \(P_n(x) = \sum_{3=k}^n a_k x^{2k+1}\) is a \(n\)-polynomial, with positive coefficients (\(k \geq 5\)), \(a_{{k}}=\frac{{2}^{2\,k-2}}{\ \left( 2\,k-2 \right) ! } \left( \left| {B}_{ 2\,k-2} \right| +{\frac { \left( -1\right) ^{k+1}}{ \left( 2\,k-1 \right) k}} \right),\) \( B_{2k} \) are Bernoulli numbers. This improves a lot of lower bounds of \( \frac{\sin(x)}{x}\) and generalizes inequalities chains.
Moreover, bounds are obtained for other trigonometric inequalities as Huygens and Cusa inequalities as well as for the function
\[g_n(x) = \left(\frac{\sin(x)}{x}\right)^2 \left( 1 – \frac{2\left(\frac{2 x}{\pi}\right)^{2n+2}}{1-(\frac{2x}{\pi})^2}\right) +\frac{\tan(x)}{x}, \ n\geq 1 \].
In this manuscript, our primary focus revolves around extending the inequalities associated with the Quadratic \(\varphi(\delta_{1},\delta_{2})-\)function. Our approach involves leveraging the general quadratic functional equation encompassing \(2k\)-variables within the context of the fuzzy Banach space. Our main contribution lies in the expansion of these inequalities, representing a significant result within this study.
We classify particle paths for systems in thermal equilibrium satisfying the usual relations and prove that the only solutions are given by straight line parallel paths with speed \(c\).
In this paper, we obtain the bounds for the Laplacian eigenvalues of a weighted graph using traces. Then, we find the bounds for the Kirchhoff and Laplacian Estrada indices of a weighted graph. Finally, we define the Laplacian energy of a weighted graph and get the upper bound for this energy.
Consider the prospect of contributing your latest original research or review article to a PSR Press journal, and become an integral part of our thriving community of esteemed authors. The journey with PSR Press offers unparalleled advantages: ...
Peer review at PSR Press is a thorough evaluation that goes beyond brief feedback, emphasizing constructive engagement. Though not strictly structured, we suggest the following format for reviewer reports: Summary, Identification of Major Issues, Addressing....
Have you considered becoming an editor for a PSR Press journal or wish to recommend a colleague for the Editorial Board? Contact the managing editor of the respective journal; we welcome your input. Editors form the nucleus of our journals, collaborating with international teams of experts in various research domains. These...
To support the sustainability and continued operation of PSR Press, a nominal fee is charged for subscriptions. To get access of contents published by PSR Press journals, the readers need to subscribe the respective journal by paying subscription fee. The subscription prices for one journal of PSR Press are as follows: